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Abstract: Subsurface characterization is crucial for geothermal energy exploration and production.
Yet hydrothermal reservoirs usually reside in highly fractured and faulted zones where accurate
characterization is very challenging because of low signal-to-noise ratios of land seismic data and
lack of coherent reflection signals. We perform an active-source seismic characterization for the
Blue Mountain geothermal field in Nevada using active seismic data to reveal the elastic medium
property complexity and fault distribution at this field. We first employ an unsupervised machine
learning method to attenuate groundroll and near-surface guided-wave noise and enhance coherent
reflection and scattering signals from noisy seismic data. We then build a smooth initial P-wave
velocity model based on an existing magnetotellurics survey result, and use 3D first-arrival traveltime
tomography to refine the initial velocity model. We then derive a set of elastic wave velocities
and anisotropic parameters using elastic full-waveform inversion, and obtain PP and PS images
using elastic reverse-time migration. We identify major faults by analyzing the variations of seismic
velocities and anisotropy parameters, and reveal mid- to small-scale faults by applying a supervised
machine learning method to the seismic migration images. Our characterization reveals complex
velocity heterogeneities and anisotropies, as well as faults, with a high spatial resolution. These
results can provide valuable information for optimal placement of future injection and production
wells to increase geothermal energy production at the Blue Mountain geothermal power plant.

Keywords: blue mountain geothermal field; seismic characterization; fracture; fault; tomography;
elastic full-waveform inversion; reverse-time migration; fault detection; anisotropy

1. Introduction

Geothermal energy plays an important role in renewable energy production in the
United States and around the world. In the U.S., most of the geothermal reservoirs reside in
the western continental states and Hawaii. The Blue Mountain geothermal field is a hydro-
geothermal system located on the western flank of Blue Mountain in the Humboldt County
of Nevada at an elevation of approximately 1350 m above the sea level. The Blue Mountain
geothermal field was discovered as a blind geothermal reservoir enabled by a connected
fracture network [1–3]. Lack of recent volcano activities in this region suggests that it is
not heated by upper-crustal magmatism. Geothermal drilling has unveiled relatively high
geothermal flow rates and temperatures (>190 ◦C) at depths of approximately 600 to 1070 m
below the ground surface [4]. A geothermal power plant, the Faulkner I Energy Generation
Facility, was developed in this geothermal field, and was commissioned in 2009 with an
installed capacity of 49.5 MW and a net production of 38 MW.

The regional geology and conceptual geological model around the Blue Mountain
geothermal field has been well studied by [1,3,5]. Figure 1 displays the regional geology
and particularly major faults in the Blue Mountain geothermal field area. Geologically, Blue
Mountain is a faulted Triassic meta-sedimentary unit, spanning approximately 8 km long
and tilting eastward. It sits between the Eugene Mountains and Slumbering Hills and is
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bounded by Desert Valley at the west. The Blue Mountain geothermal field, based on the
current regional geology study, lies above the intersection between a regional NNE- to ENE-
striking, west-dipping normal-sinistral fault system. In the vicinity of the geothermal field,
there exists a localized WNW-striking, SW-dipping, normal-dextral fault on the southwest
flank of Blue Mountain [1]. The majority of the Blue Mountain fault system is considered as
a result of the Miocene diorite dike intrusion into the Triassic meta-sediments that occurred
at approximately 12 ma. The intrusion was later covered by the late Tertiary to Quaternary
sediments [3]. Such a geological setting results in a very complicated strain or deformation
distribution and connected fault system in our study region that spans 6.5 km in both WE
and NS directions [2].

Figure 1. Regional geology map for the Blue Mountain geothermal field area, NV, adopted and
modified from [1]. The Blue Mountain geothermal field is annotated as a blue circle in the center.

Multiple geophysical surveys have been conducted at the Blue Mountain geothermal
field, including active and passive seismic, magnetotellurics (MT), and gravity surveys.
In 2007, Cyrq/AltaRock acquired reflection seismic data along seven 2D seismic lines
in this field, with source and receiver locations as displayed in Figure 2. The survey
used 1-kg explosive sources buried approximately 5.2 m below the ground surface to
prevent blowouts [6]. The lengths of these seismic survey lines vary from approximately
4 km to 6 km, and each contains 53 to 89 common-shot gathers, resulting in a total of
469 common-shot gathers. Each common-shot gather contains 117 to 179 receivers recording
the z-component (or vertical component) of particle velocity field, resulting in a total of
68,613 traces. Along all the seven lines, the source interval is approximately 73.3 m (exactly
220 ft) while the receiver interval is approximately 36.7 m (exactly 110 ft). The Blue
Mountain geothermal power plant is located on the east side of these lines, with several
injection and production wells located in the intersection region among Lines 2, 3, 4 and 5
as displayed in Figure 2b. The seismic survey spans over an area with nontrivial elevation
changes. For some of these seven lines, the maximum elevation difference is as high as
300 m, as indicated by the contours in Figure 2b.
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Figure 2. Spatial locations of the seven 2D seismic survey lines (source displayed as red stars and
receivers displayed as white disks), injection wells (displayed as green triangles), and production
wells (displayed as yellow squares) at the Blue Mountain geothermal field in Nevada, overlying on
the elevation map of the region. Panel (a) shows the shaded relief elevation of Blue Mountain region,
while panel (b) displays the smaller area where the active seismic survey was conducted, represented
using 100-m equally-spaced contours. All coordinates are measured in the Universal Transverse
Mercator (UTM) North American Datum (NAD) 1983 coordinate system (zone number: 11 N) with a
unit of meter (m).

Figure 3 displays seven common-shot gathers randomly selected from the data, each
from a different line. The data quality of these common-shot gathers is very poor—strongly-
aliased groundrolls and near-surface guided waves dominate every common-shot gather,
and no coherent reflection signals can be observed. The seismic data were processed by
a seismic processing company with conventional seismic data processing tools, includ-
ing random noise attenuation, ground-roll noise attenuation, deconvolution, and so on.
The vendor then performed 2D refraction tomography to obtain a low-resolution P-wave
velocity model for the shallow layers along each line, and performed Kirchhoff migration
of the data [6]. However, a study based on these processed data and imaging results
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by [4] determined that because the vendor’s processed data (as displayed in Figure 4a)
do not contain any visible reflection signals, the resulting migration images (Figure 5 in
their paper) based on these data are possibly full of artifacts caused by the guided waves,
instead of reflectors that resemble realistic subsurface structures. In addition, by mapping
the traveltime tomography results to 3D, we also find inconsistencies at the intersections
of seismic lines as displayed in Figure 4b. Therefore, in this study, we do not use these
previously processed seismic data and picked traveltimes. Instead, we process the data
using our own method and re-pick the first-arrival traveltimes from the data to perform
traveltime tomography as detailed below.
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Figure 3. Seven raw common-shot gathers randomly selected from the seven 2D survey lines.
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Figure 4. (a) An example of a common-shot gather displayed up to 4 s, resulting from data processed
by a seismic processing company in 2007. (b) An example of line inconsistency in the Vp model
derived by a seismic processing company in 2007 using 2D refraction tomography.
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For reliable seismic characterization of the Blue Mountain geothermal field, we aim
to derive high-fidelity, high-resolution elastic medium properties and seismic migration
images, and characterize the fault system using these models and images. To achieve
this challenging goal based on the seven lines of active seismic data with low signal-to-
noise ratios, we jointly use machine learning-based seismic data processing, full-waveform
inversion, reverse-time migration, and machine learning-based fault detection.

Properly denoised seismic data are the basis for seismic imaging and inversion.
The main issue plaguing the seven lines of Blue Mountain active seismic data, as shown
in Figures 3 and 4a, is that the aliased groundroll and near-surface guided wave are so
strong that no reflection signals are visible. Groundroll noise attenuation is a challenging
step in seismic data processing that is usually tackled by filter-based methods (e.g., [7,8]),
adaptive attenuation (e.g., [9]), singular-value decomposition (e.g., [10]), and so on. We use
an unsupervised machine learning (ML) method, namely the CycleGAN [11], to attenuate
groundroll and near-surface guided wave noise in the Blue Mountain seismic data. Cy-
cleGAN is a type of generative adversarial network (GAN) [12] developed for unpaired
image-to-image translation; it learns the “style” of images (i.e., their representative proba-
bility distribution) and performs translation of an image to the target style, e.g., real-world
photo to Monet’s painting style. It relies on a generator to translate the input image to the
target domain, and a discriminator to distinguish how well the target style has been learned
by the NN compared to ground truth target styles. The idea of groundroll attenuation via
GAN and CycleGAN have been explored and validated by [13,14], where the NN translates
groundroll-contaminated data to data without groundroll. In this study, we use CycleGAN
to learn and translate the Blue Mountain seismic data that are severely contaminated by
groundroll and near-surface guided wave noise to data that contain only reflection signals.
The target style is provided by simulating seismic data in a series of geological models
with a random number of randomly oriented faults with an absorbing top surface (i.e., the
synthetic data are free of surface wave signals). There are many approaches, including con-
ventional and ML-based, that can perform groundroll noise attenuation, and the method
we use here is just one of them. Validating and comparing these methods is beyond the
scope this work.

We use first-arrival traveltime tomography (FATT) to derive a low-resolution velocity
model for the Blue Mountain geothermal field. FATT seeks an optimal velocity model by
matching the observed and synthetic fist-arrival traveltime. We implement the adjoint-
state FATT [15,16] to perform refraction traveltime tomography because of its flexibility
in handling complex heterogeneities. We carry out traveltime picking on the 68,613 traces
using our in-house traveltime picking software.

With the denoised seismic data and the FATT-updated velocity model, we employ
full-waveform inversion (FWI) [17–19] to obtain high-resolution subsurface medium pa-
rameter models based on the FATT result. FWI is known to be highly nonlinear and prone
to the cycle-skipping issue (e.g., [20–23]). Many strategies and misfit functions have been
developed to improve the robustness of FWI to cycle skipping and noise (e.g., [20,22–27]).
In this study, we adopt a recently developed FWI misfit function based on optimal transport
theory, the so-called graph-space optimal transport (GSOT) [23,28], to improve convergence
and derive high-resolution models. Mathematical details and validations of GSOT for
both synthetic and field seismic data have been well described by [23,28,29]. Note that in
these studies, GSOT-FWI has been applied to synthetic and pressure data and proven to be
robust to cycle skipping, but yet to be fully validated with elastic-wave data, particularly
those collected by land seismic surveys that target deep structures. To investigate potential
velocity anisotropy caused by fracturing and faulting at the Blue Mountain geothermal
field, we perform two types of elastic FWI (EFWI): one based on an isotropic medium
assumption where we invert for P- and S-wave velocities (Vp and Vs), and the other based
on anisotropic medium assumption where we invert for Vp, Vs, and two Thomsen parame-
ters ε and δ [30]. For multi-parameter EFWI, there essentially exist parameter trade-offs
(e.g., [26,31,32]), even for an EFWI that only inverts for Vp and Vs [33]. For the Blue Moun-
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tain seismic data, we apply a straightforward gradient-based method [34] parameterized in
classical anisotropic parameters (i.e., Thomsen parameters) that does not involve Hessian
or approximate Hessian (e.g., [32,35]) to update the elastic parameters, which, therefore,
may be contaminated by parameter trade-offs. Properly eliminating parameter trade-offs
for field seismic data may need more effort, including parameter decoupling by the Hessian
and alternative forms of anisotropy parameterization [32,36]. However, that is beyond the
scope of this paper.

Subsurface structural images can provide valuable information for placing geothermal
injection and production wells. With the elastic medium property models derived using
EFWI, we further use elastic reverse-time migration (ERTM) to obtain subsurface reflector
images at the Blue Mountain geothermal field. ERTM was developed almost simultaneously
with the acoustic counterpart [37,38], and is an effective tool for exploiting elastic wavefield
information to form elastic (PP, PS, SP and SS) reflection images. Many strategies have
been developed to overcome or alleviate challenges associated with ERTM (e.g., [39–41]).
In this work, we perform ERTM to obtain the PP and PS images for the seven lines using
a hybrid-domain dual-separation (i.e., a low-rank-based vector P-S wavefield separation
and a Hilbert transform-based directional wavefield separation) [42–44] imaging condition.
Details of this method can be found in [45].

Detecting faults is a key component of seismic characterization for the Blue Moun-
tain geothermal field. Previous studies described the complex fault network near Blue
Mountain [1,4,5] based on regional-scale geological models and low-resolution geophysical
surveys, which therefore may miss small-scale faults developed in this field, particularly
in the deep region. In recent years, ML-based automatic fault detection on seismic migra-
tion images (e.g., [46–48]) is becoming the state-of-the-art approach to automated fault
detection because of its robustness and accuracy. We apply a recently developed ML-based
fault detection algorithm based on nested residual U-Net [47] to elastic migration images,
including PP and PS images, to automatically delineate faults beneath the seven seismic
lines. Technical details of the fault detection method, including the network architecture
and training/validation process, have been described by [47]. In addition to using an
ML-based method to reveal mid- to small-scale faults, we also interpret the major fault
in this area by visual inspection and hand picking. The interpretation along with the
automatic fault detection results serve as the final results of our seismic characterization for
the Blue Mountain geothermal field.

Figure 5 summarizes the aforementioned procedure of seismic characterization for the
Blue Mountain geothermal field. We start from the MT survey resistivity model, raw seismic
data, and the data acquisition geometry extracted from seismic data headers, to obtain the
final products including inverted elastic parameter models, migration images, and fault
maps. Our seismic characterization mainly uses an ML-based data processing method and
prestack seismic imaging/inversion methods (EFWI, ERTM) to produce subsurface elastic
parameter models and migration images. Therefore, conventional components of seismic
data processing, such as velocity analysis, static correction, deconvolution, and so on, are
not used in this workflow. In fact, we want to mitigate the impact of assumptions and
approximations associated with these conventional processing steps in our study, and this
study offers an experimental workflow to validate ML-based seismic data processing,
seismic interpretation, and full-wavefield-based imaging and inversion for reliable seismic
characterization at complex geothermal fields.

The rest of the paper is organized into four major sections. We first describe how we
denoise the Blue Mountain seismic data to obtain coherent reflections using CycleGAN,
and how to build a low-resolution initial Vp model based on a previous MT survey model.
We then describe how to perform 3D line-masked FATT using the traveltime picks. Follow-
ing FATT, we describe how to perform 2D EFWI and analyze the high-resolution isotropic
and anisotropic elastic medium property models. We then describe 2D ERTM results and
obtain ML-detected fault maps along the seven lines. In the Discussion section, we share
our point of view on the line intersection consistency issue and potential shortcomings of
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our seismic characterization for the Blue Mountain geothermal field. We summarize our
work in the Conclusions section.

Figure 5. Workflow of seismic characterization for the Blue Mountain geothermal field. Black bold
texts represent intermediate or final results, while blue texts represent methods or procedures.

2. Seismic Data Denoising and Initial Model Building

The basic mechanism of CycleGAN denoising is illustrated by Figure 6. “Style A”
and “Style B” represent the source and the target image domain probability distributions,
respectively. To form the target image domain, we first generate a total of 100 random
faulted models using a similar strategy for generating random faults [47,48]. Each model
contains a random number of randomly tilted faults, a random number of randomly
curved reflectors, and random values of Vp, Vs, and density in the layers. We then generate
a total of 460 synthetic common-shot gathers in these 100 randomly faulted models at
460 random source locations at the top surface (i.e., an average of 4.6 shots per model).
The receivers for recording seismic waveforms are evenly distributed at the top surface.
Because we have used perfectly matched layers at the top surface and the other three



Energies 2023, 16, 5822 8 of 33

model boundaries, the resulting synthetic data do not contain surface waves or guided
waves; meanwhile, they are sufficiently random in reflection patterns to form the target
style (probability distribution) for CycleGAN to learn and to translate the Blue Mountain
seismic data. We divide the 460 synthetic common-shot gathers into a training set with
400 gathers and a validation set with 60 gathers. We divide the Blue Mountain seismic data
in a similar manner.

Figure 6. Schematic of CycleGAN-based seismic data noise attenuation. Style A represents the
probability distribution of the noisy Blue Mountain seismic data, while Style B represents the proba-
bility distribution of the synthetic, clean seismic data. Color figures at the lower-right corners of the
synthetic waveforms indicate randomly faulted models used for generating these data.

Our code is based on an open-source implementation of CycleGAN [49], with some
modifications to the dataloader, input/output, and logging modules. The generators are
based on ResNet [50] while the discriminator is composed of conventional convolutional
layers, batch normalization layers, and rectified linear unit layers [51]. We train the Cycle-
GAN implemented in PyTorch [52] with an Adam optimizer [53] for a total of 100 epochs,
using a linear learning rate scheduler, a 10−4 initial learning rate for the generator and a
10−5 initial learning rate for the discriminator. We set a high weight of 500 for the cycle
consistency loss and a relatively lower weight of 0.1 for the identity loss. Figure 7 displays
the loss curves associated with the generators, the discriminators, the cycle consistency,
and the identify losses. The definitions of these losses can be found in [11]; for brevity,
we do not display the associated equations here. Note that we perform the style transfer
from A (field data style) to B (synthetic data style). The generator A-B loss displayed in
Figure 7a and the discriminator B loss displayed in Figure 7d show reasonable behaviors
where, during the training, the generator generates more realistic fake images (denoised
field data) that are more difficult for the discriminator to distinguish from real images
(noise-free synthetic data). Meanwhile, both the cycle consistency and the identity losses
decrease during training. After training, we apply the model to every common-shot gather
of the Blue Mountain field seismic data. Figure 8a shows seven randomly selected common-
shot gathers from the Blue Mountain seismic data after simple root-means-square (RMS)
trace-by-trace balancing, while Figure 8b displays the denoised data corresponding to these
seven common-shot gathers. We find that the CycleGAN attenuates most of the groundroll
and near-surface guided wave noise in the raw seismic data and preserves coherent and
clear reflections, indicating the effectiveness of the ML denoising method. Note that no ML
model is perfect in generalization; bridging the gap between synthetic and real data usually
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requires careful conditioning of synthetic data [54]. The synthetic data we prepare for
training the ML model may introduce biases to the denoising results which, unfortunately,
are difficult to quantify, because the synthetic random models for generating the synthetic
data are not necessarily very close to the realistic geology in this region. Effectiveness of the
processing is mostly validated by the correlation between our inversion/imaging results
with known field observations or well locations detailed in the next sections.

(a) Generator A-B (b) Generator B-A

(c) Discriminator A (d) Discriminator B

(e) Cycle-consistency A (f) Cycle-consistency B

(g) Identity A (h) Identity B

Figure 7. Loss curves associated with the CycleGAN in the training: (a,b) the generator loss, (c,d) the
discriminator loss, (e,f) the cycle consistency loss, and (g,h) the identify loss. Note that we perform
the style transfer in the A-B direction, where A is the field data style while B is the synthetic data
style. Therefore, for the generator, the A-B loss in panel (a) is relevant, while for the discriminator,
the B loss in panel (d) is relevant. The losses are displayed without any smoothing.
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Figure 8. Panels (a,b) display RMS-balanced common-shot gathers corresponding to the gathers in
Figure 3, and CycleGAN-denoised common-shot gathers, respectively.

Next, we build an initial Vp model for FATT. There was no full 3D seismic survey
in the study area. Existing industry-generated Vp using refraction tomography appear
inaccurate because of the obvious inconsistency at the survey line intersections. To build
consistent Vp models along the seven seismic lines for FATT to update, we first extract
two major interfaces that correspond to the boundaries of low and high resistivity region
in the MT survey resistivity model generated by another geophysical service company,
WesternGeco, in 2009. The MT model is then divided into four different regions based
on the isosurfaces extracted from the model: the free air, the near-surface high-resistivity
region, the mid-resistivity region beneath Blue Mountain, and the low-resistivity region
in between. We then convert the existing MT survey resistivity model to a smooth Vp
model with low velocity values (1200 to 3000 m/s) in the near-surface region of the Desert
Valley, high velocity values (5000 m/s) beneath Blue Mountain, and intermediate velocity
values (3000 to 3500 m/s) in the region between the two extracted resistivity interfaces.
These velocity values used for building the initial model are based on traveltime-based
trial-and-errors. The resulting initial Vp model displayed in Figure 5 (the second top panel
in the center column) is a smooth velocity model with similar overall geological structures
consistent with the MT resistivity model. Figure 9 displays the Vp models associated with
the seven seismic lines. Note that the topography of this model is interpolated from the
digital elevation model (DEM) with a resolution of 10 m by 10 m for this region. The DEM
model is available in the United States Geological Survey (USGS) database.
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Figure 9. Panels (a–g) show the initial Vp models of Lines 1–7 built based on WesternGeco’s MT
resistivity inversion model. In all the panels (and similar panels in the following figures), the left
end of the horizontal position is west while the right end is east by viewing the lines from south
to north. Note most of the lines do not exactly align with west-east direction. See Figure 2b for the
line numbers.

3. First-Arrival Traveltime Tomography

In FATT, we obtain a refined Vp model based on

m∗ = arg min
m

{
1
2
||Tsyn − Tobs||22

}
, (1)

where m is the model parameter, Tobs is the observed traveltime, and Tsyn is the synthetic
traveltime. We adopt the adjoint-state FATT method [15,16] to update the initial Vp model
in Figure 9. We solve the forward problem in adjoint-state FATT with a second-order fast
marching scheme based on the factorized eikonal equation [55,56], and the adjoint-state
equation using a first-order fast sweeping algorithm [16]. We use nonlinear conjugate gradi-
ent inversion (e.g., [57]) to update the velocity model, with an optimal step size computed
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based on a small-perturbation strategy [58]. We use a quasi-ray-density preconditioner [59]
to mitigate the energy imbalance issue associated with adjoint-state FATT. Note that we
assume isotropic medium rather than anisotropic medium in the FATT, and the inversion
result is a refined Vp model. Anisotropic parameter models are built using full-waveform
inversion detailed in the next section.

We perform one 3D FATT instead of seven 2D FATTs for the seven lines of Blue
Mountain seismic data. We first create a “fat-line” mask by extending each line in their
respective perpendicular directions on the horizontal plane. We then extend the mask in the
depth direction to create a 3D line mask as displayed in Figure 10a. The mask value near
the original position of the lines is 1, and gradually reduces to 0 away from the line. At each
FATT, we multiply the computed gradient with this line mask, so that only the masked
region is updated. Eventually, we obtain an updated Vp model inside the mask as shown in
Figure 10b. The advantage of such an FATT strategy over 2D FATT for seven separate lines
is that the updated model is naturally consistent at all line intersections although the source
and receivers are distributed along seven 2D lines. In addition, applying such a mask will
prevent the update of the velocity model in regions that are far from the lines—such an
undesirable update can happen because we use a preconditioning strategy that normalizes
gradients based on approximate ray density in the inversion as describe above.

(a) (b)

Figure 10. (a) The “fat-line” mask used in the 3D FATT, and (b) a 3D display of the FATT inver-
sion results in Figure 11 for visual inspection of the line intersection consistency. The colors in
panel (b) follow the scale in Figure 9.

Figure 11 shows the updated Vp models of the seven lines extracted from the 3D
Vp model in Figure 10. The maximum depth of velocity updates is approximately 1 km.
Below the topographic surface, there exists a thin low-velocity layer with a velocity value
around 1000 m/s and with an average thickness of approximately 100 m. The velocity
and thickness of this layer is visually consistent in all seven lines. This low-velocity layer
possibly consists of weathered and unconsolidated soils and degraded rocks. Below this
layer, FATT produces different Vp updates along different lines. The results indicate that
the geology may be more complex than simple horizontal layering below the Desert Valley
to the west of Blue Mountain.

Our FATT provides a more accurate shallow Vp model compared with the initial
Vp shown in Figure 9 in terms of traveltime fit. Figure 12a and Figure 12b compare
synthetic and picked traveltime in the initial Vp and in the FATT-updated Vp, respectively.
While the initial Vp model seems reasonably correct, the FATT-updated model provides
an evidently better first-arrival time match. In fact, Figure 12c shows the normalized data
misfit convergence associated with the FATT for these data, which indicate a 90% error
reduction after 100 iterations of FATT. Further, we show the statistics of traveltime misfit in
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the initial and the updated models in Figure 12d,e. The misfit in the initial model can be
as large as 0.2 s, along with many traces with an error between ±0.1–0.2 s and a notable
shift of mean (−0.03 s). By contrast, the FATT model provides a more concentrated error
distribution around zero mean, most of which are below ±0.05 s.

Our FATT result is more accurate than the initial Vp model in terms of traveltime
misfit error. However, because of the limited resolution and penetration depth of FATT
and the sparse coverage of this seismic survey in the 3D space, it is difficult to determine
the accuracy of the inverted model in terms of realistic geology of this area, particularly
in a 3D sense. This is a motivation for us to perform EFWI to improve the accuracy of the
FATT-updated model and perform ERTM to determine the position of reflectors.
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Figure 11. Panels (a–g) show the updated Vp models of Lines 1–7 at the 100-th iteration extracted
from the 3D FATT inversion result.
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Figure 12. (a) Comparison between the observed (blue) and the synthetic (red) first-arrival traveltime
in the initial model displayed in Figure 9 for seven randomly selected common-shot gathers, and (b),
the comparison in the FATT-updated velocity model displayed in Figure 11. (c) The misfit convergence
of the 3D FATT. (d) Distribution of traveltime misfits in the initial Vp model, and (e) distribution of
traveltime misfits in the FATT-updated Vp model. Note that there is only one misfit convergence
curve because we conduct 3D FATT in a model that contains all seven lines.

4. Elastic Full-Waveform Inversion

In general, the maximum depth that FATT can reconstruct depends on both the
available source-receiver distribution and the near-surface velocity structures. For the
Blue Mountain geothermal field, we find that the maximum depth that FATT can update
is approximately 1 km below the ground surface using the initial Vp model in Figure 9.
To obtain high-resolution elastic parameter models, we employ EFWI to update P- and S-
wave velocities and anisotropic parameters up to 3.5 km below the chosen elevation datum.

We adopt the graph-space optimal-transport (GSOT) misfit function to perform
EFWI [23,28]:

m∗ = arg min
m

{
K

∑
i=1

∣∣∣ti − tσ∗(i)

∣∣∣p + ∣∣∣η(dsyn,i − dobs,σ∗(i)

)∣∣∣p}, (2)

where m is the model parameter, t represents the time of a sample of the waveform in a
seismic trace, dobs is the observed waveform, dsyn is the synthetic waveform; σ∗(i) is an
optimal permutation solution to the linear assignment problem of GSOT by discretizing
the waveforms into 2D point clouds, with the point index i = 1, · · · , K and K is the
maximum number of the cloud points. We implement an auction algorithm [28] to solve the
linear assignment problem. We choose p = 2 in our GSOT implementation for simplicity.
Because the computational complexity of solving σ∗(i) is O(K3) for large K, and the
memory requirement isO(K2), we choose a relatively small K = 500 in our implementation.
For Blue Mountain seismic data with a frequency band of 5 to 25 Hz, K = 500 for 4-
s data is sufficient; after computing the adjoint source using Equation (91) of [28], we
resample K points to the original trace length using a cubic interpolator for solving the
adjoint-state equation and gradient computation. In the above definition, η = τ/A is
a scaling parameter related to the maximum time shift τ and the maximum amplitude
difference A between the observed and the synthetic waveforms [28]. We choose τ = 0.5 s
for EFWI along all seven lines. This value should be sufficient to cover the maximum
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traveltime difference during the inversion. By this choice, our EFWI avoids focusing
on updating high-wavenumber perturbations to match amplitude, and can exploit the
power of GSOT to update low-wavenumber perturbations that are essential to reveal
large-scale fault structures. The Blue Mountain seismic data contain only the z-component
of particle velocity field (vz). Therefore, d = d(xr, t) = vz(t)δ(x− xr) with xr being the
receiver locations.

We implement the EFWI using the first-order stress-velocity elastic wave equation [60]
discretized with a 16th-order standard staggered-grid finite-difference scheme and a multi-
axial complex-frequency-shifted perfectly-matched layers boundary condition in the aux-
iliary differential equation form [61]. For source and receivers that are not aligned with
regular grid points, we adopt the Kaiser-windowed sinc-function interpolation method to
assign the exact source/receiver locations [62].

Fracture zones and fault zones can behave as anisotropic media for seismic-wave
propagation. Accounting for subsurface anisotropic properties at the Blue Mountain
geothermal field is important for reliable seismic characterization. We invert for the
anisotropy up to vertically transverse isotropy (VTI) and horizontally transverse isotropy
(HTI), parameterized by P- and S-wave velocities (Vp and Vs) and two Thomsen parameters
ε and δ. In the anisotropic EFWI, we allow negative ε, meaning that the horizontal Vp is
slower than the vertical Vp, mimicking an anisotropic medium formed by vertically or quasi-
vertically aligned fractures with quasi-horizontal fracture normals and with less pressure
in the horizontal direction [63]. Meanwhile, ε > 0 indicates a faster horizontal Vp, caused
either by sedimentary layering or quasi-horizontal aligned fractures with quasi-vertical
fracture normals. We do not invert for the tilt angles of tilted transversely isotropic (TTI)
media in this study, because the available seismic data were collected only along sparse
2D lines that are not parallel with or perpendicular to one another. Such a configuration
of data acquisition makes inversion of azimuthal rotation angles impossible. In addition,
it can be difficult to directly invert for a consistent polar rotation angle for TTI without
sophisticated strategies [64], given the poor quality of the Blue Mountain seismic data.
Therefore, for practical considerations and for the purpose of reducing parameter trade-offs,
we assume that the fractures are either VTI or HTI, where ε > 0 indicates VTI anisotropy
and ε < 0 indicates HTI. Such a parameterization may not be perfect, but should be
sufficient to inform the anisotropy caused by intensive fracturing in our study region as
demonstrated by our results below.

We first compute the gradients associated with the elasticity parameters Cij and
ρ as described by [34] based on the adjoint sources computed using the GSOT misfit
function in Equation (2). We adopt the nonlinear conjugate gradient (CG) [57] frame-
work and the perturbation-based optimal step length computation strategy [58]. We
build Vs models along all seven lines by simply scaling Vs = Vp/

√
3, and use Gard-

ner’s rule ρ = 310V0.25
p kg/m3 to build the density models. Note that the scaling factor,√

3, is only for building the initial Vs model; in the EFWI updates, we do not constrain
Vs = Vp/

√
3. We simultaneously update (Vp, Vs, ρ) in isotropic EFWI, and simultaneously

update (Vp, Vs, ε, δ, ρ) in anisotropic EFWI until the maximum number of iterations reaches.
The gradients associated with these parameters are converted from Cij gradients based on
the chain rule using the relationships between (Vp, Vs, ε, δ, ρ) and (Cij, ρ).

Figure 13 displays our isotropic EFWI results of P-wave velocity models for Lines
1–7, manifesting higher-resolution details than the FATT models displayed in Figure 11 in
both shallow and deep regions of the models. One feature that is common to all the seven
models is a low-velocity, fault-like anomaly tilting left (or west in the 3D space). We draw
two curves for each model to roughly annotate the top and bottom interfaces of this feature
using black dashed lines in Figure 13. This feature is not revealed in the FATT models
displayed in Figure 11. Mapping this fault-zone interpretation to the updated Vs models
displayed in Figure 14, we find similar low-velocity anomalies. This consistency means
that this low-velocity zone could be a geologically plausible feature associated with the
major fault (and the resulting fault zone) in this region. In fact, the position and tilt angle of
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this fault zone is consistent with the large-scale geology study [1,4,5] for the Blue Mountain
geothermal field, and can possibly be the NE to NNE major strike fault concealed beneath
the ground surface at the west flank of Blue Mountain.
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Figure 13. Panels (a–g) show the updated Vp models of Lines 1–7 using EFWI based on an isotropic
medium assumption. The two black dashed lines represent major faults that have been estimated
and hand-picked, bounding a low-velocity fault zone in between.

Along all the seven lines, the velocities near the ground surface are generally low
(around 1000 m/s for Vp and around 600 m/s for Vs), which should correspond to the
low-velocity Quaternary sediments. Meanwhile, the velocities on the east (right) side of
the lines are generally high, which may correspond to the Triassic metasedimentary rocks
in this area. However, the velocity updates produced by the EFWI in the mountain region
are not well constrained and exhibit some level of random fluctuations. Because of the
dip angle of the major fault, the region below the mountain region, particularly at the east
ends of the seven lines, may not be well covered and thus cannot be sufficiently updated
compared with those in the central region of the lines. For instance, the updated Vp models
of Lines 2 and 6 displayed in Figures 13b,f contain some high-wavenumber heterogeneities
at their lower-right corners. Since there are no well logging data at this depth and at this
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location, it is very difficult to quantitatively estimate how reliable these high-wavenumber
heterogeneities can be.

We display the waveform match of seven common-shot gathers randomly selected
from the seven lines in Figure 15. Figure 15a displays the match between the observed
waveforms and the synthetic waveforms generated using the initial model (i.e., the FATT-
updated Vp and converted Vs and ρ based on this Vp). Both data are displayed in their
original amplitude without any scaling. The initial model is too smooth to generate any
visible reflections, so the red wiggles are almost flat with zero amplitude. By contrast,
Figure 15b displays the match between the observed waveforms and the synthetic wave-
forms generated using the EFWI-updated models displayed in Figures 13 and 14. Even
though the waveform match is still not very good, we find that major reflection events
are well matched both in amplitude and arrival time, manifesting a major improvement
over that in Figure 15a. In fact, the normalized data misfits associated with the isotropic
EFWI for the seven lines reduce to approximately 30% to 40% as shown by Blue curves in
Figure 16.
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Figure 14. Panels (a–g) show the updated Vs models of Lines 1–7 obtained using isotropic EFWI.
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Figure 15. Waveform match between the observed (blue) and the synthetic (red) data generated using
the initial (a) and the isotropic EFWI-updated (b) models.
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Figure 16. Normalized data misfits of the seven lines associated with isotropic (blue) and anisotropic
(red) EFWI. Panels (a–g) are for Lines 1 to 7, respectively.
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We further perform anisotropic EFWI using the same data and the same initial models
(Vp, Vs and ρ). The starting models of ε and δ are zero, and we allow both parameters
positive or negative as aforestated. Figures 17–20 show the inverted Vp, Vs, ε, and δ,
respectively. Visually, the Vp and Vs models display no significant differences from their
isotropic EFWI counterparts in Figures 13 and 14. The only difference shown in the
anisotropic EFWI Vp and Vs models is that the low-velocity anomalies within the annotated
fault zone seem to be more consistent in depth and more interpretable than those obtained
using isotropic EFWI. For instance, we observe a tilt layer of high-velocity anomaly in
isotropic Vp models of Lines 2 and 3 displayed in Figure 13b,c. This high-velocity structure
can be difficult to interpret for a major fault zone where intensive fracturing and thus
low-velocity structures should dominate. In the Vp models inverted using anisotropic
EFWI, as displayed in Figure 17b,c, we observe much weaker or no high-velocity structures,
leading to a more reasonable interpretation of the inversion results and an improved
structure consistency with the inverted Vs models in Figure 18.
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Figure 17. Panels (a–g) show the updated Vp models of Lines 1–7 obtained using anisotropic EFWI.

We find that the hand-picked fault lines (black dashed lines) correlate reasonably
well with the large structures of the updated Vs models in Figure 18. We map these fault
annotations to the updated ε models in Figure 19, and find that they are generally in good
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spatial correlation with the negative anomalies of ε, particularly beneath Lines 1 to 5. As
mentioned earlier this section, negative ε in our EFWI indicates the vertical velocity is faster
than the horizontal velocity and thus HTI anisotropy. Such velocity anisotropy is possibly
caused by the intensive fracturing and faulting in this major fault zone, and indicates
higher fracture density in these regions. The δ parameter is more difficult to interpret
as it involves both normal and shear elasticity. In fact, the delta inverted here is usually
referred to as a “garbage collector” to correct for reflectivity mismatch, and therefore,
as we expect, it has evident high-wavenumber variations like a migration result. This is
explained in detail in [65,66]. Nevertheless, when mapping the fault-zone boundary lines
to the inverted δ models as displayed in Figure 20, we find that there are some spatial
correlations, although weak, between the pattern of δ heterogeneity and the annotated
fault-zone boundary lines, particularly at Lines 1 to 5.
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Figure 18. Panels (a–g) show the updated Vs models of Lines 1–7 obtained using anisotropic EFWI.
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Figure 19. Panels (a–g) show the updated Thomsen parameter ε models of Lines 1–7 obtained using
EFWI. Note that we allow negative ε values in our EFWI [63], which indicates faster Vp along the
vertical axis than the horizontal axis and can be considered as a sign of HTI anisotropy caused
by fracturing.

The additional structural constraints provided by the anisotropic EFWI become more
evident when we map our isotropic EFWI and anisotropic EFWI results on the map view.
Figure 21a,b display the depth slices of 1400 m and 1600 m of the updated Vp models in
Figure 13, along with the spatial locations of injection and production wells. The depth at
1600 m corresponds to the bottom of current production wells. At both depths, we find that
the inverted Vp exhibits both high and low anomalies along the extension of lines. We are
unable to interpret a meaningful spatial trend of the velocity anomalies. By comparison,
Figure 21c,d display the depth slices of Vp produced by anisotropic EFWI. There are less
inline velocity fluctuations and the values at line intersections are more consistent. High
and low velocities exhibit a relatively more evident boundary on the west flank of Blue
Mountain, and all the production wells sit on the mid- to low-velocity region at these two
depths. Figure 21e,f display the inverted ε at the two depths. In these two plots, blue colors
represent negative ε (faster vertical velocity), and thus possibly high fracture density. Six
of the seven lines exhibit strong spatial correlation in negative ε on the west flank of Blue
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Mountain, enclosing almost all the injection and production wells in this geothermal field.
The consistent pattern indicates a highly possible fracture zone covering 4 km in the NS
direction (4,536,000 to 4,540,000 m) and 2 km in the WE direction (404,000 to 406,000 m)
annotated as the yellow dashed rectangles in Figure 21e,f. The position of this region
is consistent with that determined by the large-scale geology and regional fault model,
e.g., Figure 6 of [1], Figure 2 of [5], Figure 3 of [2], and Figure 1 of [3]. Note that there is
only surface location of the faults available in these previously published results. Based on
the physical meaning of ε [63], we can conclude that in the line-intersection zone where the
production and injection wells are placed, the fractures are approximately perpendicular to
Lines 1–3. The concentration of negative ε to the southwest of Blue Mountain (i.e., on Line 6)
is consistent with the known fault that trends SE-NW on the south flank of Blue Mountain;
the value of ε also indicates that the fracturing might be perpendicular to Line 6 on the
southwest flank of Blue Mountain. In addition, we notice a negative ε zone at the east end
of Line 7. According to the fault mapping by [2,5], this feature is possibly correlated with
the NE-trending major fault that controls the deformation of this region.
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Figure 20. Panels (a–g) show the updated Thomsen parameter δ models of Lines 1–7 obtained using
anisotropic EFWI.
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(a) (b)

(c) (d)

(e) (f)

Figure 21. Map view of (a,b) the inverted Vp by isotropic EFWI, (c,d) Vp by anisotropic EFWI, and (e,f)
Thomsen parameter ε by anisotropic EFWI, respectively. Slices (a,c,e) are at the depth of 1400 m below
the chosen elevation datum (or equivalently about 700 m below the ground surface), while slices
(b,d,f) are at the depth of 1600 m below the chosen elevation datum (or equivalently about 900 m
below the ground surface, where current production wells end in depth). Note that we allow negative
ε values in our EFWI [63], which indicates faster Vp along the vertical axis than the horizontal axis
and can be considered as a sign of HTI anisotropy caused by fracturing. Yellow dashed rectangles on
ε plots indicate a possible fault zone.

For the anisotropic EFWIs, we obtain data misfit convergence (displayed in Figure 16
red curves) and waveform match (displayed in Figure 22) that are similar to those of the
isotropic EFWIs. Only at some lines (Lines 3 and 6), the inversions converge to slightly lower
misfit. Therefore, in terms of data misfit and waveform match, we do not find significant
improvement provided by anisotropic EFWI. Considering the signal-to-noise ratio of these
data, the convergence comparison indicates that even with more degrees of freedom to fit
the data, high-fidelity EFWI could be challenging for land seismic data. In such a situation,
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more sophisticated strategies or methods may be required to further improve the waveform
match, e.g., using multi-component elastic-wave data, or introducing even more anisotropy
or attenuation parameters.
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Figure 22. Waveform match between the observed (blue) and the synthetic (red) data in the initial
(a) and the EFWI-updated (b) models by anisotropic EFWI, respectively.

5. Elastic Reverse-Time Migration and Fault Detection

We adopt a hybrid-domain ERTM method to obtain the PP and PS images in both
isotropic and anisotropic models [61]:

IAB(x) = <
{ ∫ ωmax

ωmin

{As · B∗r −Hz[As] · Hz[B∗r ]−As · Hz[C∗r ]−Hz[As] · C∗r }dω

}
, (3)

where the subscripts A and B indicate P or S-wave component, As and Br are the frequency-
domain representation of the source and receiver wavefields of the A and B components,
and ‘∗’ represents complex conjugate. The wavefield Cr is computed from an auxiliary
back-propagated wavefield with the temporal Hilbert transform of recorded seismic data as
the source term at the receiver locations. Hz represents the Hilbert transform in z-direction.
We perform low-rank decomposition to obtain the vector P- and S-wavefield components
to ensure consistent S-wave polarity [42,61].

With the imaging condition (3), we produce PP and PS images using the updated
elastic parameters obtained using isotropic and anisotropic EFWI. Figures 23 and 24 display
the PP and PS images produced using our isotropic EFWI models in Figures 13 and 14. We
also overlay the faults detected on the images using our machine learning algorithm [47].

For all seven lines, the PS images show higher vertical resolution compared with the
PP images, a natural characteristic of ERTM because S-waves have shorter wavelength
in space. We find that both the PP and PS images for all the seven lines show numerous
discontinuities along their respective seismic line direction, and it is difficult to observe
continuous reflectors that span the entire seismic lines in the horizontal direction. Our
ML-based fault detection interprets lateral discontinuities of reflectors as faults. This
may not be completely accurate under certain circumstances (e.g., when an image has
imaging artifacts caused by noise or poor illumination, and so on). Nevertheless, given this
assumption, inside the possible fault zone annotated by the green dashed lines, we observe
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higher fracture density than that outside of the fault zone, indicating intensive faulting and
fracturing may have occurred.
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Figure 23. Panels (a–g) show the PP images of Lines 1–7 generated using ERTM in the isotropic EFWI
models displayed in Figures 13 and 14, overlain by ML-detected faults (red curves). The green curves
represent the estimated fault zone boundary and are the same with those in Figure 13. The yellow
lines represent nearby production wells projected to this line.

Existing fault maps and conceptual geological models for this region built based
on geological modeling and drilling [2,3,5] show numerous moderately (50–60 degrees)
west-dipping normal faults that host the up-flow and production of geothermal fluids.
The high-angle ML-detected discontinuities may be Miocene diorite dikes and sills intruded
into the Triassic meta-sediments. However, according to [3], in wells drilled on the south
edge of the geothermal field, the intrusives are not found in the shallowest 900 m of the
metasediments, but increase to 40–43% of the formation between 1527–2442 m in depth.
Thus, there should not be a large number of faults penetrating to the shallow ground
surface. Instead we prefer to interpret the ML-detected discontinuities as secondary, small-
scale faults or fractures. Even in that interpretation, some of the ML-detected faulting
features shown in Tertiary and Quaternary basin fill sediments above the metasediments in
Figures 23 and 24 are possibly a result of over-detection based on a migration image that has
imaging artifacts using our ML method. The data-labels (i.e., image-fault pairs) for training
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our fault detection neural network mainly consist of high-angle faults that penetrate from
the top to bottom of images, and as a result it may over-detect when a realistic fault stops
in the middle of the image. In addition, faults with different displacements have equal
probability of one in our training dataset, which leads to detected faults, either with a
large or small fault displacement, having the same fault probability. In other words, if a
fault on an input image to our fault detection NN only has a small displacement (like
many faults in Figures 23 and 24), it can still be recognized as having a probability of
one using our method. Accurately estimating the fault displacement of different faults
may need new ML models, which is beyond the scope of this work. At this stage, it is
difficult for us to validate the accuracy of these detected faults using field experiments (e.g.,
well drilling). Nevertheless, the production wells at the Blue Mountain geothermal field
extract geothermal energy from faults, and we project nearby geothermal production wells
onto Lines 2–5 and plot them using yellow straight lines in Figure 23b–e. We find that all
these production wells penetrate into the low-velocity zone (green dashed lines) with high
density of ML-detected faults (red lines). This consistency may indicate the efficacy of our
ERTM results and fault detection.
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Figure 24. Panels (a–g) show the PS images of Lines 1–7 generated using ERTM in the isotropic EFWI
models displayed in Figures 13 and 14, overlain by ML-detected faults (red curves). The green curves
represent the estimated fault zone boundary and are the same with those in Figure 13. The yellow
lines represent nearby production wells projected to this line.
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We also produce the PP and PS images in Figures 25 and 26 using anisotropic ERTM
in the anisotropic EFWI models shown in Figures 17–20. We again render our ML-detected
faults on these images. The images exhibit similar discontinuity characteristics to their
isotropic counterparts in Figures 23 and 24. For Lines 1–3 and 6, high fracture density and
mostly high dips of these fractures seem to be in good correlation with the negative ε values
in this fault zone displayed in Figure 21e,f. A minor difference between the isotropic and
anisotropic ERTM PP images of Line 7 (shown in Figures 23g and 25g, respectively) is that
the east end of anisotropic EREM PP image contains more detected faults than the isotropic
ERTM PP image. This is consistent with the low ε value at the end of Line 7 as shown in
Figure 21e,f. This feature is possibly caused by the NE-trending major strike fault in this
region. More recent fault imaging and fracture characterization methods, such as angle-
controlled ERTM [67] and double-beam neural network [68], may further help delineate
faults and detect/characterize fracture zones at the Blue Mountain geothermal field.

0 1 2 3 4
Horizontal Position (km)

0

1

2

3

D
ep

th
 B

el
ow

 D
at

um
 (k

m
)

(a)

0 1 2 3 4
Horizontal Position (km)

0

1

2

3

D
ep

th
 B

el
ow

 D
at

um
 (k

m
)

(b)

0 1 2 3
Horizontal Position (km)

0

1

2

3

D
ep

th
 B

el
ow

 D
at

um
 (k

m
)

(c)

0 1 2 3 4 5
Horizontal Position (km)

0

1

2

3

D
ep

th
 B

el
ow

 D
at

um
 (k

m
)

(d)

0 1 2 3 4 5
Horizontal Position (km)

0

1

2

3

D
ep

th
 B

el
ow

 D
at

um
 (k

m
)

(e)

0 1 2 3 4
Horizontal Position (km)

0

1

2

3

D
ep

th
 B

el
ow

 D
at

um
 (k

m
)

(f)

0 1 2 3 4 5
Horizontal Position (km)

0

1

2

3

D
ep

th
 B

el
ow

 D
at

um
 (k

m
)

(g)

Figure 25. Panels (a–g) show the PP images of Line 1–7 generated using ERTM in the anisotropic EFWI
models displayed in Figures 17–20, overlain by ML-detected faults (red curves). The green curves
represent the estimated fault zone boundary and are the same with those in Figure 13. The yellow
lines represent nearby production wells projected to this line.
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Figure 26. Panels (a–g) show the PS images of Lines 1–7 generated using ERTM in the anisotropic
EFWI models displayed in Figures 17–20, overlain by ML-detected faults (red curves). The green
curves represent the estimated fault zone boundary and are the same with those in Figure 13.
The yellow lines represent nearby production wells projected to this line.

6. Discussion

In the EFWI section, we demonstrate the effectiveness of our EFWI strategy to reveal
high-resolution subsurface structures at the Blue Mountain geothermal field. In particular,
we use the inverted Vp model generated by 3D line-masked FATT as the initial model for
EFWI. The 3D line-masked FATT model is naturally consistent at every line intersection
point. However, because we perform 2D EFWI instead of 3D line-masked EFWI as in FATT,
it is intriguing to check whether the isotropic and anisotropic EFWI results can correlate
well at the line intersection points.

Figure 27a,b show the Vp and Vs models of Lines 3 and 4 produced by isotropic EFWI,
while Figure 27c,d show the Vp and Vs models of Lines 3 and 4 produced by anisotropic
EFWI. We use black ellipses to highlight locations where anisotropic EFWI produces an
evident improvement of consistency over isotropic EFWI. This comparison indicates that
by using an anisotropic medium assumption, EFWI can lead to improved line intersection
consistency. However, such consistency does not hold at every line intersection point
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considering the complex land seismic data and complex subsurface structures associated
with this survey, because there are no direct spatial constraints among different lines during
separate, 2D EFWI model update. If the EFWI is performed in a line-masked approach
as the 3D FATT, then the resulting updated models will be naturally consistent for both
isotropic and anisotropic EFWI, but at a much higher computational cost. Such trade-off
should be carefully weighed before seismic characterization for similar geothermal fields.

We observe similar improvement on the migration images generated by isotropic and
anisotropic ERTM as displayed and highlighted by red ellipses in Figure 28.

(a) (b)

(c) (d)

Figure 27. 3D view of (a,b) Vp and Vs models produced by the isotropic EFWI, and (c,d) Vp and Vs

models produced by the anisotropic EFWI. Colors follow the scales in Figures 13, 17 and 19.

Even though the seismic characterization results presented in this paper demonstrate
the effectiveness of our workflow, there may exist several potential shortcomings. First,
our EFWI does not consider the effect of intrinsic attenuation. That is, we do not invert
for quality factors during EFWI. In addition to the amplitude distortion caused by heav-
ily weathered near-surface soils and rocks, a hydrothermal system like Blue Mountain
geothermal reservoir may possess strong intrinsic attenuation caused by intensive fractur-
ing and faulting [69]. It is well known that ignoring the attenuation effect in FWI/EFWI
and RTM/ERTM may lead to notable inaccuracies. Recent studies also find that thermo-
poroelasticity of heated rocks may further complicate behaviors of seismic waves that
propagate through [70]. Properly including all these complex mechanisms may result
in more accurate seismic characterization, but is beyond the focus of this paper. Second,
in this study, we adopt the classical anisotropy parameterization based on the Thomsen
parameters for EFWI. The parameterization may not be the optimal choice for the data
we have. Alternative parameterization strategies [36,64–66] may improve the inversion
results to be more geologically correlative to reality in the Blue Mountain geothermal field.
Third, we do not consider TTI, because, as we state in the EFWI section, in practice it is
challenging to reliably estimate the tilt angle of TTI with the available seismic data and
the data acquisition geometry at the Blue Mountain geothermal field. Properly estimat-
ing TTI anisotropy for this field may require wide-azimuth, long-offset, and high-quality
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multi-component seismic data acquisition. Alternative forms of TTI parameterization (e.g.,
TI anisotropy constrained by the reflector normal as described by [71]) may also facilitate
deriving more reliable anisotropic parameter models.

(a) (b)

(c) (d)

Figure 28. 3D view of (a,b) PP and PS images produced by the isotropic ERTM, and (c,d) PP and PS
images produced by the anisotropic ERTM.

7. Conclusions

We performed an active-source seismic characterization of the Blue Mountain geother-
mal field in Nevada using active seismic data acquired along seven 2D lines. We have
denoised the seismic data to obtain coherent reflections using an unsupervised machine
learning method, and built a low-resolution initial Vp model based on the existing MT
survey result. We performed 3D line-masked first-arrival traveltime tomography using the
hand-picked traveltimes, and performed 2D isotropic and anisotropic elastic full-waveform
inversion and elastic reverse-time migration using the denoised data and tomography
results. We have obtained a set of high-resolution elastic medium parameter models and
migration images, and have used a supervised machine learning method to obtain fault
maps on the migration images. The analysis of the spatial correlation between the inversion
results and local geology revealed that the inversion results correlate well with known
faults and production well locations in this geothermal field. Our inversion and imaging
mapped complex subsurface structures at the Blue Mountain geothermal field. The results
provide valuable information for siting additional wells to increase energy production at
the Blue Mountain geothermal power plant.
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