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Abstract: Photovoltaic power forecasting is an important problem for renewable energy integration
in the grid. The purpose of this review is to analyze current methods to predict photovoltaic
power or solar irradiance, with the aim of summarizing them, identifying gaps and trends, and
providing an overview of what has been achieved in recent years. A search on Web of Science
was performed, obtaining 60 articles published from 2020 onwards. These articles were analyzed,
gathering information about the forecasting methods used, the horizon, time step, and parameters.
The most used forecasting methods are machine learning and deep learning based, especially artificial
neural networks. Most of the articles make predictions for one hour or less ahead and predict power
instead of irradiance, although both parameters are strongly correlated, and output power depends
on received irradiance. Finally, they use weather variables as inputs, consisting mainly of irradiance,
temperature, wind speed and humidity. Overall, there is a lack of hardware implementations for
real-time predictions, being an important line of development in future decades with the use of
embedded prediction systems at the photovoltaic installations.

Keywords: forecast; photovoltaic energy; machine learning; deep learning; prediction; forecasting;
real time; artificial neural network

1. Introduction

In recent years, there has been an increasing interest in renewable energy development
as a response to global warming and environmental problems [1]. In this context, solar
photovoltaic installations and their growth are of great importance. The use of photovoltaic
(PV) systems on city rooftops can help to increase self-sufficiency, and they are safe and
do not produce noise or other disruptions [2]. However, because of the need to balance
electricity generation with demand in real time, accurate forecasting of PV production is
required for better integration of this resource in the grid [3]. Real-time predictions are
required in different fields (e.g., energy, health, and finances) to process information as
data are received continuously. This helps in taking action and making decisions with
information that is constantly updated.

However, the dependance of PV generation on environmental conditions makes
prediction a challenging problem [4]. The amount of energy generated depends especially
on irradiation on the panel, which depends on the hour, season, and climatic conditions
(cloud coverage and precipitations). Therefore, in recent decades, different methods and
approaches have been proposed, from traditional statistical and physics-based models to
machine learning and deep learning models.

Physical models are methods that use meteorological data as input in equations to calculate
the solar irradiation and output power [5]. For example, numerical weather prediction (NWP) [6]
is used to forecast the weather by using numerical methods that simulate the atmosphere’s
behavior. NWP uses mathematical equations that describe the physical processes occurring in
the atmosphere, such as thermodynamics, fluid mechanics, and heat transfer. These models
incorporate data from various sources, such as weather stations and satellites, to provide initial
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conditions for the computation. Typically, NWP output is used to feed other analytical models
which calculate irradiation or PV power on the panels [7]. Other physical models use sky images
to predict the movement of the clouds [8].

Statistical models make predictions based on previous values of the time series [7]. Auto-
Regressive Integrated Moving Average (ARIMA) model time series [9] are a combination of
autoregression (AR), differencing (I), and moving average (MA) terms. Autoregression predicts
values depending on previous values; moving average makes predictions based on previous
errors; and differencing removes the trend and seasonality to make the model stationary. The
model used can be a combination of only some of the terms, like ARMA models [10]. Although
these models provide forecasting information, their use is limited due to the lack of capacity to
model complex nonlinear behaviors. Persistence model considers that the predicted value will
not change with respect to the previous value in the series [11]. ARIMA and persistence models
are typically used as a benchmark reference for the models proposed in the studies, consisting
mainly of machine learning techniques [7]. However, other mathematical approaches can be
used for PV forecasting as well [12].

Machine learning (ML) is a field in Computer Science that uses big sets of data to model
complex functions or relationships [13]. In recent years, it has increased its application in many
fields thanks to the developments in computational capacity and data processing. There are
several techniques depending on the problem to solve. They can be divided into Supervised
Learning, Unsupervised Learning and Reinforcement Learning [13]. In Supervised Learning,
the models are fed with labelled data to find the relationships between features. Some typical
algorithms are linear and polynomial regression [14], logistic regression [13], support vector
machine [3], decision trees [3] or random forest [15]. These algorithms can be used for different
tasks depending on the complexity of the problem. While linear or polynomial regression are
well fit for simple mathematical functions, other tools such as random forests or support vector
machines can model very much more complex problems where the relevant physics are not
well understood or imply nonlinear mathematical equations.

Deep learning (DL) [16] is a branch of the machine learning field that makes use of
artificial neural networks (ANN) [17] to model complex, nonlinear behaviors in different fields.
Inspired by the functionality and structure of the human brain, these models are composed
of computational units called neurons that are interconnected in multiple layers. Each neuron
receives inputs from other neurons, computes a weighted sum and applies an activation function
to produce an output that is transmitted to the next neurons.

There are several architectures, depending on the connections, types of neurons and
activation functions. Feedforward ANN are the most basic, consisting of an input layer, one
or more hidden layers, and an output layer. The information goes from the input layer to the
output, with the hidden layers processing the relationships in the data. In recurrent neural
networks (RNN) [18] the output of the neurons is connected to their own input and the input
of the neurons of the same or previous layers. This feedback gives the network the ability to
handle complex relationships between past and future observations. There are other types of
architectures, like convolutional neural networks (CNN), encoder-decoders, or transformers,
that can be used for different goals.

Additionally, ensemble models [19] combine several individual models in a way that the
prediction of all models is processed to increase the total accuracy of the ensemble. The models
that conform the ensemble can be different and even from different fields, like a neural network
and an ARIMA series; or they can be the same, like bagging and boosting methods. Random
forest can be considered an ensemble method, as it aggregates several decision trees to perform
inference. Nevertheless, it is typically considered a traditional ML algorithm and is broadly
used in the literature.

Finally, hybrid models [7] combine physical models with machine learning or deep learning
methods, with the aim of combining the best features of both fields.

The purpose of this review is to analyze the recent trends in photovoltaic prediction
systems, identifying gaps and providing a critical overview on what has already been
achieved and which are the important aspects to be covered in future decades. A specific
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focus is provided on real-time prediction, with the aim of approaching real installations for
democratization of the technology.

2. Materials and Methods
2.1. Data Sources

A search was performed on the Web of Science website [20]. This website provided
access to the following databases: the Web of Science Core Collection, the BIOSIS Citation
Index, BIOSIS Previews, Current Contents Connect, the Derwent Innovations Index, the
KCI-Korean Journal Database, MEDLINE, the Russian Science Citation Index and the
SciELO Citation Index. The search was performed using the topic searching field. The
following terms were used: prediction OR forecasting AND energy OR photovoltaic OR
solar power OR renewable AND real time. Furthermore, only articles published since 2020
(included) were considered.

2.2. Study Selection

This selection returned 195 publications that were screened, finding that 60 articles
were in scope of this review (see Figure 1). These articles focused on photovoltaic power
or solar irradiance prediction, providing models, and comparing them with already estab-
lished techniques. The rest of the articles focused on other topics like energy management
or load forecasting.
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2.3. Data Analysis

The 60 articles included in this review were analyzed in a specific template developed
for this purpose. In that template, the following information was included: authors, year,
type of method, model, forecast horizon, prediction objective, input parameters, time step,
actual application, and hardware implementation.

3. Results

The main attributes of the articles selected for this review are summarized in Table 1.
Hereafter, a description of the main conclusions related to the field of expertise, time
horizon and time division, models used, and its objectives is provided.
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Table 1. Summary of the articles included in this scoping review. In Field, ML: machine learning, DL: deep learning, ST: statistical, EN: ensemble, PH: physical and
HY: Hybrid. In Horizon and Time Division: h: hour, d: day, w: week, and m: month. In parameters, Ir: irradiance, temp: temperature, w.speed: wind speed, and
w.dir: wind direction. In Metrics, RMSE: root mean squared error, MAE: mean absolute error, and MAPE: mean absolute percentage error.

Article Year Field Model Horizon Prediction Parameters Time Division Metrics

Ahn et al. [18] 2021 DL LSTM 5′–3 h Power Ir, temp, w.speed,
humidity 5′, 30′ nRMSE, nMAE

Aljanad et al. [21] 2021 DL ANN 1 d, 3 d Irradiance Temp, w.speed, w.dir,
humidity, pressure 5 s, 1′ RMSE, MAE, MAPE, MSE

Almaghrabi et al. [22] 2021 DL CNN 1 d Power Power 30′ RMSE, MAE, MRE

Almaghrabi et al. [12] 2022 ST Wavelet transform 24 h Power Power 30′ RMSE, MAE, MRE, RAE,
RRSE, R2

Anand et al. [23] 2020 ST SPES 1 h Power Ir, w.speed 1 h RMSE, MAE

Bozorg et al. [24] 2020 ST Bootstrapping 24 h Power
Ir, temp, pressure,
cloud cover,
precipitation

1 h NPS, AACE

Bozorg et al. [25] 2021 ST Bootstrapping 1 h Power
Ir, temp, pressure,
cloud cover,
precipitation

1 h NPS, AACE

Bozorg et al. [26] 2020 ST Persistence 10′ Power Power 10′ RMSE, MAE,
nMAPE, MdAPE

Cannizzaro et al. [27] 2021 ML, DL, EN CNN, RF, LSTM 15′–24 h Irradiance
Ir, temp, w.speed,
humidity, pressure,
cloud cover

15′ RMSE, MAE, nRMSE, R2

Carriere et al. [28] 2020 ML Analog Ensemble 30′–36 h Power NWP variables,
satellite images 30′ RMSE, CRPS

Cordeiro-Costas et al. [29] 2022 ML, DL RF, XGB, SVR,
ANN, RNN, CNN 1 h Power Ir 1 h nRMSE, nMBE, R2

Dimovski et al. [3] 2020 ST, ML, DL
Persistence,
MLR, SVM, DT,
RF, ANN

1–72 h Power Ir, temp, precipitation,
w.speed 1 h nRMSE, nMAE, nMBE
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Table 1. Cont.

Article Year Field Model Horizon Prediction Parameters Time Division Metrics

Dong et al. [30] 2019 ST
Uncertain basis
functions,
stochastic model

1′–50′ Irradiance,
Power Irradiance, Power 1′, 5′, 50′ nRMSE, MAPE

Duman Altan et al. [31] 2021 ST, DL SARIMA, ANN - Power Ir, temp, w.speed,
angle 1 h MAPE, R2

Farah et al. [10] 2021 ST Fourier series,
ARMA 7′ Power Power 1′ nRMSE, nMAE

Gao et al. [32] 2020 DL CNN, LSTM 1 h Irradiance Irradiance 1′ nRMSE, RMSE, MAE, FS

Ghimire et al. [33] 2022 DL CNN, MLP 1 d Irradiance
Temp, humidity,
precipitation,
vapor pressure

1 d RMSE, MAE, MBE,
rRMSE, MAPE, SS

Goh et al. [34] 2022 DL ANN - Power Ir, temp 30′′ RMSE, MAE, R2

Haupt et al. [35] 2020 HY, EN NWP, ANN, RF 15′–345′ Irradiance NWP 15′ RMSE

Hosseini et al. [36] 2020 DL GRU 15′–3 h Irradiance
Ir, temp, w.speed,
w.dir, humidity, zenith
angle, cloud coverage

1 h RMSE, MAPE

Huertas-Tato et al. [37] 2019 ML, EN
SVM, smart
persistence,
Satellite, NWP

15′–6 h Irradiance Irradiance 15′ RMSE, rRMSE, rMAE,
BIAS

Khortsriwong et al. [38] 2023 DL RNN, CNN,
LSTM, GRU 1 d, 1 w Power Ir, temp, w.speed 5′ RMSE, MAE, MAPE

Kumar et al. [17] 2021 DL ANN, RNN 1 h, 1 d, 1 w Power Ir, temp, w.speed 1 h RMSE, MSE, MAPE, R2

Kumari et al. [39] 2020 EN, DL XGBF-DNN 1 h Irradiance Ir, temp,
w.speed, humidity 1 h RMSE, MBE
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Table 1. Cont.

Article Year Field Model Horizon Prediction Parameters Time Division Metrics

Kumari et al. [40] 2021 DL CNN, LSTM 1 h Irradiance

Temp, w.speed,
humidity, pressure,
cloud cover,
precipitation, zenith
angle, dew point,
cloud type

1 h RMSE, MAE, R

Lauria et al. [41] 2022 ST Caputo derivative 1′–10′ Power Power 1′, 5′, 10′ RMSE, MAE, nMAPE,
rRMSE

Lee et al. [42] 2020 ML, EN Boosting,
bagging, RF 1 h Irradiance

Temp, w.speed,
humidity, cloud cover,
dew point temp

1 h RMSE, MAPE, R2

Leva et al. [43] 2020 DL, ST ANN, persistence,
PHANN (hybrid) 30′–24 h Power Ir, temp, humidity,

w.speed, w.dir, 1′, 1 h nRMSE, NMAE, WMAE,
EMAE, OMAE

Mehazzem et al. [44] 2022 ST STVAR 1′ Irradiance Irradiance 1′ rRMSE, rMAE, rMBE

Mubarak et al. [15] 2022 ML, EN LASSO, RF 1 h Power Ir, temp, w.speed 1 h RMSE, MSE, MAE, R2

Munshi [4] 2022 ST Statistical 30′–120′ Power Ir, temp 10′ RMSE, MAE

Nkounga et al. [45] 2021 DL ANN 30′–6 h Irradiance Ir, temp,
humidity, pressure 10′ nRMSE, RMSE, R

Oprea et al. [46] 2020 DL ANN 30′ Power
Ir, temp, w.speed,
w.dir, humidity, dew
point temp

10′ PELI, PPLI

Pahmi et al. [47] 2021 DL ANN - Power Ir, temp, humidity,
voltage, current - RMSE, R2

Pattanaik et al. [48] 2020 DL ANN 1 m Power Ir, temp 1 m MS, SS

Perera et al. [14] 2022 ML, ST, EN
Persistence,
ARIMA,
SVR, MLR

5′–3 d Power Power 1′, 5′, 1 h, 1 d MASE
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Table 1. Cont.

Article Year Field Model Horizon Prediction Parameters Time Division Metrics

Polimeni et al. [11] 2021 DL, ST Persistence, ANN 30′–24 h Power Power 1′, 1 h nRMSE, NMAE

Puah et al. [49] 2020 DL ANN 1 h Irradiance Irradiance 1′ RMSE, MASE

Rafati et al. [50] 2020 DL MLP 15′ Power Power 15′ RMSE, MAE, MRE

Rai et al. [51] 2022 DL CNN, LSTM,
attention 5′ Power Ir, temp, w.speed,

w.dir, pressure 5′ MSE, MAE

Raj et al. [19] 2023 ML, EN RF, GBM 1′ Power Ir, temp,
w.speed, humidity 1′ nRMSE, RMSE, MAE, R2

Rodríguez-
Benítez et al. [8] 2019 ST, PH, HY Smart persistence,

Satellite, NWP 15′–6 h Irradiance Irradiance 1′ RMSE, rRMSE,
rMAE, BIAS

Rosato et al. [52] 2021 DL CNN, LSTM 3 d, 1 w Power
Temp, w.speed, w.dir,
humidity, pressure,
turbulence

1 h RMSE

Salamanis et al. [7] 2020 PH, ST, ML,
DL, HY

Physical,
persistence,
ARIMA, SVR,
GBT, ANN, LSTM,
hybrid

15′–180′ Power Temp, w.speed,
cloud cover 15′ RMSE, MAE, MAPE,

WRSE

Schreiber et al. [6] 2022 DL Autoencoder,
CNN 24 h Power NWP variables 1 h nRMSE, RMSE

Shboul et al. [53] 2021 DL ANN 1 h Irradiance Angle, cloud cover 1 h MAPE, R

Simeunovic et al. [54] 2021 DL LSTM,
transformer, ANN 6 h Power NWP variables 15′ nRMSE, nMAE

Simeunovic et al. [55] 2022 DL ANN 4–6 h Power Power 15′ nRMSE, nMAE

Solano et al. [56] 2022 ML, EN
SVR, XGBT,
CatBoost,
ensemble

1–3 h Irradiance
Ir, w.speed, dry bulb
temp, pressure,
humidity

1 h RMSE, MAE, MAPE
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Table 1. Cont.

Article Year Field Model Horizon Prediction Parameters Time Division Metrics

Stüber et al. [5] 2021 ML, DL, PH, EN FFNN, LSTM, RF,
physical, ensemble 1 d Power Ir, temp, w.speed 1 h s, mm

Succetti et al. [57] 2020 DL LSTM, CNN 1–3 d Power Ir, Temp, w.speed 1 h MAE

Theocharides et al. [58] 2021 DL, ML Bayesian NN,
SVR, RT 1 d Power Ir, temp, pressure,

NWP 1 h nRMSE, MAPE, RMSE,
nMBE, SS

Theocharides et al. [59] 2020 DL ANN 1 d Power Ir, temp, w.speed,
w.dir, humidity 1 h nRMSE, MAPE, SS

Theocharides et al. [60] 2021 DL, EN Bayesian NN 1–5 h Power Ir, temp, angle 1 h nRMSE, MAPE

Tovar et al. [61] 2020 DL CNN, LSTM 10′–180′ Power Ir, temp, w.speed,
humidity, pressure 10′ RMSE, MAE, MSE

Wai et al. [62] 2022 DL LSTM 4 h Power Ir, temp 1 h nRMSE, nMAE

Walch et al. [63] 2020 ML, PH, EN RF, ELM-E,
physical 1 h Power Ir, temp, albedo 1 h MSE

Wang et al. [64] 2020 DL ANN (DXNN) 1′–90′ Irradiance
Ir, temp, w.speed,
w.dir, humidity,
sun altitude

1′–90′ MAE, RMSE, R2

Zang et al. [65] 2020 DL CNN, LSTM 1 h Irradiance

Temp, w.speed, w.dir,
humidity,
precipitation, zenith
angle, dew point temp

1 h nRMSE, RMSE, nMAE,
MAE, R

Zjavka [66] 2023 DL Differential NN 24 h Irradiance Ir, w.speed 30′ RMSE
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3.1. Forecasting Horizon

It is the time length for which the power is predicted. There is a large variability in the
chosen horizon between articles (see Figure 2a). A total of 9 articles consider short horizons,
from one minute up to one hour, while 19 articles present horizons between 1 and 6 h.
Nine studies make predictions for the day ahead, and there are three studies that consider
longer horizons up to one week, and one study considers one month [48]. In this article,
the monthly production is taken to forecast the next month power in one step. A total of
17 studies present several horizons, ranging from one minute to one week. Finally, there are
three articles that do not state what horizon was considered. Considering all the horizons
presented, the two most frequently chosen options are one hour and one day ahead.
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3.2. Field and Models

Taking into consideration the forecasting method, 40 out of 60 articles provide deep
learning models, while 15 include some traditional machine learning algorithm (see
Figure 2b). A total of 18 articles developed some statistical model, like ARIMA or persis-
tence, while 4 developed a physical model, like Sky Image or NWP. Finally, 12 studies
present some type of ensemble method, and 5 papers develop a hybrid model. Most
articles develop more than one model to compare between them and consider other well-
established techniques as a benchmark reference. Regarding the deep learning models,
18 articles use RNN, mainly consisting of LSTM networks. Nevertheless, other types of
recurrent networks are also used, like GRU, bidirectional LSTM or traditional RNN. A
total of 11 studies present some type of CNN and 17 focus on feed forward ANN like
the Multi-Layer Perceptron (MLP). Nine articles consider more specific architectures like
the transformer or autoencoder. Out of all the deep learning models, RNNs make 32%,
being the preferred architecture for this task. Additionally, some of the articles use different
types of layers, mixing CNN and RNN in a single model [33]. With respect to machine
learning algorithms, eight studies use random forest and six support vector machines,
being the two most frequently used options in this field. The remaining papers consider
decision trees, linear regression with regularization techniques like LASSO, or more specific
algorithms [28]. The hybrid models present a physical method whose outputs feed a DL
or ML algorithm. The ensemble models consist of several algorithms gathered through
some boosting or bagging method, like gradient boosting machine [19]. With respect to the
statistical approaches, four studies present some variation of ARIMA methods, six present a
persistence-based model, while nine develop a different mathematical approach. These nine
articles propose methods based on wavelet transform, Fourier series, and bootstrapping,
among others.

3.3. Prediction Objective

A total of 40 studies predict PV power generation, while 19 forecast the solar irradiance
as a previous step to calculate the power (see Figure 2c). One study forecast both power
and irradiance. This shows that only 33% of the articles develop a predictive method for
irradiation, with PV power having more prominence in the research. These results show
that the produced power is more relevant for photovoltaic integration in the grid and
actual installations.

3.4. Input Parameters

With respect to the parameters used as input, they consist of weather variables that
are obtained from meteorological stations at the place of the PV installation or from me-
teorological agencies (see Figure 2d). Some of the articles include weather forecasts or
use another predictive system like NWP to calculate the inputs. The number of features
considered depends on the article. All the articles analyzed take into account the time
series of the predicted parameter (power or irradiance), except for the physical approaches
that only consider weather data. Most of the studies also include temperature, irradiance,
humidity and wind speed. A total of 26 articles include more features like cloud coverage,
wind direction, precipitation, pressure, or dew point temperature. Finally, nine studies
only use the power past series to forecast the next values, while four studies use only the
past irradiance to predict future values. All the data-driven models require the prediction
objective series (power or irradiance) to train the algorithm, using more features to capture
the dynamics of the system with more accuracy. Only five papers use NWP variables but
do not state what parameters are used to feed the forecasting model.

Considering the dataset size used for training and evaluation of the data-driven
models, there is a large variation between articles. The smallest dataset size is one month,
chosen by 3 articles, while one study takes 55 years of historical data. A total of 12 studies
selected datasets smaller than a year. Nine articles took 1 year of data, and eight considered
2 years. Additionally, 16 articles used bigger datasets, consisting of several years of data.
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These datasets range from 3 to 55 years, although most of them consist of 3 to 7 years, with
only 4 studies using more than 10 years of data. Finally, there are 14 studies that do not
state the size of the dataset. Apart from the time length, the size of the dataset depends on
the length of the time steps considered.

3.5. Purpose of the System

A total of 28 articles develop a model for a specific installation, while the rest make
models for general PV forecasting purposes. All the studies that focus on actual installations
use the data from the installation and local weather measures. The 16 studies that develop
models for general forecasting use data from actual installations as well. While the goal of
developing a model is its general applicability, using data from a specific plant is needed to
validate the results or train a machine learning or deep learning algorithm.

3.6. Time Discretization

Regarding the temporal division of the data collection and output forecast, 24 of the
60 studies consider 1 h; 26 articles use smaller intervals, mostly between 1 and 30 min,
while 2 studies have longer time steps of 1 day and 1 month (see Figure 2e). Finally, seven
papers consider a variable time division, depending on the horizon which varies as well.
Only 1 article does not state the temporal step.

Most of the articles obtain the data with a small temporal resolution, between several
seconds and 10 min. However, due to the longer horizons considered, averaging measures
for longer periods is recommendable to decrease the computational cost of the models. The
time resolution is chosen according to the horizon, as using small intervals for very long
horizons is not practical due to the cost, while the forecasting horizon cannot be shorter
than the temporal steps, as the limit is the prediction of one step ahead. The articles that
change both horizon and resolution take longer steps as the horizon is extended.

3.7. Hardware

Only 19 articles out of 60 specified the hardware used in the research. A total of
14 of those articles used a personal computer, while 1 system was developed using a cloud
service. Only four studies presented a hardware-based model for real-time predictions at
the PV installation place. However, due to the focus on the development of the predictive
models, the hardware implementation is not extensively explained. Although most of
the studies do not specify any hardware used for the development and utilization of the
forecasts, all of them seem to use a computer for the whole research process.

Another parameter to evaluate the accuracy of the models is the computational time
required to train and evaluate them. This time depends heavily on the hardware used,
which varies from one study to another. For this reason and considering that the compu-
tational time is not stated in most of the articles analyzed, it has not been considered as a
relevant measure.

3.8. Accuracy

There are several metrics that are used to evaluate the accuracy of the models. The
ones most broadly used are root mean squared error (RMSE), mean absolute error (MAE),
and mean absolute percentage error (MAPE). However, the different metrics cannot be
used for comparison as they calculate errors differently; and some metrics, like RMSE,
are sensitive to the data used, which differs from one article to other. To avoid this, some
studies present normalized metrics, such as nRMSE or nMAE. This lack of standardization
limits the quantitative evaluation of the performance of all the models. Nevertheless,
some articles using the same metric can be compared, and the set of models presented by
individual articles can be compared and analyzed to understand what works best for a
particular task.
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4. Discussion

The advance in ML and DL in recent years has made PV prediction methods more
broadly used. Different types of artificial neural networks are the more recent and frequent
methods. Most of the articles present some machine learning or deep learning algorithm,
along with traditional models (such as persistence or ARIMA) generally used for compar-
ison [28]. Hybrid and ensemble methods, usually including a machine learning model,
are proposed for an improvement in accuracy. The results show that combining several
models and data provides the best results, although it increases the computational cost of
the model. Other machine learning algorithms are very spread too, like support vector ma-
chines and random forests, while several articles use only traditional methods like ARIMA
or physical models.

The increasing use of neural networks has provided a large number of possible archi-
tectures and configurations. This can be seen in all articles presented in this manuscript, as
most of the studies applying deep learning models try different configurations in order to
find the one that captures the physical behavior better. However, RNNs and specifically
LSTM networks [18,27,38,51,52,54,57,61,62] are the ones used most often. These types of
networks are usually applied to time series forecasting due to their ability to capture tem-
poral dependencies thanks to their recurrent nature. Articles comparing RNNs with other
types of ANNs show that the RNNs can get more accuracy when predicting. CNNs are very
common for PV prediction as well, especially in combination with other types of networks
like RNNs or feed-forward networks (FFNN). In [38] the authors tried different types of
recurrent networks, including RNN, LSTM, GRU, and combinations with convolutional
layers. The results showed that using bidirectional LSTM and GRU cells, and CNN layers,
yielded the best results. Nevertheless, the best model changed depending on the weather
conditions and forecasting horizon. This implies that some architectures offer advantages
for this task, and GRU and LSTM networks may capture temporal patterns better. However,
the large number of studies using different network architectures shows that good results
can be achieved with any type of network if the data and hyperparameters are well tuned,
and some articles use specific architectures designed for the research. In [18] the authors
compare different configurations of RNN, changing the number of layers and time steps;
and in [27] they compare different CNN. This shows the need to continue researching in
order to find the network that performs the task best.

The machine learning algorithms most frequently used are support vector machines
and random forests. These methods are very common in many applications due to their
ability to generalize and model nonlinear functions, and they are well established in the
field of machine learning. Other papers [3,14,15] propose some type of linear regression
model or decision trees or develop a different algorithm [28]. The results show that there
are not big differences with respect to the models used.

Regarding the results, hybrid or ensemble methods seem to be the best in terms
of accuracy. The drawback of these models is the bigger computational cost. If the PV
installation includes embedded hardware with the forecasting method, the size of the
model is limited by the hardware.

Considering the rapid developments in the field of machine learning and deep learn-
ing, the trends in PV forecasting have been analyzed. However, as this review only
considers three and a half years, a change in accuracy, data, or models has not been ob-
served in recent years. This could be due to the limitations imposed by the physics of the
problem (accurate weather predictions), and the relatively short time span of this review.

Due to the chaotic nature of the weather [4], and the dependency of PV generation
on the environment, long-term forecasting cannot be done with accuracy [38]. This makes
predictions for the day ahead the habitual option for grid management applications. The
forecast range from a few hours to one day is used to adapt the load to the demand,
which helps to improve PV penetration [3]. Long-term forecasting can be used for trend
analysis and planning. The articles that try different horizons show that increasing the
horizon implies a fast decrease in prediction accuracy [27]. In general, horizons of a few



Energies 2023, 16, 5693 13 of 17

hours produce good results and can be used by grid operators to manage the energy
production [3].

The parameters used as input for the prediction vary with the type of model and data
origin, but most of the articles use weather variables consisting of temperature, relative
humidity, wind speed and direction and solar irradiation. The production of the panel is
correlated with the irradiation it receives, so it is the most used feature. Temperature also
has influence in the energy generation, and wind speed, direction, and relative humidity
are used to predict the atmospheric behavior to improve the accuracy. While some studies
include more variables, like pressure, precipitation, cloud coverage or dew point temper-
ature, it does not have a big impact on the results [46]. These parameters are taken from
several sources. Some articles take information from sensors close to the installation for
which the predictions are made, while others use weather agencies forecasted values or use
the prediction of a physical model like NWP. Additionally, some studies use meteorological
data from open databases. With respect to the dataset size, it does not seem to have a
strong effect on the predictions, and some articles choose online learning when datasets
are small. Models developed with smaller datasets get results as good as articles using
6 or 7 years of data.

Although the most relevant information is the generated power, solar irradiation is
strongly correlated with it. For this reason and considering that irradiation is more directly
dependent on physical variables, it is chosen in some studies [27,30,33,44,45,53,56,66] as
the prediction objective. However, most of the articles analyzed forecast PV power. Due to
the data-driven nature of machine learning algorithms, forecasting power avoids the need
of further modelling and correlating with irradiance.

With respect to the hardware used, all studies seem to have been developed and
used on personal computers or stations, with only four articles taking into account the
production of the model on an embedded system at the PV installation location. For
an extensive use of the forecasts this could be further investigated in the future. It
would allow the system to have more autonomy and make predictions without relying on
external computers.

Taking into consideration the accuracy metrics, the lack of a standard measure that
can be used independently of the data and results makes quantitative analysis a difficult
task. The use of the same metrics for all articles within the field could help improve the
research, allowing to understand the results better.

The most used metric by the articles (28 out of 60) is the RMSE, which is proportional
to the data used and has the same units (W/m2 for irradiance and W for power). This
makes RMSE not suitable for comparison between articles using different datasets. Other
metrics like MAE, used by 23 studies, have the same problem. A total of 18 articles use
normalized RMSE, and 11 consider MAPE, both of which give percentual errors. These
metrics can be used to compare results of different articles, but there is another issue that
prevents an accurate quantitative analysis. The articles that provide metrics for different
conditions show that there are parameters that influence the accuracy of the forecasts more
than the election of a model. The horizon is the most important feature, which varies
significantly throughout the articles. The data used to train and test the models also have a
strong relevance. On [38], the most accurate model differs depending on the weather. The
climatic characteristics of the place strongly influence the forecasts, as some locations have
more unpredictable conditions than others. All these variables imply that to get a good
quantitative analysis of which models perform better, a standardized testbench should be
designed, making use of the same dataset, time horizons, and evaluation metrics.

The influence of the horizon on accuracy can be observed in the articles that consider
different horizons. On [60], the nRMSE increases from 3.49% at forecasting 1 h ahead to
7.92% at 5 h ahead. On [11], an increase on nRMSE can be observed as well between the
different horizons: 30 min (3%), 3 h (16%), and one day (17%). This shows that accuracy
is high for very short-term predictions (a few minutes ahead), but it drops quickly with
longer time lengths. On [45], the nRMSE increases from a 21% at the horizon of 30 min to a
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33% at 6 h. On [43], the accuracy drops from 2.6% nRMSE predicting one hour ahead to
11.7% predicting 24 h ahead.

Regarding the input variables, on [36] the results show an increase in accuracy when
more weather variables were included, from 17% MAPE to 10%. On [7] the results show an
important drop in accuracy due to the presence of clouds. They also show big differences
between seasons, having the best forecasts for spring. On the developed LSTM model, the
MAPE decreases from 3% for sunny days in spring to 22% for cloudy days. The drop in
accuracy due to the increase in the horizon is more important for cloudy days than for
sunny days. This happens because predicting the presence and movement of clouds is
harder with longer time spans, while sunny days lead to more stable energy generation.
This study also shows that there is not a model that clearly outperforms the rest. Comparing
several deep learning, machine learning, statistical and hybrid models, the results show
that some models perform better for some season, horizon, or type of day. This illustrates
that ensemble models perform better because some algorithms perform slightly better in
some conditions, and the inclusion of several decisions can give better predictions than
those of an individual model.

5. Conclusions

This review shows that the field of deep learning is the most frequently used for PV
forecasting in recent years. There is a great variety of methods that can be applied to
this task, and the results depend on several variables. Different algorithms, like random
forests or ANN architectures, can give comparably good results. While ensemble methods
give better results, they can be computationally expensive, and hybrid methods depend
on inputs from external models like clear sky radiation model or numerical weather
prediction. Traditional statistical methods are still broadly used for PV prediction, with
new developments like the inclusion of Fourier series [10] or Wavelet transform [12], while
physical approaches are not typical, due to the complexity of the atmospheric behavior.
This shows that there is not an algorithm that outperforms the rest and to develop a good
prediction model the combination of a method, input features and data selection is required.
On the other hand, there is not a broad hardware implementation of these predictive
systems, although many of them consider real-time forecasting. To conclude, the best
option in terms of accuracy is the use of an ensemble method, with several base models to
contribute to an averaged prediction. The use of different models as base learners can also
help improve the robustness of the ensemble.

Further work should focus on data and features selection, and the effect on different
configurations and models. Another field for future research is the embedding of these
techniques on hardware for autonomous predictions and more integration of PV power in
the grid. Finally, implementing the same metrics, and considering normalized measures,
could improve the analysis of results with different studies. Further, validating results
on the same data, considering standard horizons or including similar inputs could help
compare different articles’ models.
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