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Abstract: In order to solve the electromagnetic force optimization problem of a high-power-density
ironless Halbach-type permanent magnet synchronous linear motor, this paper adopts an electromag-
netic force optimization method based on magnetic field analysis, electromagnetic force modeling,
and genetic algorithm optimization: Firstly, the magnetic field of the Halbach permanent magnet
array is solved by the combination of the equivalent magnetization strength method and the pseudo-
periodic method, which takes into account the influence of the edge effect of the secondary magnetic
field, and the magnetic field of the primary winding is solved by Fourier series expansion method.
Secondly, the Maxwell tensor method is used to establish the functional relationship between the
electromagnetic thrust and the main structural parameters of the unilateral motor. Finally, based on
the parameter sensitivity analysis of the optimized variables and the response surface calculation,
the optimal combination of the optimized variables to meet the optimization objective is found by a
genetic algorithm. This method of the accurate modeling and optimization of an electromagnetic
force can accurately calculate the motor air gap magnetic field and electromagnetic thrust, and the
optimization speed is fast, which can greatly save time. The optimization results show that, under the
premise of constant input power, the unilateral average thrust of the motor is increased by 18.75%,
the peak value of thrust fluctuation is decreased by 30.27%, and the results match well with the finite
element results, which verifies the correctness of the optimization results of the electromagnetic force
and the reasonableness of the optimization method.

Keywords: ironless Halbach-type permanent magnet synchronous linear motor; magnetic field
analysis; electromagnetic force modeling; genetic algorithm; electromagnetic force optimization

1. Introduction

An IHPMSLM has the advantages of a simple structure, being lightweight, low mag-
netic resistance, and high positioning accuracy, making it a more significant advantage over
linear induction motors in the field of highly integrated and light high-power-density elec-
tromagnetic emission. Still, because of the high magnetic resistance of the magnetic circuit
and the disadvantages of a lower air-gap magnetic density and a smaller electromagnetic
thrust [1-3], it is necessary to optimize its electromagnetic thrust.

In recent years, scholars at home and abroad have conducted many studies to address
the above issues. The magnetic field of the Halbach permanent magnet array shows strong
unilaterality, and the solid magnetic side magnetic field can provide a higher fundamental
amplitude of air-gap magnetic density and a lower harmonic distortion rate, which is
essential for improving air-gap magnetic density and permanent magnet utilization and
reducing thrust fluctuation. Earlier scholars analyzed the magnetic field of segmented
Halbach permanent magnet arrays using finite element numerical calculation methods,
and although certain research results were achieved, they lacked theoretical support [4]. To
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this end, the semi-analytic modeling approach is widely used [5], and the analytical model
of the nonuniform air-gap magnetic field of segmented-gap Halbach permanent magnet
arrays can be developed and solved for the air-gap magnetic field of permanent magnet
synchronous linear motors (PMSLM) using a combination of analytical and magnetic
circuit methods. In addition, numerous studies have shown that in some unique PMSLM
structures, better electromagnetic performance can be obtained by applying trapezoidal-
and tapered-section permanent magnet arrays rather than rectangular-section permanent
magnet arrays [6]. For example, a novel magnetic field of a Halbach permanent magnet
array with a trapezoidal cross-section was solved by the surface current method [7], and
an analytical model of the magnetic field of a trapezoidal Halbach permanent magnet
synchronous linear motor was developed using the scalar magnetic potential method [8].
Both theoretical and finite element simulations demonstrated that the trapezoidal-section
permanent magnet array gives the PMSLM a good no-load phase back electromotive
force (EMF) compared to the conventional rectangular-section permanent magnet array.
However, the traditional electromagnetic field analysis methods, such as the subdomain
method [9], the equivalent magnetic grid method [10], and the vector magnetic potential
method [11], are less computationally intensive but often fail to consider the effect of the
edge-end effect of permanent magnets, resulting in poor accuracy of the analysis results.
The application of the mechanical pseudo-periodic method can quickly and accurately
derive two- and three-dimensional magnetic field expressions for Halbach permanent
magnet arrays with clear physical concepts, simple calculations, and an accurate portrayal
of the edge-end effect magnetic field distribution [12].

Based on the accurate solution of the air-gap magnetic field, the PMSLM electromag-
netic force is often calculated using the Lorentz force method [13,14] or the Maxwell tensor
method [15,16], each of which has its advantages, with the former being suitable for solving
the local and combined forces on conducting materials in the magnetic field. At the same
time, the latter is more suitable for calculating the forces on ferromagnetic materials in
the magnetic field. The calculated results are in good agreement with the finite element
simulation and the experimental results of the prototype, which provide essential guidance
for the optimal design of linear motors.

The accurate representation of electromagnetic forces is critical to optimizing PMSLM
performance. Existing PMSLM electromotive force optimization measures mainly focus
on the two important aspects of motor body structure and control strategy, such as tilting
poles [17], permanent magnet segmentation [18], the installation of auxiliary poles [19], the
optimization of PMSLM stator length [20], pole slot fit [21], and harmonic injection [22].
However, single-variable optimization often cannot combine the improvement of average
thrust and the reduction in thrust fluctuation, and direct optimization with finite elements
would be time-consuming, so intelligent optimization algorithms such as a genetic algo-
rithm (GA) are increasingly preferred by scholars in the field of PMSLM operation and
design due to their high accuracy and robust search results [23,24]. However, standard
genetic algorithms tend to lose their ability to adapt to the environment at the late stages
of evolution. For this reason, improved genetic algorithms, multi-population genetic al-
gorithms, self-adjusting small-habitat genetic algorithms, and differential evolutionary
algorithms have emerged to solve the early convergence problem of traditional genetic
algorithms [25]. The intelligent algorithm can perform hierarchical and categorical opti-
mization based on the results of the sensitivity analysis of multiple optimization parameters
with fast calculation speed and good convergence, which greatly improves the efficiency of
PMSLM optimization.

To enhance the electromagnetic thrust of an ironless Halbach-type permanent magnet
synchronous linear motor IHPMSLM), this paper adopts an electromagnetic force opti-
mization method based on theoretical analysis, magnetic field analysis, electromagnetic
force modeling, and GA optimization. The magnetic field of the secondary Halbach perma-
nent magnet array and the magnetic field of the primary six-phase winding are accurately
solved, considering the edge-end effects, and the single-sided IHPMSLM electromagnetic
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thrust and the normal electromagnetic force are modeled based on the resolved results
of the load air-gap magnetic field. The four parameters of permanent magnet array pole
arc coefficient and thickness, winding width, and winding thickness are selected as the
optimization variables, and the parameter sensitivity analysis and response surface calcu-
lation are carried out with the help of the functional relationship between the unilateral
electromagnetic thrust and the optimization variables. Finally, using a GA to solve the
optimal combination of optimization variables that meet the optimization objectives, the
correctness of the optimization results and the rationality of the optimization method are
verified by finite elements.

2. Basic Structure of IHPMSLM

The IHPMSLM in this study has a bilaterally symmetrical structure, consisting of
a bilateral primary winding and a double-layer secondary Halbach permanent magnet
array. The single-sided structure of the IHPMSLM is shown in Figure 1. The primary
winding is a C-shaped copper guide bar mounted on a stator bracket, which reduces the
winding ends, thus reducing production costs and motor weight. The secondary stage uses
a Halbach permanent magnet array with a double layer of weakly magnetized sides to
provide the sinusoidal-like excitation field required to maintain regular motor operation,
with each permanent magnet in the array magnetized in the direction shown by the arrow
in Figure 1, where xyz in the figure represents a three-dimensional Cartesian coordinate
system. Red, green, and blue respectively represent the A, B, and C phase winding, while
gray represents the permanent magnet array. Table 1 shows the structural parameters of
the unilateral IHPMSLM.

y Aoy

Primary windings

Figure 1. Unilateral structure diagram of IHPMSLM.

Table 1. Structure parameters of INPMSLM.

Symbol Quantity Value
m phase number 6
T polar pitch 72 mm
d winding pitch 2 mm
S windings cross-sectional area 50 mm?
21 primary winding pole pairs 26
p permanent magnet array pole pairs 6
wWe primary winding width 10 mm
he primary winding thickness 5 mm
hy primary winding height 259.6 mm
0 mechanical air gap 5mm
hm permanent magnet array thickness 10 mm
hy permanent magnet array height 275 mm
bm width of radially magnetized permanent magnets 28.8 mm

b, width of tangentially magnetized permanent magnets 43.2 mm
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3. Magnetic Field Analysis and Finite Element Verification
3.1. Unilateral IHPMSLM Magnetic Field Resolution Model

Due to the unique structure of the IHPMSLM, the magnetic circuit is closed via the air
gap. There are significant distortions in the excitation field at the side-end positions of the
secondary permanent magnet array, so it is necessary to consider the side-end effects of the
secondary field to accurately solve the air-gap magnetic field distribution and calculate the
periodic steady-state electromagnetic thrust.

As shown in Figure 2, according to the finite element static field simulation results of
the Halbach permanent magnet array, the whole array with length L in the x-direction can
be divided into three parts, namely, the sinusoidal-like region and the edge-end distortion
region, according to the actual distribution of the magnetic induction intensities By, and
Bypm at the position of line one in the air gap. If the pole pitch of the permanent magnet
array is T, the symmetry period of the air-gap magnetic density in the sine-like zone is
still 27. Still, the air-gap magnetic density in the end distortion zone does not follow this
symmetry law. Define ¢ as the distance from the edge of the permanent magnet array when
the magnetic field decays to zero. Based on the results of the finite element static magnetic
field simulation, it can be approximated as € = T; i.e., the magnetic fields do not affect each
other when the distance between two adjacent permanent magnet arrays is 2e. As shown
in Figure 3, assuming that the permanent magnet array is infinitely long in the x-direction,
the permanent magnet array after considering the edge-end effect will be symmetrically
periodic, which is said to be a mechanical pseudo-period [11];i.e., A = L + 27.

Sine like area End distortion area

End distortion area N

Magnetic density Byym
of straight line 1
position

Magnetic density Byym
of straight line 1
position

|
o VN
X : : Straight line 1

Figure 2. Air-gap Magnetic Field Distribution of the Halbach Permanent Magnet Array.

A Halbach permanent magnet array

Figure 3. Infinitely long Halbach permanent magnet array.

If we consider the influence of the IHPMSLM secondary permanent magnetic array
edge effect, the mechanical pseudo-periodic constant A can be used as the period of the
modified Fourier series; that is, the end distortion area of the permanent magnet array
itself plus the magnetic field is regarded, as a whole, as the period of integration of the
magnetization strength M and no longer takes 27 as the integration period. Magnetization
intensity M is the line integrated over the range A to obtain the spatial distribution of
the magnetization intensity, thus solving for the air-gap magnetic field on the solid side
of the Halbach permanent magnet array and accounting for the side-end effect with the
help of the magnetic vector potential and boundary conditions. To establish an analytical
model of the IHPMSLM air-gap magnetic field considering the secondary side-end effect,
the Halbach permanent magnet array magnetic field and the primary six-phase winding
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magnetic field can be solved separately and then superimposed, and based on the bilateral
symmetric structure of the IHPMSLM, only a single-sided air-gap magnetic field needs to
be solved. Therefore, an analytical model of the single-sided IHPMSLM magnetic field with
infinite length in the x-direction is established, as shown in Figure 4. Regions I, II, and III
are the permanent magnet array region, the air-gap region on the weak magnetic side of the
permanent magnet array, and the air-gap region on the solid magnetic side of the permanent
magnet array, respectively, and are used for solving the secondary Halbach permanent
magnet array air-gap magnetic field accounting for the edge-end effects. Regions IV, V, and
VI are the primary six-phase winding region and the air-gap regions on both sides of the
winding and are used for solving the primary winding air-gap magnetic field. In Figure 4,
hy, is the thickness of the permanent magnet array, & is the thickness of the winding, and &
is the air-gap length.

A
¥ A 5
h, L . Region 11
[ € ple ‘E":‘Halbach permanent magnet array .’- Sy Region T S
4 0 o Air-gap ReEn Region [11 x’

Region [V

h Region VI

Figure 4. Unilateral IHPMSLM magnetic field analysis model.

This paper separately solves the IHPMSLM primary and secondary air-gap magnetic
fields using magnetic vector potential. To simplify the calculation, the basic assumptions are
as follows: (1) There is no change in the magnetic field along the z-direction, and only the
directional component of the primary winding current exists. (2) The IHPMSLM extends
infinitely along the x-direction. (3) Each permanent magnet in the Halbach permanent mag-
net array is uniformly magnetized and non-demagnetized. The recovery curve coincides
with the demagnetization curve, and the permeability is equal to the air permeability.

3.2. Halbach Permanent Magnet Array Magnetic Field Analysis and Element Verification

An analytical model of the magnetic field of the Halbach permanent magnet array
with one mechanical pseudo-cycle is shown in Figure 5.

A
e A R
£, L IR
) Lt ) Ll |
AN [ [—[ A [= >[4 J—]F Resn 1
0 i i ! bm’}‘ T i ': 3 i Regionl IHI X
A i i | 1 Halbach permanent magnet array
M M : l i ' i i i
o A Y e I O S e G
i 4 L E | L B x
RS O T N A
] e ¥ .
| I : : x

Figure 5. Analytical model of the Halbach permanent magnet array magnetic field.

In Figure 5, by, is the width of the permanent magnet magnetized in the y-direction,
and the pole arc factor &) of the Halbach permanent magnet array is b, /7. The arrow
indicates the direction of magnetization of the permanent magnet.
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Based on the basic assumption (3), the spatial distribution function of the magne-
tization intensity of the Halbach permanent magnet array can be expressed as follows:

M = Myi+ Myj 1)
According to the principle of the Fourier series decomposition of square waves, the
following equation can solve My and My in Figure 5:

M, = Y bysin(m;x)
i~ @)
M, = Y aycos(mix)
n=1
where my = 2nmt/A.
The following equation can calculate the Fourier coefficients a, and by,:
A
{ a, =+ 0 5—(’) cos(myx)dx

_1[(AB
bn =3 Jo y—(;sm(mlx)dx

®)

In the above formula, B; is the remanent magnetization of the permanent magnet.
The equivalent magnetization current density of the Halbach permanent magnet array is

J=VxM 4)
The two-dimensional constant electromagnetic field equation is
VxH=]
VxB=0 ®)
B = uH

In addition, the introduction of vector magnetic potential A makes

VxA=B
{V'A—O ©)

Substituting Equation (5) into Equation (4), we obtain
VXB=yf ?)

Therefore, there are only z-directional components of A and ], so Equation (7) can be
reduced to

PA, | PA
2 _ Z z
Vi =G G = ®)
Thus, the expressions for the magnetic induction strengths By and By, are as follows:
Bx — aaIAAZ

¥ ©)

A,

{ By =%

The magnetic vector potential of region i (I = I, II, III) is assumed to be A; (x, y), thus
establishing the magnetic field equation for each region vector magnetic potential as shown
in Equation (4) and obtaining the general solution of each region vector magnetic potential
in the equation via the method of separating variables.

PA; | PA

Bzle + aTyZI =K 0]

PAy | A

A T =0 10
2 2

882/)\(1211 + 8321;1211 =0

The regions in Figure 5 satisfy the following boundary conditions:
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ByI y=0 = ByIH y=0
By1|y=n,, = Byu|y=n,,
Hyily=0 — H |y—0 = Mx (11)

Hyir|y=n,, — Hut|y=n, = Mx
Aq|y=+c0 =0

Afii|y=-00 =0

We bring the boundary conditions in Equation (11) into the vector magnetic potential
general solution and obtaining the coefficients in the general solution. Afterward, insert the
vector magnetic potential expression into Equation (9) to obtain the analytical equation of
the Halbach permanent magnet array air-gap magnetic density in the region, considering
the edge-end effect as follows:

Bypm = _% = ’El %(an +by) (1 — e’mth>em1y cos(myx) W)
Bipm = %yﬂl = ;El %(un +by) (e""lhm - 1>em1y sin(myx)

To verify the correctness of the analytical result of Equation (12), a two-dimensional
static magnetic field finite element simulation model of a finite-length Halbach permanent
magnet array, as shown in Figure 2, is built in the software named ANSYS Electronics
Desktop 2021 R1, and balloon boundary conditions are imposed. To obtain the magnetic
density waveform at the position, we use y = —4/2 in Figure 5, as shown in Figure 6.

0.6

Calculation value of Bypm‘ - <0~ -Simulation value of B,

= = = = Calculation value of Bxpm = <@ - Simulation value of Bxpm

B/T

-0.2

-04
0 72 144 216 288 360 432

X/mm

Figure 6. Finite element verification of Halbach permanent magnet array air-gap magnetic density
analysis results.

In Figure 6, the Bypm and Bypm waveforms obtained by the analytical and finite element
methods agree. The error between the simulated and calculated values at each position in
the curve as a proportion of the amplitude of the waveform obtained from the simulation
was used to measure the maximum error. The maximum errors are 4.28% and 5.15% of the
amplitudes obtained from the simulation, respectively. The analyzed values of the air-gap
magnetic density are slightly more prominent because the results of the analytical method
based on ideal assumptions are more idealized.

A comparison of the calculated air-gap magnetic field values, Bypm and Bypm, of the
Halbach permanent magnet array when the edge-end effect is considered and the calculated
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air-gap magnetic field values, By, and Byn, of the Halbach permanent magnet array when
the edge-end effect is not considered is shown in Figure 7.

0.5
- Bypm -T° B‘cpm = e- : ByVl = 0- an
04 F |
®
0.3 s e T 2 L
: i
; " bo
o2 A4t T & T A
i
J
. 0.1 ‘ g
S 1 !
0.0 pazzzl e AL L ey sy R | G

SIR ] TR P L U1 S
B V!

-02 F N N
s

Y S B . F 4
%

-0.4 i '

0 72 144 216 288 360 432

Figure 7. Comparison of magnetic field edge-end effects.

The results show that the Halbach permanent magnet array magnetic field solution
method based on a mechanical pseudo-period can accurately portray the actual distribution
of the air-gap magnetic field, thus laying the theoretical foundation for the accurate solution
of the electromagnetic thrust and normal electromagnetic force.

3.3. Primary Winding Magnetic Field Analysis and Finite Element Verification

The analytical model of the magnetic field of the primary six-phase winding is shown
in Figure 8.

[}

A
o L .
Halbach permanent magnet array Region V -
0 # S ¢ Air-gap x’
... Al A2H L1 |C2—|--E}-.chmn Vil .-
hCT o, T,

Primary six-phase windings Region VI
Figure 8. Analytical model of primary winding magnetic field.

Define the single primary winding pseudo-pole arc factor as «; = w./ ., where w,
is the width of the single winding, and 7. is the width of the space occupied by the
single winding.

The single-sided IHPMSLM primary six-phase semi-symmetric winding current ex-
pression is as follows:
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ia1 = Ly cos(wt + 6p)
igp = Iy cos(wt + 6y — 30deg)
igy = Iy cos(wt — 120deg + 6p) (13)

ipy = Ly cos(wt — 120deg + 6y — 30deg)
ic1 = — Iy cos(wt + 120deg + 6p)
icp = — Iy cos(wt + 120deg + 6y — 30deg)

In Formula (13), I;; is the primary current amplitude, and 6y is the initial phase angle
of the primary current.

Since the expressions of the current and electric density of each phase winding are
similar, only the difference in phase sequence exists; therefore, only the Al phase winding
current density needs to be solved by shifting the Al phase winding current density 7. to
obtain the Fourier series expansion of the remaining phase winding current density.

The expression for the current density of the Al phase winding is as follows:

iAl
]Al Chc ( )

If k7t /T, = 6 my, then the Fourier series expansion of the Al phase winding current
density in the coordinate system in Figure 8 is as follows:

Jai(x) = i 4]{% sin(k;) sin<k71T;C> sin <m2 (x + 52TC>) (15)

k=1

Therefore, the Fourier series expansion of the primary six-phase winding current

density is 5

J(x) =Y (Jai(x) + Jpi(x) + Jei(x)) (16)

i=1
Similarly to the analytical process of the Halbach permanent magnet array air-gap
magnetic field, the magnetic vector potential of region j (j = IV, V, VI) is assumed to be
Aj (x,y) by establishing the magnetic field equations of the magnetic vector potential in
three regions and using the variable separation method to obtain the general solution of
each magnetic vector potential in the system shown in Equation (16).
2 2
aaﬁzw + aaﬁzw = 7,”0]141 (X)
PAy | PA
a2 T ap =0 (17)
P Ay

d°A
ox2 + ayZVIZO

The winding and air-gap areas in Figure 8 satisfy the following boundary conditions:

AV|y:+°° =0
AVI|y:—oo - 0

ByIV‘y:—((S-&-hC) = ByVI'y:—(&—l—hc)
Hywl|y——s = Hav|y=—s
ByIV|y=—5 = ByV’y=—5

Bringing the boundary condition in Equation (18) into the vector magnetic potential
flux solution and obtaining the expression of the magnetic vector potential A; (x, y) to
obtain the expression of the radial air-gap magnetic density of the Al phase winding by
shifting the phase, the radial air-gap magnetic density of the remaining phases is obtained,
and finally, using the superposition principle, the air-gap magnetic density of the primary
six-phase winding is solved:
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(1 _e*mzhu)e*mz(]/+5).
k=1i=1
[Jaicos(ma(x + (5 —i)w))+ Jeicos(ma(x + (3 — i) %)) + ]B,-cos(mz(x - (% +i>'rc))}

2
_ JdAy __ S 6TcHy . k . (kna ok _ 5
Bycoil = ayv = kgl igl kzcnz s 77‘[ sm 125 1 — e~ M2hc ) my(y+9).,

[Jaisin(my (x + (5 —i)7) )+ Jeisin(ma (x + (3 —i) 7)) + Jpi sin(mz (x - (% + i) TC))}

To verify the correctness of (19), a single-sided IHPMSLM primary six-phase wind-
ing finite element two-dimensional transient field simulation model in ANSYS, with the
winding excitation as shown in Formula (13) added to it, is applied to calculate the primary
six-phase winding air-gap magnetic field distribution under load conditions, and this
calculation is compared with the calculated results. Figure 9 shows the winding air-gap
magnetic density at the initial moment under the three pairs of poles in the same position
between the calculation model and the simulation model.

(19)

0.25

= == - Simulation value of B,

¥ - Simulation value of B ;-

Calculation value of B,

xcoil

0.20 }-=== Calculation value of B

0.15

0.10

0.05

B/T

0.00

—0.05

=0.10

—-0.15

0 72 144 216 288 360 432

Figure 9. Finite element verification of magnetic field analysis results of primary six-phase winding
air gap.

The results show that the six-phase winding air-gap magnetic density of the By
and By, waveforms obtained by the analytical and finite element methods in Figure 9
are in good agreement. Similarly, the maximum value of the error between the analyzed
and simulated values at all positions as a proportion of the amplitude obtained from the
simulation is called the maximum error. The maximum errors are 5.614% and 4.604% of the
amplitudes obtained from the simulation, respectively, which verifies the correctness of the
analytical results of the magnetic field of the primary winding.

3.4. Air-Gap Synthesis Magnetic Field Analysis and Finite Element Verification

By overlaying the radial and tangential components of the secondary permanent
magnet array air-gap magnetic density and the primary winding magnetic density, the
IHPMSLM air-gap composite magnetic density expression is

By = Bypm + Bycoil
20
{ By = Bxpm + Bxcoil ( )

We added the excitation of the primary winding in Formula (13) to the simulation
model of the transient field with a single-sided IHPMSLM and set the secondary motion’s
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velocity to 0 m/s. The analyzed and simulated values of the synthetic magnetic density are
set at the center line of the air gap, considering the effect of the secondary side as shown in
Figure 10, at the initial moment under the three pairs of poles in the same position between
the calculation model and the simulation model.

08 L —¢ Calculation value of B, = = Simulation value of B,
Calculation value of B, ===" Simulation value of B,

-

B/T

<

216 432
x/mm

Figure 10. Finite element verification of analytical results of air-gap synthesis magnetic field.

At any moment within a current cycle, the error between the analyzed and simulated
values of the air-gap synthetic magnetic density is about 5%, which satisfies the need for
engineering analysis and verifies the correctness of the theoretical derivation.

4. Electromagnetic Force Modeling and Optimization
4.1. Electromagnetic Force Calculation

Since the primary and secondary phases of the IHPMSLM are bilaterally symmetrical,
we can only calculate one side of the electromagnetic force. The effect of the secondary side
end effect is included in the Formula (12) of the resolved magnetic field of the permanent
magnet array; therefore, the electromagnetic thrust Fx and the normal electromagnetic force
Fy of the single-sided IHPMSLM at each moment when the secondary is running at the
synchronous speed vs based on the result of the magnetic field analysis of the load air-gap
calculation can be used using the Maxwell tensor method.

The Maxwell tensor method equates the mass force f in a magnetic field to a set of
tensors and expresses it using the stress tensor T as

- fv fdV = ]i TdS 1)

where V is the volume subregion enclosing the computational object, and S is the surface
enclosing the V region.

For the plane-parallel electromagnetic field in this study, the surface integral can
be further simplified to a curve integral, from which we can calculate the F, and Fy of
the IHPMSLM secondary permanent magnet array at a particular moment, respectively,
as follows:

Fx = § 5 | nx( BY — By ) + 2nyBxBy |dI

E, = ¢ -2 B2 — B2) 4 2n,ByB, | dl 22)
v = $ 245 |y By — Bx ) + 2nxByBy
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where [ is the closed curve abcda enclosing the secondary permanent magnet array in
Figure 11, w is the length of the z-direction of IHPMSLM, and ny, ny are the unit standard
vector x and y plane components of dI, respectively.

A

<
A AT

Y Vv

> Secondary motion direction

A\

Figure 11. Single-sided IHPMSLM electromagnetic thrust calculation model.

4.2. Finite Element Verification of Electromagnetic Force Calculation Results

We apply the excitation as formula (13) to the primary winding in the single-sided
IHPMSLM finite element transient field simulation model and add a force matrix to the
secondary permanent magnet array, which is set to move uniformly and linearly at a
synchronous speed and along the positive axis direction. Then, we calculate Fyx and Fy on
the single-sided IHPMSLM secondary during the running time.

The calculated results of the single-sided IHPMSLM secondary electromagnetic force
under the periodical steady-state operation condition obtained from the analytical calcula-
tion are compared with the finite element simulation results, Fy is shown in Figure 12a and
Fy is shown in Figure 12b.

1.0k : : : -20
‘ : : —— Simulation results ===- Calculation results
740 b
10.9% A ]
60 % W < SR A
LAY ] M
N Y 8 l
: N AT ) ; n
L -80 \ AIRR ' ‘
—8— Calculation resulls | ' iR ] |
z},‘ =@~ Simulation results ‘ > ' YA d ! '
. ‘ 1 ‘ w100 RHIYJHan - ff b | . L L
§ % i 1) \
10.7k | | ; ! l ' f ':
‘ ; ‘ —120 L] R LS T -y il
'. : K '
‘ i .
10.6k 140 1| . e ny iy
y sl W o
b :n. \ 'l
| | | “60F N "
10.5k ! L L ! : : ' '
0.0 0.5 1.0 15 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
t/ms t/ms
(a) (b)

Figure 12. Electromagnetic force verification.

The average values of unilateral electromagnetic thrust Fy;y, obtained by the analyt-
ical method and the finite element method in Figure 12a are 10.901 kN and 10.623 kN,
respectively, and there is a calculation error of 278 N between them, which accounts for
about 2.55% of the average thrust obtained by the analytical method. The analytical result
is significant because the Maxwell tensor method calculates the electromagnetic thrust
directly by the air-gap magnetic field, and the calculation result of the air-gap magnetic
field based on the ideal assumptions is slightly larger than the simulation value. The reason
is that the Maxwell tensor method calculates the electromagnetic thrust directly from the
air-gap magnetic field, and the calculation result of the air-gap magnetic field based on ideal
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assumptions is slightly larger than the simulated value, which leads to a sizeable analytical
result of the electromagnetic force compared with the simulated value. Meanwhile, the
peak values of unilateral electromagnetic thrust Fy,, obtained by the analytical method
and the finite element method are 70.472 N and 87.356 N, respectively, and the errors of
both are relatively small.

Since the IHPMSLM does not have a core, its unilateral normal electromagnetic force
Fy is small. As shown in Figure 12b, the waveform trends obtained by the analytical
method and the finite element method match, and the average values are —115.646 N
and —105.084 N, respectively, which is about 9.13% of the average value obtained by the
analytical method. The reason is that the current density in the winding area is equivalent
to the wire density at the center of the winding in the analytical calculation, thus ignoring
the effect of the skin effect of the conductor under high current excitation, which leads to
extensive analytical results. However, the bilateral symmetric structure of the IHPMSLM
will cancel Fy, making the overall normal electromagnetic force in the motor secondary zero.

From Formula (23), the load air-gap magnetic field will directly affect the electromag-
netic thrust, impacting Fyang and Fyyk. Therefore, optimizing the key structural parameters
of the IHPMSLM is necessary to enhance Fravg without increasing Fxpk, thus further increas-
ing the power density.

4.3. Electromagnetic Thrust Optimization

The parameters ap, hm, hic, we, and ¢ are the critical variables of the IHPMSLM-loaded
air-gap magnetic field. Due to the long stroke of the IHPMSLM in this study and the
absence of core parts, the primary winding is only supported by the stator skeleton to avoid
mechanical friction between moving parts and stationary parts due to force deformation
during the non-periodic transient operation of the motor, the mechanical air-gap is still
selected to be 6 =5 mm constant. Therefore, the parameters Xp, hm, he, and w. can be used
as optimization variables to find the optimal combination of optimization variables, which
makes the calculated value of Fypy not increase and places the maximum calculated value
of Fxavg under the constraint that the thickness of theunilateral IHPMSLM is constant, i.e.,
hm + he + 6= 20 mm, using a GA to obtain the best solution for the optimal design of the
IHPMSLM. The optimization objective functions are as follows:

{ Ry = Frayg — Max 23)

Ry = Fypy — 70.472N

Considering the motor design, processing and assembly, and winding casting and
molding, we can select the constraint range of optimization variables in Table 2 to make the
optimization results more reasonable.

Table 2. Optimizing the range of variable constraints.

Variable Maximum Value Minimum Value
ap 0.9 0.1
hm 12 mm 8 mm
he 7 mm 3 mm
wWe 12 mm 7 mm

To clarify the parameter sensitivity order and its contribution degree to the resounding
optimization results and to determine the critical optimization variables, the correlation
matrix of optimization variables in Figure 13 was calculated using a GA. The positive and
negative signs of the elements in the figure represent positive and negative correlations,
respectively, and the magnitude of the element values directly reflects the strength of the
correlation between the parameters.
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Figure 13. Parameter correlation matrix.

Opverall, the four optimization variables are all related to Fyavg and F xpk tO different
degrees, among which only variable h;,, shows a strong positive correlation with Fyayg; i.e.,
an increase in the volume of permanent magnets will significantly increase the average
thrust. In contrast, variable w. shows a relatively strong negative correlation with F xpks
i.e., a reasonable choice of winding width can effectively reduce the peak value of thrust
fluctuation. Variables &y, and k. can reduce the peak value of thrust fluctuation while
decreasing the average thrust. In addition, the interaction between optimization variables
is more significant. Hence, optimizing a single variable often fails to meet the performance
requirements. So, finding the optimal combination of optimization variables to meet the
optimization objectives is the key to electromagnetic force optimization.

To further verify the parameter sensitivity analysis’s conclusions, draw the optimized
variables’ response surfaces as shown in Figures 14 and 15. Where Figure 14a,b show the
response surface of the average thrust and Figure 15a,b show the response surfaces of peak
to peak thrust fluctuations. The change in the value of «), can significantly affect Fyze and
reaches its maximum around 0.5, while F, fluctuates more with the increase in the value
of ap. At the same time, the increase in the value of h;, causes a smaller change in Fapks but
a more significant lift in Fyyye. In addition, the increase in the value of w, can significantly
reduce F,yr and make Fyzq constant. Finally, Fyaog and Fyyy all decrease significantly with
the increase in the value of h.. Therefore, we need to weigh the pros and cons of choosing
parameters during optimization.

The computational flow chart of the GA is shown in Figure 16.

A set of Pareto optimal solution sets satisfying the optimization objective is finally
obtained by calculation, as shown in Table 3.

Table 3. Optimal combination of optimization variables.

Variable Value
ap 0.563
hm 11.8 mm
he 3.2 mm
We 11.6 mm
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Figure 16. GA flow chart.

To verify the correctness of the above optimal combination of optimization variables,
establish a one-sided IHPMSLM finite-element two-dimensional transient field parametric
simulation model that uses the optimal combination of optimization variables in Table 3 as

input to

13.2k
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Figure 17.

obtain the F, optimization results shown in Figure 17.

+ Optimized F, calculation results
—0— Optimized F, simulation results

0 0.5 1.0 1.5 2.0 215

t/ms

Optimized electromagnetic thrust curve.

The optimization results are shown in Table 4 when compared to the pre-optimization
F, waveform in Figure 12.



Energies 2023, 16, 5785

17 of 19

Table 4. Electromagnetic thrust optimization results.

Fy F xavg F xpk
calculated value before optimization 10.901 kN 70.472 N
simulation value before optimization 10.623 kN 87.356 N
calculated value after optimization 12.945 kN 49.140 N
simulation value after optimization 12.478 kKN 62.229 N

As can be seen from Table 4, the optimized Fyayg calculated value is 18.75% higher, and
the F xpk calculated value is 30.27% lower, than before optimization, while the optimized
Fyavg simulated value is 17.46% higher, and the Fxpk simulated value is 28.76% lower,
than before optimization. The calculated results are in good agreement with the simula-
tion results. In addition, the optimized unilateral IHPMSLM average thrust is improved
significantly, and the thrust fluctuation is reduced significantly, which initially achieves
the optimization goal and verifies the application of the GA and the correctness of the
optimization results.

The good electromagnetic performance of the optimized IHPMSLM comes at the expense
of its economic cost. The increase in /1, leads to an 18% increase in permanent magnet usage,
thus increasing the economic cost; however, reducing h. will reduce copper usage by 25.76%.
Therefore, the optimal combination of variables can be used as a reference for the optimized
design of the IHPMSLM, making it more suitable for high-power-density applications.

5. Conclusions

To solve the electromagnetic force optimization problem of the IHPMSLM, this paper
adopts an optimization method based on the combination of analytical calculation and
a genetic algorithm, which is fast and can greatly save calculation time. The specific
conclusions are as follows:

(1) A single-sided IHPMSLM magnetic field analytical model that can simultaneously
solve the primary and secondary air-gap magnetic fields has been established, in
which the secondary Halbach permanent magnet array magnetic field is solved by
combining the pseudo-periodic idea with the equivalent magnetization strength
method, which is less computationally intensive and accurately depicts the air-gap
magnetic field in the sinusoidal-like region and the end aberration region of the
permanent magnet array. Additionally, the primary six-phase winding magnetic field
is solved using the Fourier series expansion method. By superposing the primary and
secondary air-gap magnetic fields, the synthetic magnetic field of the IHPMSLM air
gap is obtained, which fits the actual distribution of the magnetic field, and the error
meets the needs of engineering analysis and matches well with the finite element
results, which solves the problem of accurately solving the air-gap magnetic field of
the IHPMSLM load.

(2) Based on the solution results of the air-gap magnetic field, the Maxwell tensor method
is used to establish the functional relationship between the tangential electromagnetic
thrust and the normal electromagnetic force of the unilateral IHPMSLM and the main
structural parameters of the motor, and the correctness of the electromagnetic force
modeling is verified by the finite element, which provides the theoretical q for the
calculation of the motor performance.

(3) Taking the Halbach permanent magnet array and the main structural parameters of
the primary winding as the optimization variables, based on the parameter sensitivity
analysis and response surface calculation, within the constraints of the values of the
optimization variables, the genetic algorithm is used to search for the Pareto optimal
solution set of the optimization objective, and the computational results show that
the average thrust of the unilateral IHPMSLM following the optimization is increased
by 18.75%, the peak-to-peak thrust fluctuation is decreased by 30.27%, and the error
is small compared with the finite element results. The decrease of 30.27% and the
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error with the finite element results are small, which verifies the reasonableness of the
optimization method, and the optimization results can be used as a reference for the
optimal design of IHPMSLM.
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