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Abstract: During the coal-fired circulating fluidized bed unit participation in the peak regulation
process of the power grid, the thermal automatic control system assists the operator to adjust
the mode focusing on pollutant control and ignoring the economy so that the unit’s operating
performance maintains a huge potential for deep mining. The high-dimensional and coupling-related
data characteristics of circulating fluidized bed boilers put forward more refined and demanding
requirements for combustion optimization analysis and open-loop guidance operation. Therefore, this
paper proposes a combustion optimization method that incorporates neighborhood rough set machine
learning. This method first reduces the control parameters affecting multi-objective combustion
optimization with the neighborhood rough set algorithm that fully considers the correlation of each
variable combination and then establishes a multi-objective combustion optimization prediction
model by combining the online calculation of boiler thermal efficiency. Finally, the NSGAII algorithm
realizes the optimization of the control parameter setting value of the boiler combustion system. The
results show that this method reduces the number of control commands involved in combustion
optimization adjustment from 26 to 11. At the same time, based on the optimization results obtained
by using traditional combustion optimization methods under high, medium, and medium-low load
conditions, the boiler thermal efficiency increased by 0.07%, decreased by 0.02%, and increased
by 0.55%, respectively, and the nitrogen oxide emission concentration decreased by 5.02 mg/Nm3,
7.77 mg/Nm3, and 7.03 mg/Nm3, respectively. The implementation of this method can help better
account for the economy and pollutant discharge of the boiler combustion system during the variable
working conditions, guide the operators to adjust the combustion more accurately, and effectively
reduce the ineffective energy consumption in the adjustment process. The proposal and application
of this method laid the foundation for the construction of smart power plants.

Keywords: machine learning; neighborhood rough sets; circulating fluidized bed boiler; combustion
key control parameters optimization

1. Introduction

In response to the world energy crisis, China has put forward the major strategic
decision of “carbon peaking and carbon neutrality” and plans to build a new type of power
system with new energy as the main body through the vigorous development of new
energy [1,2]. However, the intermittent and unstable characteristics of new energy make
it a constant threat to the safety and stability of the power system. In order to ensure
the safety and stability of the power grid and fully absorb new energy, coal power units,
including CFB boiler units, must actively participate in deep peak shaving of the power
grid. During the peak-shaving process, the thermal efficiency and pollutant gas emission
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of the CFB boiler will show huge differences compared with the design value. To maintain
the high-efficiency operation of the unit and reduce pollutant emissions, power plant oper-
ators are required to make timely combustion adjustments according to the combustion
conditions. Compared with automatic control, different operators have different cognitions
on combustion adjustment, which makes their combustion adjustment operation strongly
independent and not scalable. For this purpose, a combustion optimization method with
general guidelines needs to be established. In the case of constant coal combustion char-
acteristics, the main key parameters affecting the combustion of circulating fluidized bed
boilers include coal volume, primary air volume, secondary air volume, air distribution
mode, slag discharge volume, and material return volume. Obviously, the mechanism
modeling of a circulating fluidized bed boiler combustion system, which is a nonlinear,
large-lag, large-inertia, and strongly coupled thermodynamic system, which is very com-
plicated and cumbersome. Moreover, the simulation results of the mechanism model are
usually poor in practicability and are more suitable for trend characterization rather than
control guidance. Therefore, inspired by artificial intelligence technology in recent years, it
is proposed to study the combustion optimization of units from this perspective. Under
the background of continuous development and improvement of DCS (Distributed Control
System) and SIS (Supervisory Information System) systems in thermal power plants, a large
amount of stored historical data provides a good foundation for in-depth data mining [3].
Combined with artificial intelligence technology, these huge data are deeply excavated and
reused, to enhance the value of data and strengthen the construction of smart power plants.

The traditional data-based combustion optimization model uses a large number of
operating variables, state variables, and target variables of the unit to complete the op-
timization task under historical conditions by establishing different optimization target
strategies. With the development of artificial intelligence technology, a lot of work has been
done on the application of artificial intelligence algorithms to the combustion optimization
of units [4–17]. Xu et al. [18] established the combustion optimization model of the super-
critical pulverized coal boiler unit with a short-term memory neural network based on
improved particle swarm optimization. Taking boiler thermal efficiency and nitrogen oxide
emission as optimization objectives, the optimized operation parameters were obtained
through the improved multi-objective particle swarm optimization algorithm. Ma et al. [19]
built a comprehensive model for boiler thermal efficiency and NOx/SO2 emissions using
an extreme learning machine. After that, a kind of multi-objective modified teaching–
learning-based optimization method was proposed to optimize the boiler combustion
process parameters. Through this method, several sets of combustion parameters that
increase boiler thermal efficiency and reduce pollutant gas emissions were found. Rahat
et al. [20] first used the Gaussian process model to establish models for nitrogen oxide emis-
sion and unburned coal content. A novel evolutionary multi-objective search algorithm
was utilized to discover the probabilistic trade-off front between NOx and UBC. Based on
the search results, the ideal combustion operation parameters were ultimately obtained.
Aparna Sinha et al. [21] proposed a data-driven predictive maintenance method. In this
method, the Pearson coefficient was used for feature extraction to reduce the computational
burden. Feng Hong et al. [22] proposed a novel performance evaluation framework, which
conducted deep feature extraction by DBN and predicted performance state by LSSVM.
It has been proven to have high efficiency and accuracy. Zhi Wang et al. [23] set up a
lightweight convolutional neural network to predict NOx emissions. To avoid the curse
of dimensionality, the random forest algorithm was utilized to select the model candidate
variables. Shi Y et al. [24], taking a 600 MW ultra-supercritical coal-fired power plant as the
research object, modeled the operation and emission characteristics of the boiler by combin-
ing CFD (Computational Fluid Dynamics) simulation with an artificial neural network. The
gas distribution scheme of the boiler was optimized by a genetic algorithm. Thus, the boiler
can achieve higher combustion thermal efficiency under certain NOx emission constraints.
Haoyang Yu et al. [25] established a model of SO2-NOx emission concentration, bed temper-
ature, and oxygen content based on a convolutional neural network with the bidirectional
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long short-term memory attention mechanism and used an improved quantum genetic
algorithm to find the optimal input variables of the SO2-NOx emission model. The results
indicate that it simulated the trends of actual operation data more accurately than other
models. Tuo Ye et al. [26] proposed a novel multi-objective prediction framework based on
feature fusion to provide the basis for the online combustion optimization of coal-fired boil-
ers. Under this framework, an XGBoost model was generated, and a Bayesian optimization
algorithm was used to optimize model parameters. The fused physical field information
was obtained through CFD. The modeling results demonstrated that the prediction accu-
racy of thermal efficiency from the model with the fusion information was higher than
from the model using the operational data. Xinying Xu et al. [27] established a combustion
system model using an improved distributed extreme learning machine. The weighted
coefficient method was used to solve the multi-objective optimization problem. The results
show that the method can optimize the boiler combustion efficiency and NOx emissions
by combining different weight coefficients as needed. Xiaobin Hu et al. [28] successfully
constructed a sophisticated and stable deep hybrid neural network model to predict boiler
performance. Built model performance is superior to that of the classical model.

In the process of combustion optimization, considering the great influence of data
model input on the complexity and real-time performance of the model, the correlation
coefficient method and mutual information method are usually used to reduce it [21,29–35].

It is worth noting that the previous multi-objective combustion optimization research
mainly focused on the pulverized coal boiler unit, including optimizing the state variables
or operating variables of the unit. However, the optimization of the control parameter
setting the value of the combustion system of the circulating fluidized bed unit is seldom
carried out. In addition, in the feature selection of modeling, the existing literature focuses
on the correlation between each variable and the target variable and does not take into
account the influence of the combination of feature variables on the target variable. There-
fore, this paper proposes an optimization method for key control parameters of circulating
fluidized bed boiler combustion based on neighborhood rough set machine learning. In
this method, the input parameters of the model are first reduced using the neighborhood
rough set algorithm. Then, based on the reduced parameter set, a multi-objective model of
the circulating fluidized bed unit under different load conditions is established. Finally,
the NSGA-II algorithm is used to optimize the set value of each control parameter in the
combustion process. This method provides an important guiding basis for the open-loop
control optimization of the peak-shaving process of the circulating fluidized bed boiler
combustion system. The logical block diagram of this paper is shown in Figure 1.
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2. Methods

In order to realize the overall coordinated optimization control of multiple control
loops of circulating fluidized bed boilers, the neighborhood rough set attribute reduction
algorithm is used to reduce the input variables of the model, and then the BP neural
network is used to establish a multi-objective combustion optimization model. Finally, the
NSGA-II algorithm completes the multi-objective optimization control strategy solution.

The flow chart of the machine learning-based optimization method for key combustion
control parameters of circulating fluidized bed boilers during peak shaving is shown in
Figure 2.
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2.1. Based on Neighborhood Rough Set Attribute Reduction Algorithm

It is known that there are many variables in the circulating fluidized bed combustion
system, and there are complex coupling relationships among the variables. The feature
selection method based on the correlation between each variable and the target variable
ignores the coupling relationship between variables, which will increase the computational
complexity of the model. To this end, the neighborhood rough set algorithm is used to
analyze the correlation between the main key control parameters that affect the combustion
of circulating fluidized bed boilers, and the attribute set that considers the correlation
between multiple variables is obtained by reduction. Considering that the data collected in
this paper are numerical, the neighborhood rough set model is selected to process the data,
which avoids the loss of data information caused by discretization in the process of using
the traditional rough set algorithm.

Neighborhood rough set uses neighborhood relationships to divide the domain of
discourse [36]. The specific mathematical relationship is defined as follows. Assume that an
information system is expressed as IS = (U, A, V, f ), where, U is the domain of discourse
of the system, which represents a finite set of samples; A is the attribute set of the system,
A = C∪D and C∩D = ∅, C and D represent the condition attribute and decision attribute,
respectively; V is the value range; f : U × A→ V is a function that represents the mapping
relationship between samples and attribute values. For any xi ∈ U, define its neighborhood
as [37]:

δ(x) = {y|∆(x, y) ≤ δ, y ∈ U } (1)
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In the formula, δ is the neighborhood radius. ∆(•) distances are calculated using the
Euclidean method.

∆(xi, xj) = (
N

∑
k=1

( f (xi, ak)− f (xj, ak))
2)

1
2

(2)

According to the neighborhood relationship, the upper and lower approximate rela-
tionships are defined, and the specific expressions are as follows.

NX = {xi|δ(xi) ∩ X 6= ∅, xi ∈ U} (3)

NX = {xi|δ(xi) ⊆ X, xi ∈ U} (4)

In addition, the positive domain and negative domain relations are defined in the
neighborhood rough set.

Pos(X) = NX (5)

Neg(X) = U − NX (6)

The attribute reduction process based on the neighborhood rough set algorithm is
realized by judging the necessity of the attribute in the decision-making system, and the
attribute importance needs to be calculated in a specific implementation way. Assume
B ⊆ C, a ⊆ B, if satisfies γB(D) 6= γB−{a}(D), it indicates that the attribute a in the set B is
necessary for the decision attribute D. If any attribute a in the set B has such a relationship,
then the set B is independent of D. Among them, γB(D) is the attribute dependence degree,
which can be calculated by the following Formula (7):

γB(D) =
|PosB(D)|
|U| (7)

When B ⊆ C, a ∈ C− B, then the attribute importance of a relative to B and D is:

SIG(a, B, D) = γB(D)− γB−(a)(D) (8)

To sum up, the result of attribute reduction is obtained by the forward greedy method.
The specific process of the algorithm is shown in Algorithm 1.

Algorithm 1. Neighborhood Rough Set Attribute Reduction Algorithm.

Input: A complete collection of information table
Step 1 Normalize the information table entered;
Step 2 Calculate the neighborhood radius for each conditional attribute δ;
Step 3 Calculate the positive domain of the entire attribute relative to the decision attribute
PosC(D), let RED be φ;
Step 4 Take any one a ∈ (C− RED) and calculate the importance of each attribute separately,
namely Si = Sig(a, C− RED, D);
Step 5 Select the attribute with the greatest importance of the reduction attribute, then there is
Sig(a, C− RED, D) = maxi(Si);
Step 6 Compare the size of Sig(a, C− RED, D) and sigctrl, if Sig(a, B, D) > sigctrl,
Then RED = RED∪ a , return to Step 4;
Output: A reduced collection of the information table

2.2. Based on BP Neural Network Combustion Optimization Model

Due to the complexity of the thermal system of a circulating fluidized bed boiler, it is
very difficult to establish an accurate mechanism model, and in the real-time performance
of the mechanism model, it is difficult to meet the needs of online optimization. Therefore,
the BP neural network is used to establish a multi-input and multi-output model that takes
the neighborhood rough set attribute reduction set as the model input, and takes the boiler
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thermal efficiency and nitrogen oxide emission concentration as the model output. In the
actual production process, it is difficult to directly measure the thermal efficiency of the
boiler, and the inverse balance method is generally used to calculate the value [38].

η = 100− (q2 + q3 + q4 + q5 + q6 + q7) (9)

In this paper, in order to realize the online calculation of boiler thermal efficiency,
the online calculation model of industrial analysis composition to elemental analysis
composition, the online calculation model of desulfurization efficiency and the online
calculation model of ash and slag share are respectively programmed.

The online calculation process of boiler thermal efficiency is shown in Figure 3.
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In this paper, a three-layer feed-forward neural network with a hidden layer as the
tansig function, an output layer as the purelin function, and error backpropagation is used
to construct the model. The dynamic characteristics of the model can be expressed as:

y(n) = f [y(n− 1), · · · y(n− ny),
u(n− 1), · · · u(n− nu)]

(10)

In the formula, n represents the nth moment of the system output, ny represents the
past ny time of the output value, and nu represents the past nu time of the control value.

In the BP neural network model, the learning rate is an important hyperparameter.
If the learning rate is too small, the network convergence speed is slow and it is easy
to fall into local optimum. Conversely, if the learning rate is too large, the network will
not converge. Therefore, this paper adopts the method of repeated adjustment to finally
determine the parameter in the model.

2.3. Based on NSGA-II Algorithm Multi-Objective Optimization Solution

Combustion optimization of circulating fluidized bed boilers is used to make the
boiler operating state optimal by changing the operating parameter instructions that affect
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the boiler combustion optimization goals in the safe and stable operating conditions of
the boiler.

In this paper, the goal of combustion optimization is to improve the thermal efficiency
of the boiler and reduce the emission concentration of nitrogen oxides. The objective
function is shown in Formula (11):

J =
(

max fgl , min fnox

)
(11)

In Formula (11), fgl indicates boiler thermal efficiency. fnox indicates the concentration
of nitrogen oxide emissions.

Through theoretical analysis, when the thermal efficiency of the boiler is improved,
the combustion in the furnace is more complete, and the generation of nitrogen oxide
gas will increase. Therefore, the two optimization objectives of improving boiler thermal
efficiency and reducing the concentration of nitrogen oxide gas emissions are contradictory,
and it is difficult to obtain the optimal solution. Multi-objective compromise optimization
is required to obtain a compromise solution.

In this paper, the NSGA-II algorithm is used to solve the proposed multi-objective
optimization problem. NSGA-II is a genetic improvement algorithm proposed by Professor
Deb [39]. Its core idea is a fast non-dominated multi-objective optimization algorithm
with an elite retention strategy. Before the selection, crossover, and mutation operations
in the algorithm, a fast non-dominated sort is performed to determine the dominance
and non-domination relationship between populations. In addition, the diversity of the
population is guaranteed by crowding degree calculation and elite strategy selection.

Compared with other multi-objective optimization algorithms, such as multi-objective
particle swarm optimization algorithm, multi-objective differential evolution algorithm,
multi-objective genetic algorithm, etc., this algorithm avoids problems such as premature
convergence, poor population diversity, and easy fall into local optimum. It is suitable
for solving the dual-objective optimization problem in this paper. The NSGA-II algorithm
process used for the multi-objective optimization solution is shown in Figure 4.
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In the multi-objective optimization process using the NSGA-II algorithm, the non-
dominated solution set will constitute the Pareto front. Generally speaking, all the solutions
on the front can be used as optimization results, but it is usually necessary to optimize again
to obtain an optimal solution. Optimization methods based on multi-objective optimization
results include the AHP (analytic hierarchy process), the TOPSIS (Technique for Order
Preference by Similarity to Ideal Solution), etc. The AHP is highly subjective and will
be affected by the preferences of decision makers and limited by the number of samples.
However, the method is simple and easy to accept. In order to analyze the optimization
results more objectively and systematically and make automatic selections, this paper
adopts the TOPSIS to screen out the compromise solution under the optimization objective
from the optimal solution set of the Pareto frontier. The specific steps of TOPSIS are as
follows [40]:

(1) Standardize processing to obtain the decision matrix B = (bij)n×m.

bij =
fi(xj)− f min

i

f max
i − f min

i
(12)

In the formula, m is the total number of non-inferior solutions on the Pareto frontier,
fi(xj) is the function value of the non-inferior solution xj with respect to the target i, f max

i
and f min

i represent the maximum and minimum values of the target i, respectively.
According to the decision matrix and the target weight Wi, the weighted standardized

decision matrix V = (vij)n×m is obtained, where vij = bij ×Wi.

(2) Determine the positive ideal point A+ and the negative ideal point A−.{
A+ = (v+1 , v+2 , · · · , v+i ), v+i = max(vi1, vi2, · · · , vim)
A− = (v−1 , v−2 , · · · , v−i ), v−i = mix(vi1, vi2, · · · , vim)

(13)

In, i = 1, 2, · · · , n.

(3) Use the Euclidean distance method to calculate the distance between each non-inferior
solution and the positive and negative ideal points.

d+j =

√
n

∑
i=1

(v+i − vij)
2 (14)

d−j =

√
n

∑
i=1

(v−i − vij)
2 (15)

(4) Calculate the relative closeness of each non-inferior solution and then take the max-
imum value in the order of relative closeness from large to small as the optimal
compromise solution.

Tj =
d−j

d+j + d−j
(16)

In the formula, d+j , d−j represent the Euclidean distance between the non-inferior
solution xj and A+, A−, respectively.

The relative closeness of each non-inferior solution is calculated by the TOPSIS. The
larger the value is, the closer it is to the positive ideal point, so this value is taken as the
compromise solution.

3. Case and Study
3.1. Variable Selection

According to the established combustion optimization objectives, combined with
the relevant mechanism analysis, the control parameters that affect the coal volume, air
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volume, slag discharge volume, and air distribution mode are selected as the initial input
variables of the model. Specifically, it includes two primary fan frequency conversion
instructions (x1, x2), two secondary fan frequency conversion instructions (x3, x4), eight coal
feeder coal supply instructions (x5 − x12), six slag cooler frequency conversion instructions
(x13 − x18), and eight secondary air baffle opening instructions on the left and right walls
(x19 − x26). There are 26 variables in total. In order to better reduce the complexity of the
model and improve the calculation efficiency of the model, the neighborhood rough set
attribute reduction method is used to select the input variables of the model and reduce
the dimension of the input variables. In the attribute reduction process, the size of the
neighborhood radius of each attribute is directly related to the attribute reduction result.
The size of the neighborhood radius is closely related to the parameter λ in the attribute
reduction algorithm. If the value of λ is too large, the result of attribute reduction is an
empty set. Reversely, if the value of λ is too small, the program will report an error. After
debugging, parameter λ was set to 3.0. The parameter that controlled the importance lower
limit of the algorithm was empirically valued at 0.01. The results of the importance of each
variable in the attribute reduction process were shown in Table 1. Figure 5a shows the
attribute ranking results of nitrogen oxide emission concentration, and Figure 5b shows the
attribute ranking results of boiler thermal efficiency.

Table 1. Attribute reduction process importance results.

Decision Attribute Parameters in Condition Attribute Importance

NOx emission concentration

1# Primary fan frequency conversion instruction 0.1461
2# Secondary fan frequency conversion instruction 0.1236

Secondary air baffle opening instruction on the left rear wall upper part 0.1011
1# Slag cooler frequency conversion instruction 0.0786

Secondary air baffle opening instruction on the left front wall lower part 0.0674
Secondary air baffle opening instruction on the right front wall upper part 0.0562
Secondary air baffle opening instruction on the right rear wall upper part 0.0449

1# Coal feeder coal supply instruction 0.0113
Secondary air baffle opening instruction on the left rear wall lower part 0.0113

1# Secondary fan frequency conversion instruction 0.0112

Boiler thermal efficiency

2# Secondary fan frequency conversion instruction 0.1461
1# Primary fan frequency conversion instruction 0.1348
1# Slag cooler frequency conversion instruction 0.1011

Secondary air baffle opening instruction on the left front wall lower part 0.0899
Secondary air baffle opening instruction on the left rear wall upper part 0.0786

Secondary air baffle opening instruction on the right front wall upper part 0.0562
Secondary air baffle opening instruction on the right rear wall upper part 0.0225

2# Coal feeder coal supply instruction 0.0113
1# Secondary fan frequency conversion instruction 0.0112

Secondary air baffle opening instruction on the left rear wall lower part 0.0112
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Boiler thermal efficiency and NOx emission concentration were taken as decision-
making attributes, and 26 control parameter instructions were used as conditional attributes
to perform attribute reduction. The results of attribute reduction are shown in Table 1.
After synthesis, 1# primary fan frequency conversion instruction (x1), 1# secondary fan
frequency conversion instruction (x3), 2 # secondary fan frequency conversion instruction
(x4), 1# and 2# coal feeder coal supply instructions (x5, x6), 1# slag cooler frequency
conversion instruction (x13), secondary air baffle opening instruction on left front wall
lower part (x20), secondary air baffle opening instruction on left rear wall upper part (x21),
secondary air baffle opening instruction on left front wall lower part (x22), secondary air
baffle opening instruction on right front wall upper part (x23), and secondary air baffle
opening instruction on right rear wall upper part (x25) were selected as the model input
variables after attribute reduction.

3.2. Optimization of High Load Combustion Regulation Instructions in the Unit

The process is as follows: View the load history operation curve of a 330 MW circulat-
ing fluidized bed boiler unit. Then select the steady-state operating interval data of one of
the sections with an average load of about 310 MW for optimization and analysis. Among
them, the sampling period of the data is 5 s. The actual operating parameter curve of the
unit is shown in Figure 6 below.
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Figure 6. The 310 MW steady-state parameter operation curve of the unit.

By observing the six main operating parameter curves of unit power, oxygen content,
coal supply, main steam flow, primary air flow, and secondary air flow in Figure 6, it can be
found that they basically maintain a small range of fluctuations, which is consistent with
the characteristics of stable operation of the unit.

Based on the online calculation model of boiler thermal efficiency, the boiler thermal
efficiency was calculated under the steady load condition of 310 MW. In this process,
considering the large amount of data collected and the stability of the operating conditions,
the data sampling frequency was adjusted to 50 s. The input data for the model were
as follows. The industrial composition results of the furnace coal, the coal volume, the
inlet temperature of the slag cooler, the outlet temperature of the slag cooler, the cooling
water flow rate of the slag cooler, the cooling water inlet temperature, the cooling water
outlet temperature, the sulfur dioxide concentration of the desulfurization island inlet, the
oxygen content of the flue gas, the exhaust temperature, and the ambient temperature. The
calculation results of the boiler thermal efficiency are shown in Figure 7.
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Figure 7. Calculation curve of boiler thermal efficiency.

The calculation results of the boiler thermal efficiency presented in Figure 7 indicate
that it remained basically stable during this time period, with values fluctuating between
91.64% and 92.14%. The boiler thermal efficiency increased slightly due to the gradual
decrease of unit exhaust temperature.

The variable set after attribute reduction was used as the input variable of the boiler
combustion model and the multi-input/multi-output model was established using the
BP neural network. The output of the model was the boiler thermal efficiency and the
concentration of nitrogen oxide emissions. A total of 89 sets of historical data were collected
for modeling, and 60 sets of data were randomly selected as the model training set. The
remaining 29 sets of data were used as the model verification set. Finally, after repeated
debugging, the root mean square error and correlation coefficient were used to determine
the number of nodes in the hidden layer of the model. The model learning rate was set to
0.8. The empirical formula for calculating the number of nodes in the hidden layer of the
BP neural network is: j =

√
i + k + a. In the formula, j represents the number of nodes in

the hidden layer of the model; i represents the number of nodes in the input layer of the
model; k represents the number of nodes in the output layer of the model; a is a random
number, generally ranging from 1–10. Table 2 counts the evaluation index values of the BP
neural network when selecting different hidden layer nodes.

Table 2. Evaluation index of BP neural network with a different number of hidden layer nodes.

Hidden Layer
Nodes

RMSE of
Boiler

Thermal
Efficiency/%

RMSE of NOx
Emission

Concentration/
mg·Nm−3

R
Correlation
Coefficient

Hidden Layer
Nodes

RMSE of
Boiler

Thermal
Efficiency/%

RMSE of NOx
Emission

Concentration/
mg·Nm−3

R
Correlation
Coefficient

5 0.0954 4.187 0.8768 12 0.0667 3.328 0.8182
6 0.0889 3.260 0.7096 13 0.0887 5.002 0.3741
7 0.0889 2.905 0.9179 14 0.0983 3.950 0.8166
8 0.1 3.067 0.4635 18 0.1030 5.949 0.6380
9 0.0980 3.331 0.7686 20 0.13 4.496 0.7847

10 0.0893 3.679 0.9094 21 0.0899 3.942 0.9246
11 0.0910 3.485 0.8094

In Table 2, the first 10 sets of data are the evaluation index results obtained after taking
values based on empirical formulas. In these results, when the number of hidden layer
nodes was selected as 7, the correlation coefficient between the model prediction results
and the real value reached 0.9179, and the mean square errors of boiler thermal efficiency
and nitrogen oxide emission concentration were 0.0889% and 2.905 mg/Nm3, respectively.
Considering that the number of model input nodes was 11, if the number of hidden layer
nodes in the model was less than this value, underfitting might occur. Therefore, the
debugging was continued based on taking the empirical formula as the maximum value,
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and the final number of hidden layer nodes was determined to be 21. At this time, the
correlation coefficient reached 0.9246, and the prediction effect of the model was better.
Figure 8 shows the results of model validation.
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Figure 8. The model prediction results.

Figure 8 shows that the predicted output values of the neural network model coincide
with the actual values. Then statistical analysis was conducted on the prediction results of
boiler thermal efficiency and nitrogen oxide emission concentration, recorded in Table 3.
Between them, the root mean square error of the boiler thermal efficiency prediction result
is 0.0899%, the average absolute error is 0.0692%, the maximum absolute error is 0.2191%,
and the minimum absolute error is 0.0058%. The root mean square error of the NOx
emission concentration prediction result is 3.942 mg·Nm−3, the average absolute error
is 2.921 mg·Nm−3, the maximum absolute error is 11.5311 mg·Nm−3, and the minimum
absolute error is 0.4826 mg·Nm−3. The error in boiler thermal efficiency and the nitrogen
oxide emission concentration is within the permissible range and relatively small, indicating
that the model has good prediction generalization ability.

Table 3. Prediction Error Analysis of Neural Network Model.

Project RMSE Mean Absolute
Error

Maximum Absolute
Error

Minimum Absolute
Error

Boiler thermal efficiency/% 0.0899 0.0692 0.2191 0.0058
NOx emission concentration/mg·Nm−3 3.942 2.921 11.5311 0.4826

The operating parameter instructions in this model included the inverter command
and the secondary air baffle opening instruction. Typically, the frequency converter could
be adjusted from 0 Hz to 50 Hz, and the secondary air baffle opening adjustment range
was 15% to 100%. Considering the requirements of stable operation and bed temperature
stability, combined with the operating value of each parameter under the unit’s 310 MW
load condition, the regulation range of the parameters for multi-target optimization was
set to ±30%. In the multi-objective optimization algorithm, the population size was set to
70. The crossover probability was 0.6. The mutation probability was 0.4. The number of
iterations was 200.

In Figure 9, the changing trend of the Pareto front shows that the higher the thermal
efficiency of the boiler, the greater the concentration of nitrogen oxide emissions, which
is consistent with the conclusion of the qualitative analysis of the mechanism of nitrogen
oxide emissions [41–45]. The point marked red on the front surface of Pareto was selected
as the operation guidance point. The boiler thermal efficiency was 92.07%, and the NOx
emission concentration was 26.59 mg·Nm−3. Then, the optimization results were compared
with boiler thermal efficiency of 92.00% and NOx emission concentration of 31.61 mg·Nm−3

obtained by the traditional combustion optimization method. The thermal efficiency of
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the boiler was increased by 0.07%. The NOx emission concentration was reduced by
5.02 mg·Nm−3. Despite the fact that each point on the Pareto front may be chosen as the
result of multi-objective optimization, this work proposed to automatically screen each
point on the Pareto front based on the TOPSIS in order to avoid the directional problem of
manual selection. By calculating the distance between each point on the Pareto front and
the positive ideal point and negative ideal point, the target point, which is the closest to the
positive ideal point and away from the negative ideal point was obtained. This point was
also a compromise optimal solution.
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Figure 9. Multi-objective optimization results.

In Figure 10, the Pareto optimal solution was determined by computing the relative
proximity of the non-inferior solutions on the Pareto front using the TOPSIS method and
choosing the point with the highest relative closeness. At this point, the boiler thermal
efficiency was 91.84%, and the nitrogen oxide emission concentration was 23.94 mg·Nm−3.
The nitrogen oxide emission concentration was reduced by 7.67 mg·Nm−3 and the boiler
thermal efficiency was reduced by 0.16% when compared to the target point established
using the conventional combustion optimization approach. Between them, strategy 1 was
a manual selection method, which selected a non-inferior solution closest to the positive
ideal point from the Pareto front based on experience as the target solution. Strategy 2 was
the target solution obtained by the TOPSIS method. The statistical results are shown in
Table 4.
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Table 4. Variation results of manipulated parameters before and after optimization of 310 MW load.

Main
Manipulated Parameter

1# Primary Fan
Frequency

Conversion
Instruction/Hz

1# Secondary Fan
Frequency

Conversion
Instruction/Hz

1# Secondary Fan
Frequency

Conversion
Instruction/Hz

#1 Coal Feeder
Coal Supply
Instruction

/t·h−1

#2 Coal Feeder
Coal Supply
Instruction

/t·h−1

Before optimization 41.67 27.04 27.04 42.16 41.63
Strategy 1: After optimization 42.1 27.56 27.49 43.61 40.57

Instruction
difference under strategy 1 0.43 0.51 0.45 1.45 −1.05

Strategy 2: After optimization 40.77 26.45 27.54 43.48 40.55
Instruction

difference under strategy 2 −0.9 −0.6 0.49 1.31 −1.07

To more intuitively reflect the regulation of the fan, the relationship between the fan
frequency conversion instruction, the fan speed, and the fan volume was drawn by the
measured data.

In Figure 11, the relationship between the fan frequency conversion instruction and
the fan speed was identified by the measured data. They were approximately linear from
the figure. The linear relationship could be expressed as y = 30∗x − 2.5.
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Similarly, in Figure 12 the relationship curve between the fan speed and the fan volume
was obtained by fitting the measured data. They were representedby the linear function
relationship y = 300∗x – 110,000.
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The changes before and after the optimization of the main operating parameter in-
structions are compared in Table 4. Under the Strategy 1 scenario, the frequency conversion
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instruction of the 1# primary fan was increased by 0.43 Hz, the frequency conversion
instruction of the 1# secondary fan was increased by 0.51 Hz, and the frequency conversion
instruction of the 2# secondary fan was increased by 0.45 Hz. From the relationship func-
tion between the fan frequency conversion instruction, fan speed, and air volume, the air
volume of the 1# primary fan increased by 3870 Nm3/h, and the total air volume of the sec-
ondary fan increased by 8640 Nm3/h. The 1# coal feeder coal supply instruction increased
by 1.45 t·h−1, while the 2# coal feeder coal supply instruction decreased by 0.23 t·h−1, and
the total coal volume increased by 0.4 t·h−1. After optimization, the unit’s coal volume,
primary air volume, and secondary air volume increased accordingly, but the increase in
primary and secondary air volumes was more significant. The upper part of the furnace
would have more distributed charcoal particles participating in the exothermic reaction of
combustion, thereby improving the combustion efficiency in the furnace. At the same time,
the increased air volume made the flue gas flow in the furnace faster and removed a lot of
heat, shortened the residence time of carbon residue particles in the furnace, and reduced
the initial nitrogen oxide generation to a certain extent.

When Strategy 2 was adopted, the frequency conversion instruction of the 1# primary
fan was reduced by 0.9 Hz, that is, the primary air volume was reduced by 8100 Nm3/h.
The 1# and 2# secondary frequency conversion instructions were reduced by 0.11 Hz in
total, and the secondary air volume could be reduced by 990 Nm3/h after calculation.
The 1# and 2# coal feeder coal supply instruction cumulatively increased by 0.24 t·h−1.
Compared with the optimization scheme of Strategy 1, the reduced primary air volume and
the increased coal volume worsened the fluidization state of the materials in the furnace,
and the combustion of residual carbon particles was incomplete, which would cause a
decrease in the thermal efficiency of the boiler. The reduced secondary air volume reduced
the oxidizing atmosphere in the furnace, which was more conducive to promoting the
formation of nitrogen oxides. Compared with the traditional combustion optimization
method, the combustion optimization scheme 1 and 2 mentioned in this paper can better
balance the pollutant gas emission and combustion economy.

4. Discussion
4.1. Effect of Feature Selection on Prediction Results

In order to further illustrate the importance of using feature selection and appropriate
feature selection methods, the combustion optimization models without feature selection
and after feature selection were established for comparison and analysis in light of the
high-load operating conditions of the unit.

The input variables in the combustion optimization model without feature selection
are 26 initial input variables selected. For the modeling process using feature selection,
the Spearman feature variable reduction method is first used for comparative analysis.
The correlation coefficients of 26 initial input variables of the model and boiler thermal
efficiency and nitrogen oxide emission concentration, respectively, are calculated. When the
target variable is the boiler thermal efficiency, the variables whose correlation coefficient
value is greater than 0.4 are selected to form a reduced set, and the results are 1# secondary
fan frequency conversion instruction (0.54), 2# secondary fan frequency conversion in-
struction (0.53), 1# coal feeder coal supply instruction (0.512), 8# coal feeder coal supply
instruction (0.523), 2# slag cooler frequency conversion instruction (0.510), 4# slag cooler
frequency conversion instruction (0.450), 6# slag cooler frequency conversion instruction
(0.411), secondary air baffle opening instruction on the left front wall lower part (0.625),
secondary air baffle opening instruction on the left rear wall upper part (0.429), secondary
air baffle opening instruction on the left rear wall lower part (0.774), secondary air baffle
opening instruction on the right front wall upper part (0.404), and secondary air baffle
opening instruction on the right front wall lower part (0.808). When the target variable
is nitrogen oxide emission concentration, the correlation coefficient values are all small,
and the results with a value greater than 0.2 are selected, including the secondary air
baffle opening instruction on the left rear wall lower part (0.385), the secondary air baffle
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opening instruction on the right front wall lower part (0.26), and the secondary air baffle
opening instruction on the right rear wall upper part (0.334). In this case, there are only
two intersections of the reduction results of the two target variables. The main reason is
that this method only considers the degree of correlation between the variable and the
target variable, and does not analyze from the perspective of the influence of the variable
combination on the target variable. Therefore, the feature selection based only on the value
of the correlation coefficient is likely to result in inaccurate reduction results. However,
the reduction results based on the neighborhood rough set method proposed in this paper
fully consider the influence of variable combinations on the target variable so that there are
9 intersections of the reduction results of the two target variables.

Afterward, the combustion optimization model A without feature selection and the
combustion optimization model B with neighborhood rough set feature selection are
respectively established, and the prediction effects of the two models are compared and
analyzed with four evaluation indicators: root mean square error, mean absolute error,
maximum absolute error, and minimum absolute error, as shown in Table 5. All models
have adopted the neural network structure of MIMO, and the set network parameters and
the proportion of divided data sets are also the same.

Table 5. The prediction effect of different models.

Method of
Prediction

Boiler Thermal Efficiency/% NOx Emission Concentration/mg·Nm−3

ERMSE EMAE EAEmax EAEmin ERMSE EMAE EAEmax EAEmin

Model A 0.0716 0.0495 0.2549 0.0010 4.2550 3.1337 12.2940 0.1387
Model B 0.0899 0.0692 0.2191 0.0058 3.942 2.921 11.5311 0.4826

It can be seen from Table 5 that model B is basically the same as model A for the
prediction results of boiler thermal efficiency. For the prediction of nitrogen oxide emission
concentration, the root mean square error of the main performance index in model B is
smaller than that in model A. It is further illustrated that the variable selection method
using neighborhood rough sets can not only reduce the number of variables but also
improve the prediction accuracy of the model.

4.2. Optimization of Medium and Medium-Low Load Combustion Regulation Instructions in
the Unit

The traditional combustion optimization method is based on the historical combustion
adjustment data of the unit to be optimized. This method is limited by the combustion
adjustment experience of previous operators, which makes the optimization results under
this method not representative. The combustion optimization method proposed in this
paper is used to excavate the potential reasonable optimization space of the unit, and then
scientifically guide the unit to carry out combustion adjustment. This method has been
verified under the high-load conditions of the unit. In order to verify the applicability of
the method more effectively, the unit is selected to be in the medium load condition and
the medium-low load condition. The average load under medium load condition was
about 245 MW, and the average load under medium-low load condition was about 194 MW.
Under the 245 MW load condition, the thermal efficiency of the boiler determined by the
traditional combustion optimization method was 91.23%, and the nitrogen oxide emission
concentration was 25.56 mg·Nm−3. In the process of multi-objective optimization using the
NSGA-II method under this working condition, the adjustment range of the manipulated
parameter was ±30%, the population size was set to 50, with the crossover probability
0.2, the variation probability 0.1, and the number of iterations 100. After the optimization,
the boiler thermal efficiency at a certain operation guidance point was 91.21%, and the
nitrogen oxide emission concentration was 17.79 mg·Nm−3. Compared with the traditional
optimization results, the boiler thermal efficiency was increased by 0.02%, and the NOx
emission concentration was reduced by 7.77 mg·Nm−3. Similarly, the results obtained
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by the traditional combustion optimization method were used as the reference point,
and the changes in the manipulated operating parameters before and after optimization
were counted.

It could be seen from Table 6 that during the optimization process under this working
condition, the frequency conversion command of the 1# and 2# secondary fans increased
by a total of 1.76 Hz. According to the calculation of the relationship function between the
fan frequency conversion command and the air volume, the secondary air volume would
increase by 15,840 Nm3/h. The 1# and 2# coal feeder coal supply instructions increased by
a total of 2.71 t·h−1. While the frequency conversion command of 1# slag cooler increased
by 0.16 Hz, the secondary air baffle opening instruction on the left rear wall upper part
decreased by 0.5%, the secondary air baffle opening instruction on the right front wall upper
part decreased by 0.36%, and the secondary air baffle opening instruction on the right rear
wall upper part was reduced by 1.52%. Usually, the air-to-coal volume adjustment needs to
follow the set air-to-coal ratio principle. In the current combustion optimization process,
the increase in the coal supply did not match the increase in the secondary air volume,
which was specifically manifested in a slightly larger increase in the secondary air volume.
However, the opening of the secondary air baffle in the furnace was significantly reduced
compared with that before optimization. Additionally, the reducing atmosphere space in
the furnace relatively increased, and the overall nitrogen oxide emissions were reduced.

Table 6. Variation results of manipulated parameters before and after optimization of 245 MW load.

Manipulated Parameter Before
Optimization

After
Optimization

Instruction
Difference

1# Secondary fan frequency conversion instruction/Hz 34.65 35.42 0.77
2# Secondary fan frequency conversion instruction/Hz 34.63 35.62 0.99

1# Coal feeder coal supply instruction/t·h−1 20.0 21.4 1.4
2# Coal feeder coal supply instruction/t·h−1 19.00 20.30 1.31

1# Slag cooler frequency conversion instruction/Hz 32.06 32.22 0.16
Secondary air baffle opening instruction on the left rear wall upper part/% 58.83 58.32 −0.50

Secondary air baffle opening instruction on the right front wall upper part/% 58.95 58.59 −0.36
Secondary air baffle opening instruction on the right rear wall upper part/% 59.63 58.11 −1.52

When the unit was operating at a load of 194 MW, the thermal efficiency of the
boiler determined by the traditional combustion optimization method was 90.77%, and the
nitrogen oxide emission concentration was 21.22 mg·Nm−3. Using the NSGA-II algorithm
to achieve multi-objective optimization, the parameters were set as follows: the range of
manipulated parameters was ±30% with population size 70, crossover probability 0.2,
variation probability 0.1, and the number of iterations 200. The boiler thermal efficiency at
the operation guidance point selected after optimization was 91.32%, and the NOx emission
concentration was 14.19 mg·Nm−3. Compared with the traditional optimization results, the
boiler thermal efficiency increased by 0.55%. The NOx emission concentration decreased by
7.03 mg·Nm−3. The changes in operating parameters before and after optimization were
counted, and the specific results are shown in Table 7.

From the statistical results in Table 7 above, it could be seen that before and after
combustion optimization under 194 MW, the frequency conversion instruction of the 1#
primary fan was reduced by 0.28 Hz, that is, the primary air volume was reduced by
2520 Nm3/h. The 1# and 2# secondary air frequency conversion instruction cumulatively
increased by 4.08 Hz, and the secondary air volume increased by 36,720 Nm3/h after
conversion. The 1# and 2# coal feeder coal supply instruction increased by 1.94 t·h−1

cumulatively. The 1# slag cooler frequency conversion instruction was reduced by 5.47 Hz.
For the secondary air baffle, except for the opening on the right rear wall upper part,
increased by 0.82%; the opening on the left front wall lower part, the opening on the left
rear wall upper part, and the opening on the left rear wall lower part were reduced by
2.29%, 1.81%, 2.88%, and 1.00%, respectively. The reduction of primary air volume and slag
discharge would concentrate the combustion area more in the lower part of the furnace.
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With the increased coal volume and secondary air volume, the bed temperature in the
furnace would greatly increase under lower load conditions, providing a good combustion
environment for the full combustion of residual carbon particles. In addition, reducing
the secondary air baffle opening on the upper part of the furnace increased the proportion
of the reduced atmosphere space in the furnace, thereby suppressing the formation of
nitrogen oxides.

Table 7. Variation results of manipulated parameters before and after optimization of 194 MW load.

Manipulated Parameter Before
Optimization

After
Optimization

Instruction
Difference

1# Primary fan frequency conversion instruction/Hz 38.42 38.14 −0.28
1# Secondary fan frequency conversion instruction/Hz 26.44 28.38 1.94
2# Secondary fan frequency conversion instruction/Hz 26.18 28.32 2.14

1# Coal feeder coal supply instruction/t·h−1 15.56 16.91 1.35
2# Coal feeder coal supply instruction/t·h−1 15.57 16.16 0.59

1# Slag cooler frequency conversion instruction/Hz 37.09 31.62 −5.47
Secondary air baffle opening instruction on the left front wall lower part/% 20.72 18.43 −2.29
Secondary air baffle opening instruction on the left rear wall upper part/% 31.15 29.34 −1.81
Secondary air baffle opening instruction on the left rear wall lower part/% 20.15 17.27 −2.88

Secondary air baffle opening instruction on the right front wall upper part/% 29.94 28.93 −1.01
Secondary air baffle opening instruction on the right rear wall upper part/% 29.2 30.02 0.82

4.3. Analysis of the Law of Different Load Combustion Regulation Instructions of the Unit

Combined with the regulation of operating parameter instruction in the unit com-
bustion optimization process under high, medium, and low load conditions studied in
this paper, the control parameter instruction regulation function suitable for different load
conditions of the unit was fitted. Although the combustion optimization and adjustment
measures were different under different load conditions, the slag discharge and secondary
air baffle opening adjustment measures would participate in the medium load and medium-
low load conditions. Generally speaking, the main operating parameters that affect the
optimization of boiler combustion performance are coal volume and secondary air volume.
Their changing trends with load conditions before and after optimization are shown in
Figures 13 and 14.
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Figures 13 and 14 show that the control command values of the secondary fan and
coal feeder increased to a certain extent compared with before optimization values. The
functional relationships of the secondary fan frequency conversion instruction and the coal
feeder coal supply instruction are respectively fitted.

The functional relationship between the frequency conversion instruction of the sec-
ondary fan and the coal supply instruction of the coal feeder with the change of load
conditions is respectively fitted. As shown in Formulas (17) and (18), these functional
relationships could be used as a reference in instruction regulation optimization during the
unit’s changing load process.{

yec f j = 0.2812 ∗ (x− 194) + 56.7, 194MW ≤ x ≤ 245MW
yec f j = −0.2462 ∗ (x− 245) + 71.04, 245MW ≤ x ≤ 310MW

(17)

{
ygm = 0.1692 ∗ (x− 194) + 33.07, 194MW ≤ x ≤ 245MW
ygm = 0.6535 ∗ (x− 245) + 41.7, 245MW ≤ x ≤ 310MW

(18)

From the analysis of the statistical results in Figure 15, it could be seen that in order to
further optimize the combustion performance of the boiler, it was necessary to improve
the operating performance of the boiler by increasing the secondary air volume and coal
volume. The core idea was to re-match the air-to-coal ratio and the air distribution method
of the boiler combustion, to optimize the distribution of the combustion share in the furnace
and control the oxidation-reduction atmosphere in the furnace. The difference was that
the variation of the secondary fan frequency conversion command decreased gradually
with the increase of the load, while the variation of the coal feeder coal supply instruction
showed a trend of rising first and then falling. The main reason was that, in the actual
process, it was expected that the load condition of the unit was close to the rated load
condition. When the unit was in the medium load condition, the combustion in the furnace
could be enhanced by increasing the coal volume. For the combustion optimization of
the remaining working conditions of the unit, it was necessary to reasonably adjust the
coal volume, secondary air volume, opening of the secondary air baffle or slag discharge
volume, and controlling the bed temperature and the oxidation-reduction atmosphere in
the furnace. These measures would help to increase boiler thermal efficiency, reduce the
initial generation of nitrogen oxides, and promote their reduction [46–51]. All optimization
adjustments that need to be paid attention to have a certain range. For example, the increase
in slag discharge can reduce the bed pressure drop and bed material stock in the furnace,
and the timely discharge of large particles of ash accumulated at the bottom of the furnace
can improve the internal circulation in the furnace, which has a positive impact on the
thermal efficiency of the boiler. However, when the heat loss taken away by the boiler
slag discharge exceeds the improved combustion conditions in the furnace due to the
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adjustment of the slag discharge, the increase in the slag discharge and the boiler thermal
efficiency presents a negative relationship.
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5. Conclusions

In view of the normalized mode of CFB boiler units participating in power grid
peak regulation under the new situation, it is very important to adjust the key control
parameters of the unit combustion system in a timely manner. Previous studies mainly
established a data model between combustion optimization objectives and operating
parameters and provided references for operating parameter adjustments based on model
optimization results. However, they did not directly conduct optimization guidance from
the perspective of control parameter instructions. This paper proposes an optimization
method for key control parameters of CFB boiler combustion systems based on machine
learning. Through this method, the optimal and simplest control parameter set that affects
the boiler combustion adjustment is obtained, based on which the operator is guided to
carry out the combustion optimization work, and the efficiency of the unit combustion
optimization is improved.

At present and even in the future, the participation of coal-fired power units in power
grid peak shaving will become the norm under the new situation. Actively carrying
out combustion optimization of units certainly will become a long-term objective in the
operation of power plants. Only by continuously improving the unit’s operation level, we
can improve the development dilemma of thermal power enterprises. In this paper, the
unit’s optimal operating state and associated manipulated parameter set with combustion
optimization have been identified through the in-depth mining of the historical data of the
circulating fluidized bed unit combined with the artificial intelligence algorithm. Based
on this, the operator will be guided to carry out the unit’s combustion optimization work,
thereby improving the efficiency of the combustion optimization. The proposal of this
method is of great significance for the construction of smart power plants.

Under the unit’s different working conditions and the same combustion optimization
strategy, the optimization results obtained by the combustion optimization method pro-
posed in this paper are better than the traditional combustion optimization method. The
applied neighborhood rough set machine learning method could reduce many attributes
affecting the combustion system by establishing an equivalence relationship while main-
taining the original data classification ability. In turn, the key manipulated parameter set
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has been identified, which is associated with the unit’s combustion operation. This method
simplifies the unit’s combustion adjustment rules, reduces the uncertainty of adjustment
based on the operator’s experience, and decreases the invalid adjustment in the combustion
adjustment process. In the unit’s combustion adjustment verification, the 26 manipulated
parameters are reduced to a set of 11. The method markedly reduces blindness in the
regulation process. At the same time, the optimization instruction values are accurate to
0.01, and the regulation direction is clarified. These would significantly reduce the energy
consumption of the combustion optimization process.

There are also certain deficiencies in this method. First, it is necessary to establish
a combustion optimization model in the process of combustion optimization. The error
of the model will have an important impact on the results of optimization, so improving
the accuracy of the model is a long-term goal. In addition, ensuring the continuous
reliability of the intelligent algorithm used in this method is also the research focus of
future engineering applications.

The machine learning method proposed in this paper provides a decision-making
model for the autonomous control optimization of the CFB boiler combustion system under
variable operating conditions, which is of great significance to the development of smart
power plants.

Author Contributions: Conceptualization, L.H., L.W. and H.Y.; methodology, L.H. and C.J.; software,
L.H. and C.J.; validation, L.H. and Y.L.; formal analysis, L.H.; investigation, L.H.; data curation,
L.H.; writing—original draft preparation, L.H.; writing—review and editing, L.W., H.Y., C.J., E.M.,
Y.L. and S.Y.; visualization, L.H. and L.W.; supervision, L.W. and E.M.; project administration, L.W.;
funding acquisition, L.W. and E.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number U1810126, and the Shanxi Province key Research and Development Plan Projects, grant
number 201903D421009.

Data Availability Statement: The data are available from the corresponding author upon reasonable
requests.

Acknowledgments: The authors acknowledge the technical support of the Shanxi Electric Power
Research Institute and Jinkong Electric Power Shanxi Tongda Thermal Power Co., Ltd.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gaspari, M.; Lorenzoni, A.; Frías, P.; Reneses, J. Integrated Energy Services for the industrial sector: An innovative model for

sustainable electricity supply. Util. Policy 2017, 45, 118–127. [CrossRef]
2. Perdan, S.; Azapagic, A. Carbon trading: Current schemes and future developments. Energy Policy 2011, 39, 6040–6054. [CrossRef]
3. Chen, S. Development Status and Prospect of Intelligent Power Station. In Proceedings of the 2013 Annual Conference on

Intelligent Power Station Technology Development and Power Station Automation, Shanghai University of Electric Power.
Shanghai, China, 12–13 October2013; pp. 37–47.

4. Immonen, E.; Lauren, M.; Roininen, L.; Särkkä, S. Multiobjective model-based optimization of diesel injection rate profile by
machine learning methods. In Proceedings of the 2020 IEEE International Systems Conference (SysCon), Montreal, QC, Canada,
24 August–20 September 2020; pp. 1–6.

5. Bao, X.; Li, Y.; Zhu, C. Deep deterministic policy gradient-based combustion optimization method for coal-fired boiler. In
Proceedings of the 2021 40th Chinese Control Conference (CCC), Shanghai, China, 26–28 July 2021; pp. 6255–6260.
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