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Abstract: The conventional resonant inductor–inductor–capacitor (L2C) DC–DC converters have
the major drawbacks of poor regulation, improper current sharing, load current ripples, con-
duction losses, and limiting the power levels to operate at higher loads for electric vehicle (EV)
charging systems. To address the issues of the L2C converter, this paper proposes an interleaved
inductor–inductor–capacitor (iL2C) full-bridge (FB) DC–DC converter as an EV charger with wide
input voltage conditions. It comprises two L2C converters operating in parallel on the primary side
with 8-GaN switches and maintains the single rectifier circuit on the secondary side as common.
Further, it introduces the hybrid control strategy called variable frequency + phase shift modula-
tion (VFPSM) technique for iL2C with a constant voltage charging mode operation. The design
requirements, modeling, dynamic responses, and operation of an iL2C converter with a controller are
discussed. The analysis of the proposed concept designed and simulated with an input voltage of
400 Vin at a load voltage of 48 V0 presented at different load conditions, i.e., full load (3.3 kW), half
load (1.65 kW), and light load (330 W). The dynamic performances of the converter during line and
load regulations are presented at assorted input voltages. In addition, to analyze the controller and
converter performance, the concept was validated experimentally for wide input voltage applications
of 300–500 Vin with a desired output of 48 V0 at full load condition, i.e., 3.3 kW and the practical
efficiency of the iL2C converter was 98.2% at full load.

Keywords: electric vehicle charger; charging system; L2C resonant converter; interleaved L2C
resonant converter; full-bridge; hybrid control strategy; variable frequency + phase shift modulation;
constant voltage mode; wide band gap; gallium nitride

1. Introduction

These days, conventional internal combustion engines (ICEs) are becoming saturated
due to a deficiency of fossil resources, and the environment is polluted with toxic gases,
carbon emissions, and drastic climate changes. Considering this, there is a global call for
implementing clean energy transportation to safeguard against climatic changes. Recently,
EVs as an eco-friendly power source have gained significant popularity, with the promising
objective of replacing ICEs and reducing CO2 emissions [1]. Electrifying the transportation
sector with battery electric vehicles (BEVs), fuel-cell electric vehicles (FCEVs), hybrid
electric vehicles (HEVs), ultra-capacitor electric vehicles (UCEVs), supercapacitor electric
vehicles (SCEVs), and plugin hybrid electric vehicles (PHEVs) can significantly reduce
emission rates. The industry is advancing toward the adoption of electric vehicles achieve
net-zero emissions by 2030 in Europe and 2050 in India. Due to the increasing demand
for EVs, the development of charging topologies that are more reliable and efficient is
essential. There are several charging topologies in terms of power electronics architectures
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for applications such as solar, EV, etc., with optimizing methods discussed in [2–4]. The
typical block diagram of a charging architecture is shown in Figure 1.

Energies 2023, 16, x FOR PEER REVIEW 2 of 22 
 

 

and efficient is essential. There are several charging topologies in terms of power electron-
ics architectures for applications such as solar, EV, etc., with optimizing methods dis-
cussed in [2–4]. The typical block diagram of a charging architecture is shown in Figure 1. 

Proposed 
Converter

AC Mains EV Battery

EMI 
Filter

AC-DC 
Converter

PFC Converter

 
Figure 1. Typical block diagram of an EV charging power conversion system. 

During the past decade, much research has been conducted on a wide variety of DC–
DC converters for various applications such as electric vehicles, photovoltaics, and fuel 
cell applications [5,6]. Many L2C resonant converters are gaining popularity due to their 
merits of zero voltage switching (ZVS) operation on the primary side at all load conditions 
and zero current switching (ZCS) operation on the secondary side with synchronous rec-
tification, wide voltage gain, the ability to provide soft switching characteristics, and high 
power density with high switching frequency capability [7,8]. Additionally, the dv/dt at 
the primary side of the circuit is smaller due to the L2C converter’s lower turn-off current, 
resulting in lower electromagnetic interference (EMI) [9,10]. 

A typical L2C Resonant FB DC–DC converter is shown in Figure 2. It consists of a 
series resonant tank, which includes an inductor Lr and capacitor Cr in series with a high-
frequency transformer to provide sufficient galvanic isolation, and a parallel inductance 
also available in the resonant tank, which is called magnetizing inductance Lm to form the 
resonant network [11]. For wide voltage gain applications, the switching frequency f𝑠 must 
vary in a wide range, and the designer needs to take care of the ZVS function because it 
may be lost if the switching frequency is too low. The effect of the junction capacitance 𝐶𝑗, 
as discussed in [12], of secondary side rectifying diodes causes poor voltage control when 
f𝑠 exceeds the resonant frequency f𝑟. The magnetic component size is constrained by the 
low switching frequency f𝑠. As a result, designing an L2C converter with a broad output 
voltage range poses considerable challenges, and performance degrades rapidly as f𝑠 de-
viates from f𝑟 [13,14]. In general, there are three different modes of operation in a L2C 
converter, including above resonance, below resonance, and at resonance. During all these 
modes of operation, the regulation control on the ZCS region is fully achieved, but in the 
case of the ZVS region, there is poor performance in regulation at different load conditions 
with variable input voltages. Additionally, to utilize the L2C converter as an EV charger, 
there are certain limitations such as increasing the load capacity to operate at higher 
power levels, current and voltage ripples at the output side causing damage to the prod-
uct, and the efficiency at high power levels being low [15]. 

To overcome the drawbacks of the L2C converter, this paper considered a two-stage 
interleaved L2C (iL2C) converter. Due to the resonant tank design of L2C, the load capacity 
is limited, which results in an increased circulating current and thereby lower efficiency. 
Using iL2C this problem can be solved by adding the L2C in parallel to double the load 
capacity [16]. Additionally, at high current applications, the major power loss component 
is the transformer, which has eddy current loss (AC loss) and winding losses of copper 
resistance (DC loss), and splitting the circuit transformer current reduces the losses of AC 
and DC. Using the interleaving technique reduces the current ripples [17]. 
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During the past decade, much research has been conducted on a wide variety of
DC–DC converters for various applications such as electric vehicles, photovoltaics, and fuel
cell applications [5,6]. Many L2C resonant converters are gaining popularity due to their
merits of zero voltage switching (ZVS) operation on the primary side at all load conditions
and zero current switching (ZCS) operation on the secondary side with synchronous
rectification, wide voltage gain, the ability to provide soft switching characteristics, and
high power density with high switching frequency capability [7,8]. Additionally, the dv/dt
at the primary side of the circuit is smaller due to the L2C converter’s lower turn-off current,
resulting in lower electromagnetic interference (EMI) [9,10].

A typical L2C Resonant FB DC–DC converter is shown in Figure 2. It consists of a
series resonant tank, which includes an inductor Lr and capacitor Cr in series with a high-
frequency transformer to provide sufficient galvanic isolation, and a parallel inductance
also available in the resonant tank, which is called magnetizing inductance Lm to form the
resonant network [11]. For wide voltage gain applications, the switching frequency f s must
vary in a wide range, and the designer needs to take care of the ZVS function because it
may be lost if the switching frequency is too low. The effect of the junction capacitance
Cj, as discussed in [12], of secondary side rectifying diodes causes poor voltage control
when f s exceeds the resonant frequency f r. The magnetic component size is constrained
by the low switching frequency f s. As a result, designing an L2C converter with a broad
output voltage range poses considerable challenges, and performance degrades rapidly as
f s deviates from f r [13,14]. In general, there are three different modes of operation in a L2C
converter, including above resonance, below resonance, and at resonance. During all these
modes of operation, the regulation control on the ZCS region is fully achieved, but in the
case of the ZVS region, there is poor performance in regulation at different load conditions
with variable input voltages. Additionally, to utilize the L2C converter as an EV charger,
there are certain limitations such as increasing the load capacity to operate at higher power
levels, current and voltage ripples at the output side causing damage to the product, and
the efficiency at high power levels being low [15].

To overcome the drawbacks of the L2C converter, this paper considered a two-stage
interleaved L2C (iL2C) converter. Due to the resonant tank design of L2C, the load capacity
is limited, which results in an increased circulating current and thereby lower efficiency.
Using iL2C this problem can be solved by adding the L2C in parallel to double the load
capacity [16]. Additionally, at high current applications, the major power loss component
is the transformer, which has eddy current loss (AC loss) and winding losses of copper
resistance (DC loss), and splitting the circuit transformer current reduces the losses of AC
and DC. Using the interleaving technique reduces the current ripples [17].

To date, numerous control strategies have been defined to provide soft switching,
tight regulation, and reduce the circulating current [18,19]. These methods are operated
by adding the transformer current via injecting zero-voltage on the primary or secondary
side, and this can also be obtained by changing the phase shifting method. Some papers
suggested [18,19] that different control strategies can be used at different regions such as
f s < f r, f s = f r and f s > f r but this affects the regulation. Rather than using the zero-voltage
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sequence method and other techniques mentioned to extend the soft switching region [20],
this paper proposes a hybrid control strategy called the VFPSM technique for iL2C FB
converter. It is based on switching at a predefined current value. The proposed scheme
allows either a ZCS or ZVS depending on how the designer chooses the switching current
level. In addition, it also minimizes the root mean square (RMS) current in the transformer
by fixing the predefined value of reactive current [21,22]. Hence, it provides an additional
advantage to the controller concerning conventional phase shift modulation between
the primary and secondary of transformer [23,24]. Additionally, with this method, soft
switching can be achieved with low conduction losses, and proper load and line regulations
are conducted and increase the system’s efficiency. Meanwhile, there are certain limitations,
such as its complicated design, which require proper tuning of control parameters [25,26].
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Furthermore, this paper also sheds light on the GaN-HEMT-based technology’s imple-
mentation on the proposed system [27,28]. The superior characteristics of GaN technology
compared to Si (silicon), such as a wideband gap, reliability, packaging, heating, efficiency,
and operating at high power density with frequency, serve as major advantages of GaN
technology [29]. To reduce the losses at high power operation, a lower Rdson is required
to improve the efficiency of the entire system to confer more reliable operation at higher
switching speeds [30].

The main research contributions of this paper are summarized below:

1. Modeling of iL2C converter topology was carried out to enhance the load capacity,
reduce the current ripples, and reduce the circulating current;

2. A hybrid control strategy was introduced across all operating modes to improve the
regulation, minimize switching losses, and enable soft switching;

3. Theoretical and simulation analysis was performed for various load conditions of the
converter, including full load, half load, and light load with load regulation of the
voltage, and current was also described;

4. To examine the controller performance, simulations were performed for variable input
voltages with line regulation of load voltage, and current deviations were determined;

5. An experimental prototype for a 3.3 kW electric vehicle charger was demonstrated
using GaN-HEMT technology;

6. Furthermore, the highlights of the entire theoretical, simulation, and experimental
validations were discussed for steady-state and transient voltage and current ripples
at the load side.

The organization of this paper is as follows. Section 1 presents the introduction and
literature overview. Section 2 details the iL2C resonant FB converter topology with the



Energies 2023, 16, 5811 4 of 22

working principle, followed by detailed analysis of the design parameters in Section 3.
In Section 4, we discuss the proposed control strategy and present its detailed design.
Section 5 provides the simulation results and various case studies, while experimental
results and validation are detailed in Section 6. Section 7 presents the converter’s dynamic
performance analysis under line and load regulations. Section 8 details the outcomes and
conclusions of the proposed research work.

2. Interleaved L2C Resonant FB DC–DC Converter Topology and the
Working Principle

A typical iL2C resonant FB DC–DC converter topology is shown in Figure 3 and key
waveforms are presented in Figure 4. It consists of two resonant tanks, two switching
circuits, and a single diode rectifier circuit [24]. The primary side employs two L2C resonant
switching circuits called converter 1 and converter 2 connected in parallel, and secondary
side is outfitted with two transformer secondary windings with a single rectifier network.
The proposed technique provides operation in a phase shift angle of 180◦ of phase difference
between the gate signals of converter 1 and converter 2, and the resonant frequency of he
converter 1 is defined in Equation (1). Since the two converters’ operation is identical, all
the equations and circuit operation are discussed for converter 1 with resonant network 1.

fr =
1

2π
√

Lr×Cr
(1)
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Mode 1: Before t0, the switch S2 and S3 are turned ON with all the secondary side
diodes in the OFF condition. At the point of t0–t1, the switches S2 and S3 are turned OFF,
and the body diodes of S1 and S4 are ON with the negative resonant current of iLr1.

Mode 2: During t1–t2, the switch S1 and S4 are turned ON and the voltage Vab1 at
transformer 1 T1 is equal to input voltage Vin. The resonant inductor Lr1 starts resonating
with resonant capacitor Cr1; meanwhile, filter capacitor C0 is discharged through the
secondary current of iNS1. Additionally, diodes D1 and D4 are in the ON condition with the
flow of current and voltage. The voltage at magnetizing inductance Lm1 is defined in the
following Equation (2) and the current across the iLm1 increases linearly. At this period, the
voltage at VNS1 is equal to the output voltage, which is defined in Equation (3),

Lm1 =
V0

n
(2)

VNS1 = V0 (3)

The state space equation during stage 2 is defined in Equation (4) below:
iLr1(t) = I0cos(ωrt) + (nVin−V0−nV0)

nZr
sin(ωrt)

VCr1(t) = I0Zrsin(ωrt) +
(

V0 +
V0
n −Vin

)
cos(ωrt)

+Vin − V0−VC0
n

(4)

Mode 3: During the period t2–t3, the switches S1 and S4 are turned OFF; due to the
positive flow of the current at iLr1, the switches S2 and S3 are turned ON with all the
secondary side diodes in the OFF condition.

Mode 4: During the period t3–t4, the switches S2 and S3 are turned ON; because of
negative current flow in iNS1 the secondary side diodes, D2 and D4 are ON. Therefore,
the voltage at the secondary side of the transformer is defined by −VC0 with very low
voltage, and hence the current iLm1 decreases linearly. The resonant inductor Lr1 starts
resonating with resonant capacitor Cr1; meanwhile, filter capacitor C0 is charged through
the secondary current of iNS1. At this period, the voltage VNS1 is given as follows:

VNS1 = −V0 (5)
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The state space equation during stage 4 is defined in Equation (6) below:
iLr1(t) = ILr1(t2) cos(ωrt) + (nVin−V0−nVCr1(t2 )

nZr
sin(ωrt)

VCr1(t) = ILr1(t2)Zrsin(ωrt) +
(

VCr1(t2)− V0
n −Vin

)
cos(ωrt)

+Vin +
V0
n

(6)

Mode 5: During the period t4–t5, D2 and D3 are in the ON state with the secondary side
transformer current iNS1 going to zero. The secondary side of the transformer voltage is
denoted by Equation (7), and respective to that the magnetizing inductance decreases slowly.
Furthermore, the resonant inductor Lr1 starts resonating with the resonant capacitor Cr1.

VNS1 = −V0 (7)

The state space equation during stage 5 is defined in Equation (8) below:
iLr1(t) = ILr1(t4) cos(ωrt) + (nVin+V0−nVCr1(t4 )

nZr
sin(ωrt)

VCr1(t) = ILr1(t4)Zrsin(ωrt) +
(

VCr1(t4)− V0
n −Vin

)
cos(ωrt)

+Vin +
V0
n

(8)

Mode 6: During the period t5–t6, the secondary side of the transformer current iNS1 is
completely zero with all the diodes in the OFF condition. At this period, the magnetizing
inductance iLm1 starts resonating with resonant capacitor Cr1 and inductor Lr1.

After evaluating all the gains at peak values, we can define the ideal curve, as shown
in Figure 5; if the frequency is 1, then the converter is operating at a resonance condition
where fs = fr; likewise, if the frequency is less than 1, the converter is operating at below the
resonance condition where fs < fr, and similarly, if the frequency is greater than 1, then the
converter is operating above the resonance condition, where fs > fr [31].
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3. Parameter Design

This section deals with the step-by-step design calculations of the iL2C converter for
all the components and their associated critical values [32]. Since converter 1 and converter
2 are identical in operation, the parametric design was calculated for converter 1. The main
system parameters are shown in Table 1 and the AC equivalent circuit of LLC converter 1
is shown in Figure 6.
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Table 1. Main parameters of an EV charger powered by an iL2C resonant DC–DC converter.

Parameter
Description Symbol Electrical Value Units

Minimum Input
Voltage Vin_min 300 Vdc

Maximum Input
Voltage Vin _max 500 Vdc

Rated Output Voltage Vo 48 V

Rated Power P 3300 W

Maximum Switching
Frequency fn_max 1.8 × 150 = 270 kHz

Maximum Switching
Frequency fn_min 120 kHz

Resonant Frequency fr 150 kHz
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The transformer T1 turning ratio and maximum and minimum values of the voltage
gain of the iL2C converter at rated operating conditions are derived in
Equations (9)–(11) [33,34].

n =
Vin_min
V0_min

(9)

Mmin =
n ∗V0_min

Vin_max
(10)

Mmax =
n ∗V0_max

Vin_min
(11)

where n is transformer turning ratio, Vin_max and Vin_min are maximum and minimum input
voltages, V0_max and V0_min are maximum and minimum output voltages, and Mmax and
Mmin are the maximum and minimum voltage gain.

The value of the inductor ratio Lactual is determined in the following Equation (12),
where fn represents the switching frequency. When the switching frequency is adjusted to
the maximum value, the output from the previous step ensures that the converter enters
the cut-off mode at the minimum output and maximum input [35].

Lactual =

(
1

Mmin
− 1
)
×

8× f 2
n_max

8× f 2
n_max − π2 (12)

At the next step, we consider the resonant tank design of resonant inductance Lr1,
capacitance Cr1, impedance Z01, and magnetizing inductance Lm1 with equivalent resis-
tance Rac1 in the following Equations (13)–(17). The resonant inductor is derived from
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Equation (12) and the magnetizing inductance of the converter. The equivalent resistance
of the converter circuit is derived using Equation (13) followed by other critical equations.

Rac1 =
8n2

π2 × RL (13)

Lm1 =
n2

fr
× Vo_crit

4 ∗ n ∗ Isc + [π2 ∗ L ∗Mcrit − 4] ∗ Io_crit
(14)

Lr1 = Lactual × Lm1 (15)

Cr1 =
1

Lr1 × (2π fr)
2 (16)

Z01 =

√
Lr1

Cr1
(17)

The critical operating values of conversion gain Mcrit, maximum impedance Z0, input
current Iin_crit, output voltage V0_crit, and current I0_crit are determined in Equations (18)–(22),
where P0_max is the output power and η is the efficiency [36,37].

Mcrit =

√
1 +

√
L

1 + L
(18)

Z0_max =
8

π2 ×
V2

in_min
P0_max

×
[

L +
√

L(1 + L)
]

(19)

V0_crit =
Mcrit ×Vin_min

n
(20)

I0_crit =
P0_max

V0_crit
(21)

Iin_crit =
P0_max

η ∗Vin_min
(22)

The other important parametric Equations (23)–(27) are the quality factors of minimum
Qmin and maximum Qmax, and the switching frequency of fn_max and fn_min, where Rac_max
and Rac_min are the equivalent resistance of the maximum and minimum values, respectively,
Iin_max is the input maximum current, and fn_max and fn_min are the switching frequency of
the maximum and minimum values, respectively; further, fn_max is 1.8 times the resonant
frequency of fr.

Qmin =
Z0

Rac_max
(23)

Qmax =
Z0

Rac_min
(24)

Iin_max =
n×V0_max

4× Lm1 × fr1
(25)

fn_min =

(
1−

NIincrit − I0crit

n ∗ Is_max

)
× fr (26)

fn_max = 1.8× fr (27)



Energies 2023, 16, 5811 9 of 22

4. Hybrid Control Strategy

There are many control methods available currently in research on frequency modula-
tion and phase shifting strategies, but in practice, they have their own drawbacks, namely,
the converter has wide input and output voltage operations. In general, the phase shifting
strategy is easy to design but complicated at wide input voltage ranges, and frequency
modulation is an effective but complicated magnetic design. This paper proposes the com-
bination of a hybrid control strategy named as the VFPSM technique for an iL2C converter,
which operates at all conditions with the same control strategy, unlike those in [25,26].

The generation of switching frequency fs was carried out based on the provided error
voltage by taking the output voltage Vo and comparing it with the reference input voltage
Vref. The comparison of input and output voltage references can be completed by using the
Voltage Control Oscillator (VCO), which also drives the gate signals. The controller will
control the output voltage Vo and vary the current, which is called the CV mode of operation,
and the control circuit is shown in Figure 7. The design of the outer feedback compensator
is greatly aided by the third-order transfer function mentioned in Equation (28), where the
sub equations in the transfer function are discussed in Equations (29)–(33).

Gv f (s) =
V(s)0
w(s)s

= Gdc
X2

eq + R2
eq(

s2L2
e + sLeReq + X2

eq

)(
1 + sRLC f

)
+ Req

(
sLe + Req

) (28)

Le = Lr +
1

CrΩ2
s
= Lr

(
1 +

Ω2
0

Ω2
s

)
(29)

Req =
8

π2 n2RL (30)

Xeq = ΩsLr −
1

ΩsCr
(31)

Ln =
Lm

Lr
(32)

Q =

√
Lr
Cr

n2RL
(33)
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Figure 7. Voltage control oscillator block diagram for the constant voltage mode.

Generating the switching frequency from Figure 7 provides pulse generation to the
switches. The phase shift of the 180◦ degree method was used to regulate the high input
voltage over the broad range from 300–500 Vin and the VFPSM technique provided tight
regulation of the line and load voltage and current. The switching operation of converter



Energies 2023, 16, 5811 10 of 22

1 and converter 2 is based on the phase shifting methodology termed as before 180◦ and
after 180◦, and the typical switching control circuit is shown in Figure 8.
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5. Simulation Results and Analysis

The simulation analysis was carried out in MATLAB/Simulink to check the perfor-
mance of the proposed iL2C converter with the VFPSM control technique. The actual
design values of the converter were simulated and are tabulated in Table 2. The simulated
analysis is presented for different case studies in the first case, and the nominal input and
nominal output voltage at full load conditions were analyzed. In the next two cases, the
converter was analyzed for half load and light load conditions at nominal voltage values;
in addition to that, the load regulation of the voltage and current is presented. In the next
step, two cases were performed to examine the hybrid controller: a variable step change in
input voltages from 300–500 Vin and 500–300 Vin with a constant output voltage of 48 V0 at
full load condition, which is discussed in terms of the line regulation of the load voltage
and current.

Table 2. Modeling parameters of the iL2C Converter.

Parameter
Description Symbol Electrical Value Units

Maximum
Characteristic

Impedance
Zo_max 56.88 Ω

Characteristic
Impedance Zo 20.83 Ω

Critical Voltage Gain M_critical 1.311 V

Magnetizing
Inductance Lm1 20.55 µH

Minimum Equivalent
Resistance Rac1_min 22.12 Ω

Maximum Equivalent
Resistance Rac1_max 55.81 Ω

Resonant Inductor Lr1 22.11 µH

Resonant Capacitor Cr1 50.94 nF

Transformer Turns n1 8.82 -

Filter Capacitor C0 100 µF
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5.1. Case 1: Performance Analysis of the Converter for a Nominal Input Voltage (400 Vin) with a
Fixed Output Voltage (48 V0) at Full Load Condition, i.e., 3.3 kW

This section analyzes the performance of the iL2C converter at a full load condition,
i.e., 3.3 kW. Figure 9 shows the nominal input voltage of 400 Vin as the constant. The
converter simulated results were examined with a controlled nominal load voltage and
current of 48 V0 and 68.75 A at a full load condition, i.e., 3.3 kW, which is presented in
Figure 10. The ripple voltage and currents were found with a voltage deviation of +0.5 V
(+1.04%) at a rated output of 48 V0 and the current deviation is around +0.65 A (+0.94%) at
a full load current of 68.75 A.
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5.2. Case 2: Performance Analysis of the Converter for a Nominal Input Voltage (400 Vin) with a
Fixed Output Voltage (48 V0) at a Half Load Condition, i.e., 1.65 kW

In this case, the converter operation was simulated at half of the load of the full load
condition, which is at 1.65 kW. The nominal load voltage of 48 V0 and load current of
38.375 A at a half load condition are presented in Figure 11. The ripple voltage and currents
were found with a voltage deviation of +0.3 V (+0.62%) at a rated output of 48 V0 and the
current deviation was around +0.175 A (+0.5%) at a half load current of 38.375 A.



Energies 2023, 16, 5811 12 of 22

Energies 2023, 16, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 10. Load voltage and current waveforms (V0 = 48 V, I0 = 68.75 A). 

5.2. Case 2: Performance Analysis of the Converter for a Nominal Input Voltage (400 Vin) with a 
Fixed Output Voltage (48 V0) at a Half Load Condition, i.e., 1.65 kW 

In this case, the converter operation was simulated at half of the load of the full load 
condition, which is at 1.65 kW. The nominal load voltage of 48 V0 and load current of 
38.375 A at a half load condition are presented in Figure 11. The ripple voltage and cur-
rents were found with a voltage deviation of +0.3 V (+0.62%) at a rated output of 48 V0 and 
the current deviation was around +0.175 A (+0.5%) at a half load current of 38.375 A. 

 
Figure 11. Load voltage and current waveforms (V0 = 48 V, I0 = 38.375 A). Figure 11. Load voltage and current waveforms (V0 = 48 V, I0 = 38.375 A).

5.3. Case 3: Performance Analysis of the Converter for a Nominal Input Voltage (400 Vin) with a
Fixed Output Voltage (48 V0) at a Light Load Condition, i.e., 0.33 kW

In this case, the converter operation was simulated at a light load, which is 10% of the
full load condition, i.e., 330 W. The nominal load voltage of 48 V0 and the load current of
6.875 A at a light load condition are presented in Figure 12. The ripple voltage and currents
were found with a voltage deviation of +0.15 V (+0.31%) at a rated output of 48 V0 and the
current deviation was around +0.017 A (+0.25%) at a light load current of 6.875 A.
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5.4. Case 4: Performance Analysis of the Converter for a Variable Input Voltage (300–500 Vin) at a
Fixed Output Voltage (48 V0) at a Full Load Condition

This section analyzes the performance of the iL2C converter for a variable input voltage
of 300–500 Vin at a constant output voltage of 48 V0 under a full load condition. Figure 13
shows that at 0.05 s, the voltage suddenly rose from 300 to 500 Vin; the load voltage and
load current waveforms are presented in Figure 14. During the transition of 300–500 Vin,
the load voltage and current disturbances occurred at 0.05 s, and magnified figures are
also presented. For the steady state voltage and current deviation of +0.4 V (+0.83%) and
+0.59 A (+0.85%), a transient voltage and a current dip of +5.2 V (+10.83%) and +7.25 A
(+10.54%) were found, respectively, and attained a load voltage of 48 V0 within 1.1 ms.
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5.5. Case 5: Performance Analysis of the Converter for a Variable Input Voltage (500–300Vin) at a
Fixed Output Voltage (48 V0) at a Full Load Condition

This section analyzes the performance of the iL2C converter for a variable input voltage
of 500–300 Vin at a constant output voltage of 48 V0 under a full load condition. Figure 15
shows that at 0.05 the voltage suddenly dropped from 500 to 300 Vin; load voltage and
load current waveforms are presented in Figure 16. During the transition of 500–300 Vin,
the load voltage and current disturbances occurred at 0.05 s, and magnified figures are
also presented. For the steady state voltage and current deviation of +0.42 V (+0.875%)
and +0.64 A (+0.93%), a transient voltage and current dip of −3.5 V (−7.29%) and −4.75 A
(−6.9%) were found, respectively, and attained a load voltage of 48 V0 within 1.2 ms.
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6. Experimental Analysis

This section describes the experimental validation of the iL2C converter using
GaN-HEMT technology at a full load condition of 3.3 kW with a variable input voltage of
300–500 Vin at a load voltage of 48 V0. Eight GaN-HEMT switches were utilized to operate
the switching circuit; the parameters of the GaN switch GS66508T are presented in Table 3
and the manufacturer is GaN systems [38,39]. Its features include cooled technology with
a lower-junction thermal case resistance at high power applications, lower on-state drain
resistance, reverse recovery current, zero reverse recovery losses, well designed gate charge
characteristics, and its enhancement mode (E-mode) transistor with better packaging ca-
pabilities, among others [40]. TMS320F28335 was used as a digital signal processor as the
main controller for the iL2C converter, and the prototype was built as per the modeling
parameters discussed in Table 4.

Table 3. GaN GS66508T parameters (manufactured by GaN Systems).

Parameter Description Symbol Electrical Value Units

Drain Source Voltage Vds 650 V

Continuous Drain Current IDs(ON) 30 A

Drain Source Resistance RDs(ON) 50 mΩ

Reverse Recovery Charge QRR 0 nC

Total Gate Charge QG 5.8 nC

Gate Drain Charge QGD 1.8 nC

Gate Source Charge QGS 2.2 nC

Turn ON Delay Time @125 ◦C td(ON) 4.3 ns

Turn OFF Delay Time @125 ◦C td(OFF) 8.2 ns

Internal Gate Resistance RG 1.1 Ω

Table 4. Practical prototype values of the iL2C resonant FB DC–DC converter.

Parameter Description Symbol Electrical Value Units

Variable Input Voltage Vin 300–500 V

Rated Output Voltage Vo 48 V

Rated Power P 3300 W

Magnetizing Inductance Lm1 and Lm2 23 µH

Resonant Inductors Lr1 and Lr1 21 µH

Resonant Capacitors Cr1 and Cr1 56 nF

Transformer Turning Ratio n1 and n2 8.82 -

Filter Capacitor Co 100 µF

The hardware representation and experimental setup are presented in Figure 17. From
Figure 18, the iL2C converter was validated for 3.3 kW (load voltage 48 V0, load current
68.75 A) at variable load conditions.

The results were analyzed at T = 100 ms/div, load voltage = 20 V/div, denoted using a
blue line, load current = 50 A/div, denoted using a pink line, and the input source voltage
= 300 V/div, denoted using a red line. To perform the dynamic responses at the line side,
the sudden change in input voltage occurred at 0.05 s (500 ms) with a small change in load
voltage and the current was observed and marked, as shown in Figure 18. It is evident that
the converter and controller performed as per the theoretical and simulation analysis. For
the steady state voltage and current deviation of +0.76 V (+1.58%) and +1.38 A (+2.0%), a
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transient voltage and current dip of +6.17 V (+12.85%) and +8.29 A (+12.05%) were found,
respectively, and attained a load voltage of 48 V0 within 18 ms.
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Figure 18. Experimental waveforms of variable input voltage (Vin = 300–500 V), load voltage, and
load current (V0 = 48 V, I0 = 68.75 A).

The efficiency was measured during eight variable load conditions from full load to
light load as summarized in Table 5, i.e., 3.3 kW, 3.0 kW, 2.5 kW, 2.0 kW, 1.65 kW, 1.0 kW,
0.5 kW, and 0.33 kW, respectively, when the input and output voltages were 400 Vin and
48 V0. The measured efficiency was 98.2%, 98.7%, and 99.1% at a full load of 3.3 kW, half
load of 1.65 kW, and light load of 0.33 kW, respectively. Figure 19 shows the efficiency
curve with regard to power.
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Table 5. Efficiency vs. power at 400 Vin with a 48 V0.

No of Loads Power (kW) Efficiency (%)

1 (light load) 0.33 99.10

2 0.55 99.02

3 1.00 98.83

4 (half load) 1.65 98.72

5 2.00 98.59

6 2.50 98.50

7 3.00 98.32

8 (full load) 3.30 98.20
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7. Converter Analysis Tables

This section describes the steady state and transient deviations of the voltage and
current in various simulated and experimentally analyzed case studies. The values were
recorded in tabular format, and Tables 6 and 7 describe the voltage and current ripple in
terms of full load (3.3 kW), half load (1.65 kW), and light load (0.33 kW). Tables 8 and 9
show the steady state and transient dip and ripples of the voltage and current during
variable input voltages from 300 to 500 Vin and 500 to 300 Vin.
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Table 6. Steady state analysis of the load voltage regulation at different load conditions.

Various Load Cases Load Voltage Voltage Ripple Max. Load
Voltage

Deviation

Avg. %Load
Voltage
RippleMinimum Maximum

Case 1: 3.30 kW 48 V 47.70 V 48.50 V +0.50 V +1.04%

Case 2: 1.65 kW 48 V 47.80 V 48.30 V +0.30 V +0.62%

Case 3: 0.33 kW 48 V 47.94 V 48.15 V +0.15 V +0.31%

Table 7. Steady state analysis of load current regulation at different load conditions.

Various Load Cases Load
Current

Current Ripple Max. Load
Current

Deviation

Avg. %Load
Current
RippleMinimum Maximum

Case 1: 3.30 kW 68.75 A 68.30 A 69.40 A +0.650 A +0.94%

Case 2: 1.65 kW 34.375 A 34.20 A 34.55 A +0.175 A +0.50%

Case 3: 0.33 kW 6.875 A 6.865 A 6.892 A +0.017 A +0.25%

Table 8. Steady state and transient analysis of load voltage during line regulation.

Variable
Input

Voltage

Steady State
Voltage Ripple

Max. Load
Voltage

Deviation

Avg. %Load
Voltage
Ripple

Transient Analysis

Min Max Voltage Dip Avg% of Dip Settling
Time

Case 4:
300–500 V 47.60 V 48.40 V +0.40 V +0.830% +5.2 V +10.83% 1.1 ms

Case 5:
500–300 V 47.70 V 48.42 V +0.42 V +0.875% −3.5 V −07.29% 1.2 ms

Table 9. Steady state and transient analysis of load current during line regulation.

Variable
Input

Voltage

Steady State
Current Ripple Max. Load

Current
Deviation

Avg. %Load
Current
Ripple

Transient Analysis

Min Max Current Dip Avg% of Dip Settling
Time

Case 4:
300–500 V 68.2 A 69.34 A +0.59 A +0.85% +7.25 A +10.54% 1.1 ms

Case 5:
500–300 V 68.3 A 69.39 A +0.64 A +0.93% −4.75 A +06.90% 1.2 ms

From Table 6, the simulations were performed at different load conditions at a rated
load voltage of 48 V0 and a source of 400 Vin for examining the load voltage regulation. In
case 1, with a minimum voltage ripple of 47.70 V and a maximum voltage ripple of 48.50 V
with a load deviation of +0.50 V, the average percentage load voltage ripple was found to
be +1.04%. In the next two cases, the minimum voltage ripple and maximum voltage ripple
were generated at 47.80 V, 47.94 V and 48.30 V, 48.15 V, respectively. The load deviations
occurred at +0.30 V and +0.15 V with an average percentage load voltage ripple of +0.62%
and +0.31%, respectively.

Similarly, from Table 7, simulations were performed at different load conditions by
maintaining the constant voltages of load 48 V0 and source 400 Vin to examine the load
current regulation. In case 1, for a minimum current ripple of 68.30 A and maximum
current ripple of 69.40 A with a load deviation of +0.65 A, the average percentage of the
load current ripple was found to be +0.94%. In the next two cases, the minimum current
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ripple and the maximum current ripple were generated at 34.20 A, 6.865 A and 34.55 A,
6.892 A, respectively. The load deviations occurred at +0.175 A and +0.017 A with an
average percentage load current ripple of +0.50% and +0.25%, respectively.

From Table 8, simulations were performed to examine the load voltage deviation for
variable input voltages, i.e., 300–500 Vin and 500–300 Vin, by maintaining the load voltage
at 48 V0 and the load current at 68.75 A, respectively, at full load. In case 4 (300–500 Vin),
for a minimum voltage ripple of 47.60 V and maximum voltage ripple of 48.40 V with a
load deviation of +0.40 V, the average percentage of load voltage ripple was found to be
+0.83%. The transient voltage dip was found to be +5.2 V and its average percentage dip
was +10.83%, respectively, with a settling time of 1.1 ms. During case 5 (500–300 Vin), for a
minimum voltage ripple of 47.70 V and a maximum voltage ripple of 48.42 V with a load
deviation of +0.42 V, the average percentage of the load voltage ripple was found to be
+0.875%. The transient voltage dip was found to be −3.5 V and its average percentage dip
was −7.29%, respectively, with a settling time of 1.2 ms.

From Table 9, simulations were performed to examine the load current deviation for
variable input voltages, i.e., 300–500 Vin and 500–300 Vin, by maintaining the load voltage
at 48 V0 and load current at 68.75 A, respectively, at full load. In case 4 (300–500 Vin), for a
minimum current ripple of 68.2 A and a maximum current ripple of 69.34 A with a load
deviation of +0.59, A the average percentage of load current ripple was found to be +0.85%.
The transient current dip was found to be +7.25 A and its average percentage dip was
+10.54%, respectively, with a settling time of 1.1 ms. During case 5 (500–300 Vin), for a
minimum current ripple of 68.3 A and maximum current ripple of 69.39 A with a load
deviation of +0.64 A, the average percentage of the load current ripple was found to be
+0.93%. The transient current dip was found to be −4.75 A and its average percentage dip
was −6.90%, respectively, with a settling time of 1.2 ms.

Finally, after experimental validation of the iL2C converter’s topology and the VFPSM
control technique with a variable input voltage of 300 Vin–500 Vin at a full load of 3.3 kW
(V0 = 48 V & I0 = 68.75 A), its use was verified and a comparative table is presented in
Tables 10 and 11 in terms of line regulation for voltage and current at steady state and
transient conditions respective to the simulations.

Table 10. Simulation vs. experimental analysis of load voltage deviations during line regulation from
(300–500 Vin).

Conditions

Steady State
Voltage Ripple Max. Load

Voltage
Deviation

Avg. %Load
Voltage
Ripple

Transient Analysis

Min Max Voltage Dip Avg% of Dip Settling
Time

Simulations 47.60 V 48.40 V +0.40 V +0.83% +5.20 V +10.83% 1.1 ms

Experimental 46.50 V 48.76 V +0.76 V +1.58% +6.17 V +12.85% 18 ms

From Table 10, in the case of experimental analysis, for a minimum voltage ripple
of 46.50 V and maximum voltage ripple of 48.76 V with a load deviation of +0.76 V, the
average percentage of load voltage ripple was found to be +1.58%. The transient voltage
dip was found to be +6.17 V and its average percentage dip was +12.85%, respectively, with
a settling time of 18 ms.

From Table 11, in the case of experimental analysis, for a minimum current ripple of
68.5 A and maximum voltage ripple of 70.13 A with a load deviation of +1.38 A, the average
percentage of the load voltage ripple was found to be +2.00%. The transient voltage dip
was found to be +8.29 A and its average percentage dip was +12.05%, respectively, with a
settling time of 18 ms.
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Table 11. Simulation vs. experimental analysis of load current deviations during line regulation from
(300–500 Vin).

Conditions

Steady State
Current Ripple Max. Load

Current
Deviation

Avg. %Load
Current
Ripple

Transient Analysis

Min Max Current Dip Avg% of Dip Settling
Time

Simulations 68.2 A 69.34 A +0.59 A +0.85% +7.25 A +10.54% 1.1 ms

Experimental 68.5 A 70.13 A +1.38 A +2.00% +8.29 A +12.05% 18 ms

8. Conclusions

An iL2C Resonant FB DC–DC converter with a hybrid control strategy called the
VFPSM technique with a wide input voltage for EV charging systems was investigated.

Firstly, the iL2C converter was modeled and its working principle was demonstrated
with the two-converter strategy, which increased the load capacity with a reduction in
current ripples. To adapt the wide input voltage, tight regulation, and soft switching, a
hybrid control strategy was proposed for the entire operating region, and its control loop
design was discussed.

Simulations were conducted using MATLAB/Simulink for the entire proposed design.
The converter performance was shifted in different case studies; during case 1, case 2,
and case 3, the converter operated at different load conditions, i.e., full load (3.3 kW), half
load (1.65 kW), and light load (10% of full load) with a constant input and load voltage of
400–48 V0. The steady-state analysis of load voltage and current regulation was determined
with average percentage ripples. The converter’s performance was also examined under
assorted input voltage conditions from 300 to 500 Vin in case 4 and 500 to 300 Vin in case
5 at a full load condition. The load voltage and current deviations during line regulation
were determined in terms of steady state and transient analysis.

Furthermore, to validate the converter and controller feasibility design, an experi-
mental prototype was built for a 48 V0 charging system with a variable input voltage of
300–500 Vin and implemented by using GaN-HEMT technology with an efficiency of 98.2%
at full load. The steady-state and transient analysis of the proposed concept for voltage
and current ripples at the load side was discussed.
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Abbreviations
The abbreviations used in this paper are summarized as follows:
AC Alternating Current
BEV Battery Electric Vehicle
CV Constant Voltage
DC Direct Current
EMI Electromagnetic Interference
E-mode Enhancement mode
EV Electric Vehicle
FB Full Bridge
FCEV Fuel cell Electric Vehicle
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GaN Gallium nitride
HEMT High Electron Mobility Transistor
HEV Hybrid Electric Vehicle
ICE Internal Combustion Engine
iL2C Interleaved Inductor–inductor–capacitor
L2C Inductor–inductor–capacitor
PHEV Plugin Hybrid Electric Vehicle
SCEV Super Capacitor Electric Vehicle
Si Silicon
UCEV Ultra-Capacitor Electric Vehicle
VCO Voltage Control Oscillator
VFPSM Variable Frequency Phase Shift Modulation
ZCS Zero Current Switching
ZVS Zero Voltage Switching
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