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Abstract: This article addresses the problem of the contact voltage increase caused by the low-
frequency oscillation of the train-grid system in the phase-separation process of EMUs. The article
establishes the EMU-contact line-traction substation model, reveals the mechanism of low-frequency
oscillation, and ascertains the relationship between the phase angle when the pantograph leaves the
line, and low-frequency oscillations. Methods to suppress overvoltage during the low-frequency
oscillation are proposed. The research indicated that a significant voltage amplitude was observed in
the neutral zone, when the phase angle of the pantograph to the contact line separation power supply
fell within the range of 60–90◦ and 240–270◦. The maximum voltage amplitude reached 69.75 kV,
and there was an occurrence of low-frequency oscillation in the neutral zone, where electrical phase
separation takes place. During this oscillation, the voltage of the contact network in the neutral
zone mainly operated at one-third of the power frequency (16.7 Hz). However, after installing an
RC suppression device in the neutral zone, when low-frequency oscillation occurred, the absolute
value of the peak voltage dropped below 37 kV as soon as the EMU entered electric phase separation.
Furthermore, compared to situations without a connected suppression device, there was nearly a 30%
reduction in the absolute value of the peak voltage. The study provides a basis for the design of the
neutral zone of the contact line, and the selection of high-voltage equipment for the EMU.

Keywords: inrush current; high-speed train; over voltage; traction power-supply system; vehicle

1. Introduction

During the process of circuit structure switching, equipment such as voltage trans-
formers, inductors, and vehicle networks contain electromagnetic energy within their
ground capacitance when the EMU is in the phase-separation zone. This energy under-
goes conversion between the inductive element and an equivalent capacitor, resulting in
a low-frequency oscillation. The consequences of this phenomenon include the excessive
excitation of the ferromagnetic components, and abnormal increases in the port voltage and
network voltage within the neutral zone. The presence of electromagnetic energy poses a
significant safety risk to EMUs and catenary phase-separation equipment.

To solve the problem of low-frequency oscillation and overvoltage suppression in
the power-supply system, industry experts and scholars have carried out extensive and
in-depth modeling studies and characteristic analyses [1–5], and proposed methods for
low-frequency oscillation suppression [5–10]. As for the mechanism of low-frequency
oscillation, Ruifeng Zhang and others have studied the power-side oscillation combined
with the system impedance characteristics [11–15]. They proposed a method to adjust
the power-supply control strategy to reduce the low-frequency oscillation amplitude and
oscillation time. Regarding the problem of low-frequency oscillation caused by line-side
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faults, Lingling Fan et al. determined the influence of line-capacitance parameters on the fer-
romagnetic resonance in the system, and calculated the transient process. The influence of
the selection of the inductance, capacitance and resistance parameters on the ferromagnetic
resonance phenomenon was analyzed [15–20]. To address the problem of low-frequency
oscillation suppression, Zha W and others combined the matching relationship between
the impedance of the power-supply line of the traction power-supply system, and the
impedance of the locomotive, and proposed a strategy to reduce the oscillation by adding
active filtering on the power-control side [21–25]. The method focused on the analysis of the
input impedance characteristics of electric locomotives. The stability direction of the system
is determined according to the coupling relationship between the input impedance, and the
impedance of the power-supply line [26–30]. Regarding the operating system, combining
the characteristics of the system impedance, and low-frequency oscillation characteristics,
a parallel RC device was proposed, to reduce the oscillation process [31–35]. The above
research provides a reference for the analysis of the low-frequency oscillation process of
the EMU passing through the neutral zone, and the formulation of suppression strategies
in the traction power-supply system.

However, the distance of the neutral zone in the contact line is short (200 m). The EMU
will experience the disconnecting of the traction motor load [35–40], entering the neutral
zone and the intersection of the feeding section, and separating the pantograph from the
line. This process is complicated; at the same time, the neutral zone has a short distance,
and the distributed capacitance and the circuit resistance are small, so the oscillation process
is complicated [40–45], as shown in Figure 1.
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Figure 1. Transient process of the EMU passing the phase-division zone.

If there is a low-frequency oscillation in the vehicle line system when the EMU passes
the neutral zone, the magnetic field of the excitation circuit of the voltage transformer and
other equipment will increase, the terminal voltage will rise, and the high-voltage coil
insulation of the equipment will be damaged. There will be greater limitations if we use
the existing research conclusions. In response to this problem, this article combines the
operating conditions of the existing lines to test the line-voltage characteristics and the
oscillation process of the EMU during the neutral-zone process, establishes the EMU contact
line-traction substation model, and reveals the low-frequency oscillation mechanism. The
study obtains the relationship between the phase angle when the pantograph leaves the line,
and the low-frequency oscillation; and low-frequency oscillation overvoltage suppression
methods are proposed. The research provides a basis for the design of the contact line
neutral zone, and the selection of high-voltage equipment for the EMU.

2. Low-Frequency Oscillation and Overvoltage Characteristics of the Contact Line
2.1. Test Method and Test Process

Field tests are conducted using a test system that comprises a voltage divider device,
a current sensor, and data acquisition in response to low-frequency oscillation on-site. The
data acquisition system can analyze 100 harmonics with a sampling frequency of 20 kHz.
Continuous interval recording is used for storing data every 1000 ms, whereas transient
processes are recorded by storing 100 ms of data each time. Table 1 displays the specific
parameters utilized in designing the test system.
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Table 1. Main test equipment.

Serial Number Name Model Test Standard, Accuracy

1 Data acquisition HS4 0.1% (12 bit)
5 Voltage probe —— 100 V/2 V, 1%
6 Current Sensor PQ5 (U.S. Fluke) 0~5 A, 40~2 kHz, 2%

During the test, the voltage and current signals are respectively obtained on the
secondary terminals of the on-board voltage transformer and the current transformer.
When the train is running on the line, the voltage waveform obtained is shown in Figure 2.
The line voltage when passing through the neutral zone (i.e., position A shown in Figure 1)
is shown in Figure 2. At this position, there is an instantaneous drop in the line voltage, but
a higher amplitude overvoltage appears at position “1” compared with other position.
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Figure 2. Train operating current and voltage (RMS value).

2.2. Wave Characteristics and Laws

When the train passes through the electrical neutral zone, the voltage waveform should
conform to Figure 3, as this area is classified as a no-power zone, due to its electrical isolation.
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When the train disconnects from the power source at stage A, a brief electrical dis-
charge may occur. The voltage is influenced by both induced voltages, and should typically
remain below 5 kV, with a 50 Hz power frequency, in the neutral zone. However, if low-
frequency oscillations are produced by the EMU in this area, abnormal increases in the
voltage rising may be observed, like that shown in Figure 4, and there may also be no-
ticeable low-frequency oscillations in the grid voltage waveform, due to the pantograph
separation from the contact line, resulting in overvoltage of up to 52.0 kV. The primary
type of oscillation occurring within this region is that of a low-frequency nature (one-third
power frequency, or approximately 16.7 Hz).
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Figure 4. Harmonic frequency analysis of the voltage in the neutral zone.

The examination of the harmonic ratio reveals that the amplitude of the one-third
power frequency harmonic generated is approximately three times greater than the induced
voltage in the neutral zone, shown in Table 2. Consequently, when these voltages are
combined, an overvoltage occurs, which poses a risk to the safety of the EMU.

Table 2. Harmonic frequency analysis data of the grid voltage waveform in the neutral zone.

Frequency (Hz) Percentage (%) Frequency (Hz) Percentage (%)

0 6.04 133.33 13.36
16.67 100 150 6.86
33.33 6.29 166.67 10.89

50 31.34 183.33 9.81
66.67 9.53 200 6.12
83.33 10.73 216.67 6.88
100 12.07 233.33 2.81

116.67 4.60 250 3.17
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3. Vehicle-Line Institute Model and Oscillation Characteristics
3.1. Research on the Model of a Train Passing through the Neutral Zone

The power supply utilizes AT (autotransformer) technology on the Beijing–Zhangjiakou
railway line that is the object of the experiment, with an autotransformer being installed
approximately every 10–15 km. One end of the autotransformer is connected to the contact
line, while the other end is linked to the positive feeder. The neutral point is directly
connected to the rail. Figure 5 illustrates that a protection wire (PW) is integrated into
the power-supply system, and runs parallel to the rail (R). Additionally, a connector for
the protective wire (CPW) has been introduced, to establish a connection between the rail
and midpoint of each autotransformer, via the protection wire. This arrangement aims
to minimize impedance, to enhance the voltage levels at feeding sections, and reduce
power loss. Consequently, both the downstream contact lines and positive feeders in this
double-track traction line are interconnected in parallel, at each AT. The equivalent circuit
distributed capacitance that calculated is shown in Table 3.
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Figure 5. Structure of the double-wire full parallel AT traction net.

Table 3. Equivalent circuit distributed capacitance calculation results.

c T1 R1 P1 F1 T2 R2 P2 F2

T1 13.12 −0.83 −1.74 −2.04 −2.00 −0.41 −0.36 −0.56
R1 −0.83 20.12 −0.63 −0.23 −0.41 −0.44 −0.12 −0.09
P1 −1.74 −0.63 8.42 −1.12 −0.36 −0.12 −0.08 −0.11
F1 −2.04 −0.23 −1.12 8.28 −0.56 −0.09 −0.11 −0.26
T2 −2.00 −0.41 −0.36 −0.56 13.12 −0.83 −1.74 −2.04
R2 −0.41 −0.44 −0.12 −0.09 −0.83 20.12 −0.63 −0.23
P2 −0.36 −0.12 −0.08 −0.11 −1.74 −0.63 8.42 −1.12
F2 −0.56 −0.09 −0.11 −0.26 −2.04 −0.23 −1.12 8.28

The electrical parameters of the voltage transformer are shown in Table 4.

Table 4. Voltage transformer inductance parameters.

Serial Number JDZXW5-25J JDZXW5A-25J JDZXW7-25D

EMU type CRH3X CRH5X CR400XF
Primary DC

resistance 20 ◦C 43,160 Ω 46,488 Ω 43,160 Ω

Primary inductance 11,000 H–12,000 H 11,000 H–12,000 H 11,000 H–12,000 H

Only the pantograph and the roof voltage transformer are linked to the contact line in
the entire EMU. This primary circuit can be represented as a high-voltage circuit, consisting
of resistance, inductance, and capacitance. The diagram illustrating this equivalent circuit
is presented in Figure 6.
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In Figure 6, Ua and Ub are traction power supplies; RS and LS are the resistance
and inductance of the traction transformer, converted according to the Thevenin circuit
equivalent; R1 and L1 are the equivalent resistance and reactance of the contact line feeding
section; C1 is the feeding section ground capacitance; C2 is the neutral zone-to-ground
capacitance; C12 is the coupling capacitance between the neutral zone and the power-supply
zone; PT is the roof voltage transformer; Cm is the EMU pantograph-to-ground capacitance;
K1 and K2 are the switches that control the cut-off and closing-phase angle. The initial state
is the off state, which is used to simulate the circuit-conversion process when the EMUs
pass through the neutral zone, where no power is supplied.

When the EMU enters the neutral zone, K2 remains open, and K1 quickly changes from
the open state to the closed state. The neutral zone voltage in this transient process can be
determined using the differential equation. As the core inductances Lm and Rm of the roof
voltage transformer are relatively large, and C1 and Cm are relatively small compared to
C2, the neutral zone and the power-supply zone coupling capacitor C12 are short-circuited
after the switch K1 is closed so, in the differential equation expression, the influence of the
parameters Lm, Rm, C1, Cm, and C12 can be ignored. If L = Ls + L1, R = Rs + R1, and C = C2
according to the equivalent circuit of the EMU after the equivalent switching action, then
the loop equation can be listed as:

uL + uC + uR = us (1)

Here, us is the power-supply voltage, the inductor voltage uL = Ldi/dt, the resistance
voltage uR = R·i, and the loop current i = CduC/dt. By substituting them into Equation (1),
the differential equation can be obtained:

LC
d2uC
dt2 + RC

duC
dt

+ uC = us (2)

Any voltage drop caused by this impedance can be disregarded by considering the
negligible impedance of the contact line in the neutral zone. Consequently, the voltage uc
at both ends of the neutral zone-to-ground capacitance C2 in Equation (2) represents the
voltage across the joint-type electrical split’s neutral zone. Equation (2) is a second-order
linear non-homogeneous differential equation with constant coefficients, and its complete
response can be divided into the zero input response and zero state response. When the
switch K1 is closed, the induced voltage from the capacitance C2 connected to the electric
neutral zone discharges into an R-L circuit. This discharge process can be described using a
differential equation.

LC
d2uC
dt2 + RC

duC
dt

+ uC = 0 (3)

The effective circuit’s expression with no input is:

uC = − p2U0
p1−p2

ep1t + p1U0
p1−p2

ep2t

= U0
p1−p2

(
p1ep2t − p2ep1t) (4)
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The characteristic root can exhibit three distinct scenarios as a result of varying cir-
cuit parameters. The work will delve into the neutral zone-to-ground voltage in each of
these situations.

(1) When α > ω0; that is, R > 2
√

L/C, p1 and p2 are two unequal negative real numbers.

uC =
U0

p1 − p2

(
p1ep2t − p2ep1t) (5)

This situation is called the aperiodic discharge or non-oscillating discharge process.
(2) When α < ω0; that is, R < 2(L/C)0.5, and p1 and p2 are equal, then the equivalent circuit

has only one frequency, and the neutral voltage to the ground is:

uC = U0(1 + αt)e−αt (6)

It can be seen from Equation (6) that there is no oscillating change, and the circuit has
a non-oscillating nature, but this is the dividing line between an oscillating circuit
and a non-oscillating circuit, so the situation when R < 2(L/C)0.5 is called a critical
non-oscillating process.

(3) When α < ω0; that is, R < 2(L/C)0.5, then p1 and p2 are a pair of conjugate complex
roots, and the neutral voltage to the ground is:

uC =
U0ω0

ωd
e−αt sin(ωdt + β) (7)

This scenario involves an oscillating discharge, where the waveform undergoes pe-
riodic changes, and the energy storage component exchanges energy periodically,
as well. Equation (2) can be expressed as us = Umsin(ωt + Φ), withωt representing
the angular frequency of the power supply, and Φ indicating its initial phase angle.
Consequently, Equation (2) takes on a new form.

LC
d2uC
dt2 + RC

duC
dt

+ uC = Um sin(ωt + φ) (8)

(1) If it is a non-oscillating circuit, the neutral voltage to the ground can be expressed as:

uC =
Um

Z
XC sin

(
ωt + φ− ϕ− π

2

)
+ A1ep1t + A2ep2t (9)

Taking Equation (5) into Equation (9), the expression of Uc and i is:

uC = Um
Z XC[sin

(
ωt + φ− ϕ− π

2
)
+ cos(φ−ϕ)

p1−p2

(
p1ep2t − p2ep1t)

+ sin(φ−ϕ)
p2−p1

(
p1ep1t − p2ep2t)] (10)

(2) If the circuit is in a critical state, in the same initial state, then the same as above can
be obtained using:

uC =
Um

Z
XC{sin

(
ωt + φ− ϕ− π

2

)
+ e−αt[(1 + αt) cos(φ− ϕ) + tω sin(φ− ϕ)]} (11)

(3) If it is an oscillating circuit then, at this time, p1 and p2 are a pair of conjugate complex
numbers, p1= −α + jωd, p2 = −α − jωd, which can be obtained under the same
initial state:

uC = Um
Z XC{sin

(
ωt + φ− ϕ− π

2
)
+ e−αt

ωd
[ω0 sin(ωdt + β) cos(φ− ϕ)

+tω sin ωd sin(φ− ϕ)]}
(12)
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When the EMU enters the neutral zone, and experiences low-frequency oscillation,
the equivalent circuit undergoes oscillation. By applying the principle of circuit
superposition, we can combine Equations (6) and (7) with Equations (11) and (12),
respectively. This allows us to derive a mathematical expression for the voltage when
the EMU enters the electrical neutral zone.

uC(t) = Um
Z XC sin

(
ωt + φ− ϕ− π

2
)
+ Ume−αt

ZωdC sin ωdt sin(φ− ϕ)

+
[

U0ω0
ωd

+ UmXC
Z sin β cos(φ− ϕ)

]
e−αt sin(ωdt + β)

(13)

When the EMU enters the electrical neutral zone, the ground voltage of the neutral
zone is influenced by the phase angle of the contact line power supply. The structure
of the neutral zone affects its capacitance parameter C, and determines how voltage
oscillations occur within it. As entry into this zone occurs at random times, each time
an EMU enters, a different electromagnetic transient process is generated, resulting
in varying excitation levels in the roof voltage transformers. The circuit’s oscillation
angular frequencyω0 exceeds that of its free component ωd, which decays exponen-
tially with a speed determined by the attenuation coefficient α = R/2L. A larger value
for α results in a faster amplitude decay, and a shorter time to reach zero, while also
taking into account the contact line impedance.

Z = 0.05 + j0.145lg
D
d

(14)

The resistance part is 0.05 Ω/km, and the resistance value is about 0.01 Ω when
the length of the neutral zone is 200 m. Comparing the inductance and resistance
parameters of the oscillating system, it can be seen that α = 0.001/10,000, the damping
in the oscillation process is extremely small, and there is almost no attenuation process.

3.2. Oscillation Process and Overvoltage Characteristics

A model of the power-supply line, source, and train system is established, based
on the percentage of the power supply, and the train operation status (Figure 7). The
simulation of the pantograph for the net contact state for the EMU in a neutral zone is
achieved by adjusting the time-controlled breaker’s on–off state and PT position within the
model. During the entry process, the control breaker rapidly transitions from an open to a
closed state, under the regulation of a time-control switch that governs its closing duration,
before reopening.
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Figure 7. A source, power-supply line, and train-system simulation model.

A fixed time-controlled switch is utilized to regulate the opening and closing times,
to investigate the impact of the power phase angle on low-frequency oscillation during
pantograph and line separation. The neutral zone is observed for occurrences of low-
frequency oscillation, while the power phase angle is varied, with the corresponding ranges
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recorded. Table 5 displays the maximum voltage amplitude in the neutral zone at different
phase angles for an EMU.

Table 5. Maximum voltage in the neutral zone of the electrical split.

Phase Angle (◦) Voltage (kV) Phase Angle (◦) Voltage (kV) Phase Angle (◦) Voltage (kV)

0 46.70 120 51.78 240 69.75
10 52.25 130 48.37 250 68.85
20 56.15 140 45.10 260 67.61
30 58.80 150 40.53 270 64.44
40 60.64 160 41.80 280 62.25
50 62.30 170 45.39 290 61.29
60 66.22 180 50.11 300 57.81
70 66.12 190 55.04 310 53.40
80 64.11 200 59.57 320 48.50
90 64.98 210 62.00 330 44.55
100 59.25 220 65.17 340 43.84
110 57.01 230 67.84 350 42.74

A significant increase in amplitude is exhibited when the power supply’s phase angle
falls within the range of 60–90◦ and 240–270◦. The simulation conditions highlight that
these specific phase angles are particularly associated with the prominent occurrence of
low-frequency oscillation in the neutral zone. Figure 8 illustrates the typical waveform of
low-frequency oscillation experienced by the EMU as it traverses through this electrical
neutral zone under identical power phase angle conditions.
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Figure 8. The EMU enters the electric split-phase simulation model.

The analysis of the frequency spectrum for low-frequency oscillation in the neutral
zone is based on a fundamental frequency of 50 Hz. The contact line voltage within this
area primarily exhibits a power frequency of one-third (16.7 Hz) during instances of low-
frequency oscillation. Figure 9 displays the typical amplitude and frequency characteristics
for an abnormal line voltage simulation in the neutral zone region.

Following the simulation, a different type of low-frequency oscillation was observed
(Figure 10). The alteration of either the capacitance or resistance value in the model, with a
constant excitation factor, resulted in a modification in the waveform for this oscillation.
Figure 10 depicts an increase in amplitude with a frequency similar to that shown in
Figure 8, along with two peaks appearing within one cycle.
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3.3. Methods of Suppressing Oscillation Process

To simulate the process of the EMUs running into the neutral zone, three equivalent
circuits are established in Figure 11, R1 and L1 represent the equivalent impedance of the
contact line power supply, while C1 denotes the equivalent capacitance of the traction
power system. On the other hand, R2 and C2 indicate resistance and capacitance in the
protection device. Only parallel resistance is considered in Figure 11a. The analysis of
this second-order circuit reveals that an increase in parallel resistance results in a reduced
damping in the system, leading to a decrease in the overvoltage value. Similarly, Figure 11b
focuses on parallel capacitors, where it is observed that they enhance the damping of
the system, and reduce the overvoltage value. Finally, Equation (19) mainly analyzes
Figure 11c. A differential equation about capacitor voltage uc1 can be formulated, after
closing switch S:

R1(i1 + i2) + L
d(i1 + i2)

dt
+ uC1(t) = uS(t) (15)

R2i2 + uC2 = uC1 (16)

i1 = C1
duC1

dt
(17)

i2 = C2
duC2

dt
(18)
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Using Laplace transform, we can obtain:

Φ(s) =
uC1 (s)
us(s)

=
1 + R2C2s

LR2C1C2s3 + (LC1 + LC2 + R1R2C1C2)s2 + (R1C1 + R1C2 + R2C2)s + 1
(19)
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MATLAB is used to analyze the unit step response of the transfer function, and the
results are shown in Figures 12 and 13.
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unchanged).

Figure 13 illustrates the equivalent circuit of the neutral zone after the incorporation of
an RC protection device, according to the test on the excitation characteristic of the voltage
transformer’s low-frequency oscillation. The transient process of an EMU passing through
this neutral zone is simulated using MATLAB 2017b software (MathWorks, Natick, MA,
USA), as depicted in Figure 14.
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Figure 14. Equivalent circuit diagram of the EMU in the neutral zone (with an additional RC device).

Under the same simulation conditions as the original low-frequency oscillation, an RC
device was installed in the neutral zone, and the voltage waveform of the contact line in
the neutral zone is shown in Figure 15.
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The simulation waveform demonstrates that the installation of the suppression device
results in a reduction in the voltage peak magnitude to below 20 kV, when the EMU enters
the electrical neutral zone, and the time-controlled switch in the simulation model is closed.
There has been an approximate 30% reduction in the absolute peak voltage magnitude, and
the effective mitigation of low-frequency oscillation, in comparison to scenarios without
the suppression device. The simulation demonstrates that incorporating an RC protection
device in parallel with either the roof voltage transformer or the electric neutral zone results
in a comparable circuitry and similar efficacy in attenuating the low-frequency oscillation.

4. Conclusions

The work utilized both model calculations and field tests to investigate the low-
frequency oscillation mechanism that occurs when an EMU passes through the neutral
zone. Methods were also proposed for suppressing this phenomenon. The findings of the
research are as follows:

(1) During normal operation, when an EMU entered the neutral zone, there was a signif-
icant increase in the operating overvoltage, due to the circuit breaker opening and
closing. The voltage in the neutral zone remained very low. Abnormal increases in
the grid voltage within this area could result in noticeable low-frequency oscillations,
with amplitudes reaching up to 51.8 kV, and a frequency of approximately 16.67 Hz,
or one-third of the power frequency.

(2) The voltage levels within an EMU’s neutral zone during electrical separation were
dependent on the power phase angles at the entry time. When these angles fell
between 60–90◦ and 240–270◦, the voltage amplitude was relatively high, with the
maximum values reaching up to 69.75 kV, accompanied by low-frequency oscillations,
mainly at one-third of the power frequency.

(3) The installation of RC suppression devices reduced the absolute peak voltage below
20 kV upon entering the electrical neutral zone by nearly 60%, compared to cases
without such devices. The low-frequency oscillation was also suppressed.
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