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Abstract: To efficiently and accurately track the Global Maximum Power Point (GMPP) of the
PV system under Varying Environmental Conditions (VECs), numerous hybrid Maximum Power
Point Tracking (MPPT) techniques were developed. In this research work, different hybrid MPPT
techniques are categorized into three types: a combination of conventional algorithms, a combination
of soft computing algorithms, and a combination of conventional and soft computing algorithms
are discussed in detail. Particularly, about 90 hybrid MPPT techniques are presented, and their
key specifications, such as accuracy, speed, cost, complexity, etc., are summarized. Along with
these specifications, numerous other parameters, such as the PV panel’s location, season, tilt,
orientation, etc., are also discussed, which makes its selection easier according to the requirements.
This research work is organized in such a manner that it provides a valuable path for energy
engineers and researchers to select an appropriate MPPT technique based on the projects’ limitations
and objectives.

Keywords: hybrid MPPT; photovoltaic (PV); partial shading condition; GMPP; renewable energy

1. Introduction

Due to the depletion of fossil fuels, economic aspects, and environmental concerns,
the integration of Renewable Energy Resources (RES) in power networks has increased
globally. Among the RES, solar energy (Photovoltaic (PV)) has become more popular
due to its zero-emission, universal availability, better return on investment, and low
operational cost [1].

According to the global status report (REN21), globally, for the last six consecutive
years, the installation of RES has been more than the combined fossil fuels and nuclear
power. At the end of 2021, globally, the total installed capacity of RES was about 3146 GW,
of which the share of hydropower is 1195 GW, PV is 942 GW, wind is 845 GW, bio-power
is 143 GW, geothermal is 14.5 GW, concentrating solar thermal power is 6 GW, and ocean
power is 0.5 GW. Although the largest contribution to generate electricity is from hy-
dropower, but in the last few years (2016–2021), PV showed the fastest growth rate among
all RES. As a result, the total installed capacity of a PV system increased from 305 GW in
2016 to 942 GW in 2021 [2]. This fast expansion and growth in the PV market are mainly
due to the rising demand for electricity, the increase in the emission of harmful gases, the
desire to control the energy generation from fossil fuels, government support, reduction in
material prices, technological improvements, and advancements in PV integration tech-
nologies [3]. The total installed capacity of PV along with an annual increment from 2011
to 2021 is presented in Figure 1 [2].
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Figure 1. Total installed capacity of PV (2011–2021) [2]. 

Although the integration of PV into the power system has increased significantly due 
to the dependency of a PV module on atmospheric conditions such as Temperature (T) 
and Irradiance (G), its generated power fluctuates significantly. Under Uniform Environ-
mental Conditions (UECs), there exists only one point on the Current-Voltage (I-V) and 
Power-Voltage (P-V) characteristics of a PV module called a Maximum Power Point 
(MPP), where the PV module produces Maximum Power (MP). However, when the PV 
module is subjected to VEC (irregular G and T or under PSC), then the I-V and P-V char-
acteristics have numerous multiple peaks (multiple local and one global) [4]. Therefore, to 
accurately and precisely track the MPP and increase the lifetime and efficiency of PV sys-
tem, different MPPT techniques are designed. These MPPT techniques can be categorized 
into six different groups based on their features and characteristics, as presented in Figure 
2. 
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Figure 2. Classification of MPPT techniques. 

A 1st group of MPPT techniques are the conventional techniques, as shown in Figure 
1. The conventional MPPT techniques include Perturb and Observe (P and O) [5], Hill 
Climb (HC) [6], Fractional Open Circuit Voltage (FOCV) [7], etc. These techniques show 
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Although the integration of PV into the power system has increased significantly due
to the dependency of a PV module on atmospheric conditions such as Temperature (T)
and Irradiance (G), its generated power fluctuates significantly. Under Uniform Environ-
mental Conditions (UECs), there exists only one point on the Current-Voltage (I-V) and
Power-Voltage (P-V) characteristics of a PV module called a Maximum Power Point (MPP),
where the PV module produces Maximum Power (MP). However, when the PV module is
subjected to VEC (irregular G and T or under PSC), then the I-V and P-V characteristics
have numerous multiple peaks (multiple local and one global) [4]. Therefore, to accurately
and precisely track the MPP and increase the lifetime and efficiency of PV system, differ-
ent MPPT techniques are designed. These MPPT techniques can be categorized into six
different groups based on their features and characteristics, as presented in Figure 2.
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A 1st group of MPPT techniques are the conventional techniques, as shown in Figure 1.
The conventional MPPT techniques include Perturb and Observe (P and O) [5], Hill Climb
(HC) [6], Fractional Open Circuit Voltage (FOCV) [7], etc. These techniques show high
performance and accurately track the MPP under UEC. However, steady-state oscillations
are observed when these conventional techniques are employed. Moreover, in the case
of VEC, they cannot track the Global Maximum Power Point (GMPP) and trap the Local
Maximum Power Point (LMPP). Therefore, numerous improvements have been made to
enhance their performance, as follows: In [8], an improved P and O algorithm is presented
in which the reference voltage is defined as a function of G and T. Similarly, in [9], a
variable step size Incremental Conductance (IC) is proposed. Although these improvements
have increased the system’s tracking accuracy and efficiency, performance degradation is
observed under PSC.

To accurately track the GMPP under VEC or PSC, a group of meta-heuristic algorithms
that include Particle Swarm Optimization (PSO) [10], Gravitational Search Algorithm
(GSA) [11], Differential Evolution (DE) [12], Artificial Bee Colony (ABC) [13], Human
Psychology Optimization [14], etc., are designed. Similarly, mathematics-based algo-
rithms such as the Jaya algorithm [15], segmentation search [16], Beta (β) algorithm [17],
etc., ensure high tracking accuracy and fast convergence. The Artificial Intelligence (AI)-
based algorithms such as Fuzzy Logic Controller (FLC) [18] and Artificial Neural Network
(ANN) [19], etc., and algorithms based on the exploitation phenomena effectively improve
the calculation accuracy, reduce the computation burden, and track the GMPP with a fast
dynamic response.

Although these advanced MPPT algorithms show high performance under PSC com-
pared with conventional algorithms, there are some limitations associated with them. For
example, in the PSO algorithm, the diversity of the particles increases with the increment
in the iteration number; as a result, an MPP cannot be tracked precisely, and steady-state
oscillations are observed near the MPP [10]. The DE algorithm is unable to efficiently locate
the GMPP, but it has high accuracy in tracking the LMPP within its search area [12]. The
Firefly Algorithm (FA) is unable to accurately locate the GMPP in rapid PSC [20]. The
Cuckoo Search Algorithm (CSA) can guarantee a fast convergence, but high oscillations
are observed at steady state, and the algorithm has a high failure rate to accurately locate
the GMPP [21]. Similarly, the Grasshopper Optimization Algorithm (GOA) shows good
steady-state and dynamic responses, accuracy to track the MPP under PSC, but it has a
high tracking time that needs to be enhanced [22]. The Salp Swarm Algorithm (SSA) has
the advantage of simple upgrading functionality but has the risk of falling into the local op-
timum solution in the case of PSC. Moreover, due to a lack of exploration and exploitation,
it creates large oscillations at the output and is unable to perform fast tracking [23]. The
ABC technique has a high computational cost and convergence time, and it also produces
oscillations in the converter variables [13]. A main disadvantage of FLC is its high depen-
dency on the user’s knowledge. A user must have enough knowledge about the system so
that the outputs can be determined based on the inputs [18]. The ANN technique surpasses
an FLC due to its user’s independence characteristic, but it needs to be trained specifically
for PV application through a time-consuming training process [19]. The GSA has a high
ability to search GMPP while having a poor local search ability [11]. the Chaotic Search (CS)
technique has slow convergence speed [24]. The Grey Wolf Optimization (GWO) method
suffers from oscillations around GMPP under PSC [25].

From the literature review discussed above, it is concluded that these MPPT techniques
pose many disadvantages. Therefore, to cope with these challenges, two or more algorithms
are integrated together such that they eliminate the cons and enhance the pros of each other.
The resultant hybridized algorithm enhances the tracking accuracy, speed, and efficiency
under PSC. Many comprehensive studies about the hybrid MPPT algorithms are conducted,
for example, the authors in [26] discussed 20 different hybrid algorithms. These algorithms
are divided into sequential and simultaneous hybrid MPPT techniques based on their
operation. The operation, advantages, and disadvantages of these algorithms are elaborated.
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Moreover, a criterion for selecting a suitable MPPT technique based on operation, cost,
implementation, complexity, etc., is also explained. A detailed review of different MPPT
techniques feasible for PSC is presented in [27]. In this review, a primary is focus on the
non-hybrid MPPT techniques and a least consideration is provided to the hybrid MPPT
techniques. To be exact, a total of 12 hybrid techniques is discussed and their performance
is compared based on some basic indicators. The authors in [28] categorize different MPPT
techniques for uniform irradiance and non-uniform irradiance. In this manuscript, non-
hybrid MPPT techniques are discussed in context of uniform irradiance condition, whereas
for non-uniform irradiance condition, different hybrid techniques are presented. However,
only a limited consideration is provided to the hybrid techniques; moreover, few key
specifications for selecting an appropriate MPPT technique are discussed.

The authors in [29] presented a comprehensive review of different meta-heuristic
MPPT techniques. A detailed comparative analysis of swarm-based MPPT techniques
with other meta-heuristic MPPT techniques such as GOA, GWO, PSO, etc., is presented.
However, in this paper, no consideration is provided to the hybrid MPTT techniques. The
authors in [30] presented a detailed review of the MPPT techniques used to track the
MPP under non-uniform irradiance. The authors classified the MPPT techniques into
online and soft computing-based methods. The authors also presented a comparative
analysis in table form and discussed the selection criteria considering four indicators, i.e.,
tracking capability, convergence speed, sensitivity, and design complexity. In this review,
the authors only focus on the non-hybrid techniques and no consideration is provided
to hybrid techniques. In [31] different PV cell models are presented, and to extract the
maximum power from the PV system, some conventional and non-conventional MPPTs
are discussed. To extract the maximum power from the PV system, the authors in [32]
presented a comprehensive review of different MPPT techniques. The MPPT techniques
are divided in four different categories, i.e., based on calculation, measurement, online
schemes, and intelligent schemes. However, these review papers [31,32] did not discuss
any hybrid MPPT technique. Similarly, the authors in [33–40] also discussed different
MPPT algorithms, where the focus was on the non-hybrid MPPT techniques. The authors
in [34] presented a review of different non-hybrid techniques, but presented only the hybrid
algorithms based on P and O and firefly algorithms. Similarly, the authors in [36] presented
a review of different conventional, bio-inspired, and intelligent MPPT techniques. However,
no consideration was provided to the hybrid MPPT techniques; moreover, the criteria for
selecting appropriate MPPT techniques are also not discussed.

A comparative analysis of these state-of-the-art research works [26–40] with the work
presented in this manuscript is presented in Table 1. From Table 1, it can be concluded
that these review papers do not discuss the global status of PV. Moreover, in these recent
review papers, the authors mainly focus on the non-hybrid MPPT algorithms, while only
a limited amount of attention is provided to the hybrid algorithms. Most of the authors
present a comparative analysis of different MPPT algorithms, but the criteria to select a
suitable MPPT technique are very limited. Therefore, based on these points, it is essential
to conduct a review on hybrid MPPT techniques.

The main contributions of this research work can be summarized as:

• This research work presents a review of more than 90 different MPPT techniques
present in the literature and categorizes them into three types. The 1st type is the
combination of two or more conventional MPPT techniques; the 2nd type is the
combination of two or more soft computing techniques; and the 3rd type is the
combination of conventional and soft computing methods;

• This manuscript summarizes numerous MPPT techniques and provides a compre-
hensive comparison considering different characteristics such as DC–DC converter
topology, complexity level, tracking speed, steady-state oscillation, tracking accuracy,
cost, etc.;
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• Besides the MPPT technique, there are many other factors, e.g., the location and season
of a PV system, PV panel tilts and orientations, conversion efficiency, the selection of a
DC-DC converter, etc., that should be considered while installing a PV system. This
work provides a comprehensive review of these factors;

• This manuscript provides a valuable path for future research in the field of hybrid
MPPT techniques and will help the energy engineers to select an appropriate technique
according to the project’s requirements.

Table 1. Comparative analysis of state-of-art literature review.

Ref. PV Global
Status

Primary Focus
on Hybrid

MPPT Methods

Secondary Focus
on Hybrid

MPPT Methods

Primary Focus on
Non-Hybrid

MPPT Methods

MPPT
Selection
Criteria

Comparative
Analysis of

MPPT Methods

[26] x X x x X X
[27] x x x X x X
[28] x x X X X X
[29] x x X X x X
[30] x x x X X X
[31] x x x X x x
[32] x x X X x X
[33] x x X X X X
[34] x x x X x x
[35] X x X X X X
[36] X x x X x X
[37] X x X X x X
[38] x x X X x X
[39] x x x X x X
[40] X x x X x X

Proposed X X x x X X

Following the introduction, in Section 2, different hybrid MPPT techniques are dis-
cussed that are categorized into three main types, i.e., combination of conventional algo-
rithms, combination of soft computing, and combination of conventional and soft comput-
ing methods. The criteria for selecting an appropriate MPPT technique and comparative
analysis are presented in Section 3. Finally, the concluding remarks and future directions
are presented in Section 4.

2. Hybrid MPPT Algorithms

A main task of the MPPT technique is to extract the maximum power from the PV
system. For this purpose, different MPPT techniques were developed that perform very
well in UEC. However, in the case of VEC, it is very difficult to extract the maximum
power from the PV system due to multiple peaks in the I-V and P-V characteristic curve.
In other words, under VEC numerous LMPPs emerge while there is only GMPP. Due to
numerous peaks, many MPPT algorithms fail to track the GMPP and become stuck in
the LMPP that cause a hotspot effect, reduction in output efficiency, as well as reliability
issues of the PV system. To handle such problems and accurately track the GMPP, the
hybrid MPPT techniques were developed. As discussed above, hybrid algorithms are
the combination of two or more MPPT techniques that are combined in such a way that
they enhance the advantageous features of each other and cancel the disadvantageous
features of each other. In other words, the main purpose of designing the hybrid algorithm
is to optimally track the MPP in terms of accuracy and speed under VEC. In the literature,
different hybrid MPPT techniques are presented that can be categorized into three groups
based on their characteristics and features. A group of the 1st type of hybrid techniques
are those that are formed by combining two or more conventional MPPT techniques. The
hybrid MPPT techniques that are placed in the 2nd type are those that are formed by the
combination of two or more soft computing methods (meta-heuristic algorithms, artificial
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intelligence algorithms, etc.). The hybrid MPPT techniques that are formed by combining
the conventional algorithms with soft computing algorithms are grouped in the 3rd type.
This broad categorization of hybrid MPPT techniques are sketched in Figure 3 and are
discussed below in detail.
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The MPPT techniques that are categorized in this type are the combination of two or
more conventional algorithms. These hybrid techniques are shown in Figure 4 and are
discussed below in detail.
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2.1.1. P and O with Fractional Short Circuit Current (FSCC)

The prominent feature of FSCC is its fast convergence speed, but it lacks MPP tracking
accuracy under PSC [41]. Therefore, the authors in [42] combined the FSCC method with P
and O technique to increase tracking accuracy and convergence speed of the individual
technique. The operation of this technique is divided into two stages, as presented in
Figure 5. In the 1st stage, the FSCC method is used to measure a short circuit current (ISC),
and then the maximum current (IMPP) of the PV panel is estimated by (1).

IMPP = k·ISC (1)

where k is a constant, which depends on the weather conditions, utilized material, and
fabrication technology [43]. After estimating the PV panel parameters, the system moves
towards the 2nd stage. In a 2nd stage, a P and O is employed for efficient tracking
of MPP and to operate the system near MPP with low oscillations. This technique
enables a P and O algorithm to select a small step size, and the perturbation direction is
determined by comparing the difference between present and previous perturbations
as in (2) or (3).

∆P·∆V < 0 decrease voltage (2)

∆P·∆V > 0 increase voltage (3)

The system evaluates the power difference after every perturbation. If a difference is
greater than a set threshold, that is a change in environmental parameter; as a result, a new
measurement of the ISC is initiated and the process continues again. The main advantages
of this technique include good convergence speed, high MPP tracking accuracy, and simple
implementation. Besides these advantages, there are some disadvantages to this method,
as it is not very reliable under PSC, oscillations are observed around the MPP, and it has a
low tracking speed.

2.1.2. FSCC with IC

Similarly, the authors in [44] combined FSCC with the IC algorithm to achieve accurate
and fast tracking of MPP. In this method, FSCC provides a high tracking speed while IC
provides high tracking accuracy [45]. The operation of this technique is implemented in
two stages. In the 1st stage, an FSCC method is used to operate the system near MPP.
It is performed by measuring ISC, and then the IMPP of the PV panel is estimated using
(1). However, the FSCC method is unable to accurately track the actual MPP; therefore,
the tracking process is switched to the 2nd stage, where an IC technique is used due to
its high tracking accuracy. The tracking principle of an IC method is the same as the
P and O method, but with low steady-state oscillations around the MPP as it stops the
perturbation process once it locates the MPP. It measures both the conductance and change
in conductance of the PV panel by comparing the instantaneous conductance with the
incremented one and is provided by (4)–(6).

∆I/∆V > −I/V le f t o f MPP (4)

∆I/∆V < −I/V right o f MPP (5)

∆I/∆V = −I/V at MPP (6)
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2.1.3. FOCV with P and O

To extract the MP from the PV panel under PSCs, the authors in [46] proposed a hybrid
algorithm in which the FOCV technique is combined with the P and O technique. The
operation of the proposed algorithm is divided into two stages. In the 1st stage, a FOCV
algorithm is used to approximate the system operating point close to the MPP. Moreover, a
system is detached from the load to measure the open circuit voltage (VOC), and then VMPP
is estimated by putting the value of VOC in (7).

VMPP = kv·VOC (7)

where kv is a constant generally found to be in the range of 0.71–0.78, and it depends on the
weather conditions, fabrication technology, and utilized material [43]. As in the 1st stage,
the system operating point becomes very close to MPP but not very accurate; therefore,
a P and O algorithm is used in the 2nd stage to improve the system’s accuracy. A P and
O technique uses a small step size, which reduces the oscillations around the MPP and
improves accuracy by driving the system’s operating point as close as possible to the MPP.
This is performed by multiplying the present sensed current and voltage to obtain power,
and then this power is compared with the previous one. If there is a positive change in the
power, i.e., the new operating point has more power than the old one, then the controller
takes its next step in the same direction. If there is a negative change in the power, then the
controller takes the next perturbation in the opposite direction.

2.1.4. FOCV with IC

Similarly, to improve the tracking accuracy and convergence speed of the conventional
MPPT technique, the author in [47] combined FOCV with IC as shown in Figure 6. Just
like the other two-stage operation, in this technique, a FOCV is used to estimate the system
operating point close to the MPP by using (1) in the 1st stage, while in the 2nd stage, an IC
is initiated to calculate the conductance and variation in conductance of the PV panel. An
IC uses a variable step length of the duty cycle (to drive the converter switch) that can be
calculated according to (8).

D(t) = D(t− 1)± N ∗ |dP/dV| (8)
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where D(t) presents the current duty cycle, D(t − 1) is the previous duty cycle, N is
number of series cells, and |dP/dV| present the slope of power-voltage curve such that
|dP/dV| = 0 at MPP.
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When irradiance level changes, the algorithm goes back to its initial point (FOCV
stage) and the system is disconnected again from the load to measure the VOC, current, and
voltage to estimate the VMPP.

2.1.5. P and O with IC

A P and O technique is unable to track the GMPP under PSC and particularly to
trap the LMPP. Therefore, the authors in [48] combine P and O with IC to eliminate the
disadvantages of both algorithms and enhance the MPPT tracking capability. A core idea of
this technique is based on variable step sizes that are taken automatically according to the
MPP. When a power is climbing, the algorithm takes high and large steps; on the contrary,
the step size is significantly reduced when the power is close to MPP. As a result, the
proposed algorithm provides fast convergence and low oscillations around MPP compared
with the traditional P and O technique.

2.1.6. Modified Perturb and Observe (MP and O)

The authors in [49] proposed an MP and O method that consists of two parts, i.e.,
the main program and a Global Point (GP) track subroutine. In this technique, based on
the PV panel voltage (Vmin and Vmax), the upper and lower limits of GMPP are adjusted
to avoid scanning the entire system repetitively while tracking GMMP. This algorithm
starts from the “main program”, where initially the reference voltage is set as VOC, i.e.,
VOC = Vref = 85%. The algorithm continuously searches for the GMPP by applying the P and
O technique until any unpredicted disturbance, such as a PSC or timer interruption, occurs.
If any of these uncertainties occur, the “main program” calls the “GP track subroutine”.
A “GP track subroutine” part then starts to track a new GMPP, and once the GMPP is
accurately tracked, it passes the operation back to the “main program” part. A “main
program” continuous to perform its operation at this new GMPP until the next disturbance
is observed. Furthermore, a feed-forward controller to regulate the duty cycle of the
converter is also used that results in fast tracking speed with low steady-state oscillations.
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Compared with the conventional P and O algorithm, in this technique the tracking time is
reduced about ten times.

2.1.7. Estimation-Perturb-Perturb (EPP) with IC

The authors in [50] proposed a modified P and O technique in which a conventional
P and O method is modified by adding an estimation process that records the irradiance
variation after two perturbations. This improved technique is referred to as an EPP method.
Hence, the author in [51] proposed a hybrid MPPT technique in which an EPP and a
variable step IC algorithm are used simultaneously to efficiently track the GMPP. Both
algorithms adjust the duty cycle of the converter switch consequently. Then the power
obtained from both algorithms is compared, and the algorithm with the higher power
is selected.

2.2. Combination of Soft Computing Algorithms

The hybrid MPPT techniques that are categorized in this type are the combination of
two or more soft computing-based MPPT algorithms. Numerous MPPT techniques that
fall into this category are presented in Figure 7 and are discussed in detail below.
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2.2.1. PSO with DE

A PSO is a population-based search algorithm that seeks the global optimum value of
the entire population. PSO has the advantage of high tracking speed, but at the same time,
high steady-state oscillations, and a lack of accuracy in tracking the GMPP is observed
under PSCs. Moreover, in PSO, the diversity of the particles increases with an increase in
the iteration number, which results in an increment in the computational burden. Therefore,
it is combined with many other MPPT techniques, such as in [52], it is also combined with
the DE algorithm to overcome the above-mentioned limitation. As DE is a population-
based random search algorithm, its main limitation is that it is unable to efficiently locate
the GMPP, but it has a high accuracy in tracking the LMPP within its search area [53].
Therefore, both DE and PSO are combined in such a manner that they avoid the weaknesses
of both algorithms and take benefits from their advantageous features. In this technique, a
DE algorithm operates during the even iterations while a PSO technique operates during
the odd iterations. This methodology results in the accurate, precise, and fast tracking of
MPP under PSCs and even in PSC. A flowchart of this proposed technique is presented in
Figure 8.
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2.2.2. PSO with Proportional Integral (PI) Controller

The authors in [54] proposed a two-stage hybrid technique in which PSO is combined
with Proportional Integral (PI) controller. Initially, PSO is used to locate the neighborhood
area around the MPP where the operating point exists, and then in a 2nd stage, a PI
controller is used to accurately locate the GMPP. The derivative of power with respect to
voltage is zero, i.e., dP(t)/dV(t) = 0 at MPP; hence, a PI-based feedback controller uses
this approach to find the exact MPP. Based on this, the control variable is provided as:

e(t) = dP(t)/dV(t) (9)

When the irradiance level changes, it has a significant impact on the output power
of the PV system; therefore, the variation in power must be limited and a threshold value
must be allotted as provided in (10):∣∣∣∣Pi+1 − Pi

Pi

∣∣∣∣ > 10% (10)
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where Pi+1 represents the power at the present iteration and Pi represents the power at the
previous iteration. Upon the detection of the inequality presented in (10), a command is
sent to re-initialize the proposed algorithm.

2.2.3. PSO with Overall Distribution (OD)

In [55], an OD algorithm is integrated with PSO that can explore and discover the
GMPP precisely and quickly under PSC. In this technique, initially, an OD algorithm is
used to quickly explore the area near the GMPP and facilitate the initial values that are
transferred to the PSO algorithm to perform its control actions. Once the initial values are
obtained, a PSO algorithm only needs to search the GMPP within a predefined limited area.
Due to these advantages, this algorithm can accurately and precisely identify the GMPP in
case of PSC.

2.2.4. PSO with Adaptive Neuro Fuzzy Inference System (ANFIS)

In [56], an ANFIS is integrated with PSO to track the MPP under PSC. The schematic
of the proposed MPPT technique is presented in Figure 9. In this method, the fuzzy data are
collected with trained learning rules for the appropriate adjustment of membership function
values before minimizing the error to the least value. The learned system is prepared to
work as a hybrid technique whenever the parameters of the membership function are
adapted. During the process of defuzzification, a centroid method is used for adapting the
duty ratio of the converter, which is determined in accordance with the flowchart presented
in Figure 9. Moreover, in this technique, both consequent and antecedent parameters are
trained simultaneously to curtail the error. The proposed method does not require extra
sensors for temperature and irradiance measurements to obtain the MP from the PV panel
with zero oscillations. It provides fast tracking speed and tracking accuracy under PSC
with high efficiency and low steady-state error.
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2.2.5. PSO with One Cycle Control (OCC)

In [57], PSO is combined with OCC to extract the MP from the PV panel. The
operation of this algorithm can be divided into two stages. In the 1st stage, the PSO
algorithm is used to find the optimal current in accordance with the MP derived from
the PV panel. In the 2nd stage, the current references generated by PSO are sent to
the OCC, where the OCC enables the converter to track these references efficiently and
quickly [58]. Compared with the traditional PSO or OCC method, in this hybrid technique,
the tracking accuracy and the convergence speed to precisely locate the GMPP under PSC
are significantly improved.

2.2.6. Enhanced Leader PSO (EL-PSO)

A conventional PSO algorithm has all the capabilities needed to reach global conver-
gence under PSC, but it is found to be less desirable due to inappropriate initialization and
velocity update limitations [59]. Hence, to enhance the performance of conventional PSO,
the authors in [60] proposed a customized version of PSO known as EL-PSO. To strengthen
and improve the search capability of a conventional PSO, it is modified by introducing
mutations on the global best (Gbest) particle. These mutations add a high value to particle
updating, ensuring a quick convergence of the EL-PSO at GMPP. Moreover, EL-PSO shows
better dynamic performance, fast convergence, precision in tracking MPP, and efficiency in
comparison with the conventional PSO method.

2.2.7. PSO with Simulated Annealing (SA)

The authors in [61] combine the advantageous features of SA and PSO algorithms to
precisely track the GMPP of the PV module under PSCs. A proposed technique increases
the tracking accuracy, reduces the tracking speed, and efficiently tracks the GMPP. The
operation of PSO-SA is discussed in seven different steps, as presented in Figure 10. In
the 1st step, initial parameters such as step size, ending temperature Tmin, temperature
decrement rate α, and starting temperature To are set. In the 2nd step, the voltage operating
point (Vi) from zero to VOC is chosen. In the 3rd step, a power (Pi) is calculated in accordance
with the operating point on the P-V curve. In 4th step, the step is calculated according to
(11) as provided as:

step = step× w + rici

(
Umax −Ure f _out

)
(11)

where w is the weight of inertia and ci is the acceleration speed of an individual particle.
In the 5th step, the random voltage is calculated (Vk) such that Vk = Vi + step and

the Pk in is calculated in accordance with Vk. In the 6th step, when To is greater than Tmin,
then the procedure from (a) to (e) should be followed as: (a) generate Vk, (b) calculate Pk
according to the operating point on the P-V curve, (c) continuously update the Pk in every
perturbation, and when Pk > Pi, it means that Vi = Vk and Pi = Pk. If Pk > Pmax, then update
Vmax = Vk and Pmax = Pk. (d) when Pk < Pi, then update the operating point according to
(12) as:

Pr = exp
(

Pk − Pi
Tk

)
(12)

where Tk current temperature of the PV system, and (e) after NT step changes, cool down
the temperature. The “step” is restarted and set Vi = Vmax. In a 7th step, when the stop
criteria are satisfied, the current voltage perturbation also stops, and the command is sent
to start a new perturbation.

2.2.8. PSO with Levy Flight Optimization (LFO)

In [62], PSO and LFO are combined to track the GMPP under PSCs. In this technique,
a PSO algorithm is initially used to detect the GMPP, and then an LFO algorithm is used
to enhance the extraction of the GMPP. During its operational process, initially, a PSO is
used to check all the particles present in a search space. The fitness of every duty cycle is
assessed, and then based on the fitness function, and the algorithm evaluates the values of
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Pbest and Gbest. A duty cycle constraint is also added for every duty cycle before updating
the position and velocity. Once the constraint is satisfied, i.e., if the current duty cycle
exceeds the constraint value, then the position and velocity are updated. Once the duty
cycle is updated, then in the next step, its fitness value is evaluated. Compared with the
Pbest, if the new fitness value is improved, then the Pbest is updated, or else the value is
increased by +1 and the process continues until the maximum iteration. The schematic
flowchart of this MPPT technique is presented in Figure 11.
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2.2.9. PSO with FLC

Another hybrid MPPT technique presented in [63] uses two different methodologies
to optimize the input MF of the asymmetrical FLC. In the 1st method, the P-V curve of
solar cells under Standard Test Conditions (STCs) (i.e., G = 1000 W/m2 and T = 25 ◦C) is
used to set the values of the input MF. This technique uses a simple methodology that is
easy to adopt and can improve the performance of FLC. In the 2nd method, the values of
input MF are optimized using the PSO algorithm. The PSO algorithm uses a cost function
for its operation; therefore, a cost function is designed that meets the requirements of the
PV system. After obtaining the optimized input MF values, in the next step, a proposed
hybrid technique is implemented by using a digital controller, as presented in Figure 12.
From the results, it can be concluded that the proposed algorithm has a high fitness value
and enhances tracking accuracy, speed, and precision compared with the P and O and
conventional FLC methods.
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2.2.10. PSO with Terminal Sliding Mode Controller (TSMC)

In [64], a TSMC is integrated with the PSO to extract the MP from the PV panel under
variable environmental circumstances. In a proposed method, to regulate the duty cycle
of the converter’s switch, a TSMC is used that keeps the PV system performing at the
required reference regardless of variation in environmental circumstances. Furthermore, a
PSO algorithm is applied to determine the optimal or ideal parameter values of the TSMC
such that the proper trajectory of the system is guaranteed for varying environmental
circumstances.

2.2.11. PSO with GSA

A hybrid MPPT technique presented in [65] combines a PSO with GSA due to its high
local searching capability. In this method, a PSO is initially applied to rapidly scan all the
search space for the GMPP, while the GSA is used for the local search only. Hence, this
technique eliminates the steady-state oscillations once the GMPP is tracked by using its
local search ability and social thinking. Moreover, from the simulation results, it can be
concluded that this hybrid technique has a better ability to avoid the LMPP traps and has
high tracking accuracy and efficiency compared with the conventional PSO and GSA.

2.2.12. PSO with ANN

In [66], PSO is combined with ANN to detect the GMPP under PSCs in order to extract
the MP from the PV panel. A schematic flowchart of the proposed technique is shown in
Figure 13. In this method, initially, an ANN algorithm is trained (100 data samples obtained
by a trial-and-error process) for different values of power variation (∆P) and the initial
value of PV current (IC) according to the different combinations of irradiance. Hence, in
case of any variation in irradiance level, an ANN algorithm generates IC and ∆P according
to the trained data. A PSO in turn generates the PV current at MPP, corresponding to the
change in solar isolation. As a result, the MP is always extracted from the PV panel due to
the detection of PV current at MPP, even under PSCs.



Energies 2023, 16, 5665 17 of 64Energies 2023, 15, x FOR PEER REVIEW 17 of 65 
 

 

NO

YES

Start

Matched ISC

Initialization of PSO: M = 3, V = 
0, w = 0.5, c1 = 1.2, c2 = 1.6

ANN block: 
Train IC and 

ΔP

Evaluate fitness      
function, Ffit = PPV-max ?

Calculate Pbest

Calculate Gbest

Update position (s) & velocity (v)
 

Figure 13. Flowchart of PSO-ANN MPPT technique [66]. 

2.2.13. PSO with Shuffled Frog Leaping Algorithm 
In [67], PSO is combined with SFLA for MPPT applications. A schematic flowchart of 

PSO-SFLA is depicted in Figure 14. In this MPPT technique, the PSO population of parti-
cles is divided into many swarms/groups to enhance the optimization accuracy and con-
vergence speed. Moreover, to further improve the convergence speed, an adaptive speed 
factor is also applied to the PSO algorithm. Compared with the individual usage of PSO 
or SFLA, the proposed method shows high performance and conversion efficiency under 
the same PSCs.  

NO

YES

Start

Initialization Particles

Sort the fitness and group particles

Update the particles in each group

One group particles
PPV(n)=VPV(n)*IPV(n)

One group particles
PPV(m)=VPV(m)*IPV(m)

One group particles
PPV(i-m-n)=VPV(i-m n)*IPV(i-m-n)

Update the best particles (Pm) of each group

Compare three (Pm) and update the best particle (Pg) in all of particles

Iteration number

Pg – Pm = 0 ? Send duty cycle to 
converter

Restart 
condition

NO
NO

YES
YES

 
Figure 14. Flowchart of PSO-SFLA Hybrid MPPT technique [67]. 

2.2.14. Modified Particle Velocity (MPV)-based PSO 
In [68], an MPV-based PSO algorithm referred to as (MPV-PSO) is proposed to accu-

rately track the GMPP under PSCs. This method eliminates the inherent randomness in 
PSO by eliminating the use of random numbers in the velocity equation. Moreover, this 
method is adaptive in nature by introducing the social acceleration and cognitive coeffi-
cients that adapt themselves according to the position of particles, the requirement for 

Figure 13. Flowchart of PSO-ANN MPPT technique [66].

2.2.13. PSO with Shuffled Frog Leaping Algorithm

In [67], PSO is combined with SFLA for MPPT applications. A schematic flowchart
of PSO-SFLA is depicted in Figure 14. In this MPPT technique, the PSO population of
particles is divided into many swarms/groups to enhance the optimization accuracy and
convergence speed. Moreover, to further improve the convergence speed, an adaptive
speed factor is also applied to the PSO algorithm. Compared with the individual usage of
PSO or SFLA, the proposed method shows high performance and conversion efficiency
under the same PSCs.
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2.2.14. Modified Particle Velocity (MPV)-Based PSO

In [68], an MPV-based PSO algorithm referred to as (MPV-PSO) is proposed to ac-
curately track the GMPP under PSCs. This method eliminates the inherent randomness
in PSO by eliminating the use of random numbers in the velocity equation. Moreover,
this method is adaptive in nature by introducing the social acceleration and cognitive
coefficients that adapt themselves according to the position of particles, the requirement
for tuning the weight factor is also eliminated. These adaptive coefficients also avoid the
trapping of algorithm in local minima and result in no steady-state oscillation around MPP.
The position of the particle is updated as:

yk+1
i = yk

i + Vk+1
i (13)

where yk
i and yk+1

i are the current and updated particle positions in the current and next
cycle, respectively; and Vk+1

i presents the particle’s updated velocity in the current cycle.
The updated magnitude and velocity of the particle are determined as follows:

Vk+1
i = w·Vk

i + c2γ1

(
ylb_i − yk

i

)
+ c1γ2

(
ygb_i − yk

i

)
(14)

where c1 and c2 are the social acceleration and cognitive coefficients, respectively; γ1 and
γ2 are the random numbers ranging from 0 to 1; w is the weight factor and is used to ensure
that the particles direction is the same as the direction in the previous cycle; c2γ1

(
ylb_i − yk

i

)
is a cognitive factor, ylb_i is the particle’s best position moving towards the best solution;

c1γ2

(
ygb_i − yk

i

)
is the social factor that enables the movement of particles to the Gbest

position; and ygb_i presents the best position among all particles from the start to the
current cycle.

2.2.15. PSO with SSA

An SSA, like other meta-heuristic algorithms, has slow convergence and poor ex-
ploitation capability. Therefore, to overcome this limitation, the authors in [69] proposed a
hybrid MPPT technique in which SSA is combined with PSO. In this technique, the basic
structure of SSA is also modified to allow the merging of the update mechanism of PSO
into the structure of SSA. This combination adds more flexibility and diversity to SSA
during population exploration, resulting in fast convergence. The schematic flowchart of
this method is presented in Figure 15. From Figure 15, it can be observed that in the 1st
stage of this technique, the parameters are defined, and a population is generated that
represents a set of solutions for the problem. Then the fitness function of every solution
is evaluated, and the best solution is found among them. In the next step, the current
population is updated by utilizing either SSA or PSO based on the quality of the fitness
function. If the probability of the fitness function is greater than 0.5, then SSA is used,
and if the probability is less than 0.5, then PSO is used. After that, the solution to every
fitness function is evaluated to determine the best solution after updating the population.
In the next step, it is checked whether the stopping criteria have been satisfied or not. If the
stopping criteria is satisfied, then the algorithm returns the best solution. On the contrary,
if the stopping criteria is not satisfied, then the algorithm repeats the previous steps (from
computing the probability) until the stopping condition is met.

2.2.16. SSA with GWO

The authors in [70] proposed a hybrid MPPT technique in which GWO and SSA are
combined to improve the GMPP tracking accuracy and speed of SSA under PSC. In this
method, the leader structure of SSA is optimized by using GWO while maintaining the
adaptive mechanism of SSA to avoid the LMPP traps. Hence, different from conventional
SSA that consists of only one leader, in the proposed method, half of the salps are selected
for the leader group while the remaining are the followers. Moreover, a special hierarchy
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of GWO is also introduced in this method that enhances the global search capability of the
population and enables fast convergence. A schematic flowchart of the SSA-GWO MPPT
technique is presented in Figure 16.
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2.2.17. Tunicate Swarm Algorithm (TSA) with PSO

A hybrid technique in which a TSA is combined with the PSO algorithm for MP
extraction from the PV system is presented in [71]. A flowchart of the proposed method is
presented in Figure 17. The performance of the proposed method is improved by integrating
a PSO algorithm that enhances the exploitation ability of TSA. The performance of TSA-PSO
is verified through simulation results under different PSCs. From the results, it can be
observed that the proposed method tracks the GMPP accurately with a fast convergence
speed and reduced steady-state oscillations than the TSA and PSO when they are used
individually.

2.2.18. Artificial Fish Swarm Algorithm (FSA) with PSO

In [72], the authors combine FSA and Particle Swarm Optimization with Extended
Memory (PSOEM) for a PV MPPT application. In this method, the velocity (inertia factor
and memory) and learning capability of PSOEM are incorporated into FSA. Hence, such a
controller is applied to efficiently and optimally predict the output voltage values for PV
panels. Hence, this method efficiently tracks the GMPP with low oscillations around MPP
under different PSCs. A flowchart of this technique is presented in Figure 18.

2.2.19. Fusion Firefly Algorithms

The operation of the FA is based on the behaviour of a firefly. Hence, its basic principle
is based on the attraction phenomenon of a firefly, which usually attracts a firefly from a dim
light to a bright light [20]. In FA, to maximize the objective function, its value is compared
with the illumination of a firefly. Moreover, the illumination of a firefly represents the
output power, and the location of a firefly denotes a duty cycle. FA has fewer regulatory
parameters, converge on maximum value with low fluctuations, high tracking speed, and
high accuracy. However, in rapid VEC, it is sometimes unable to accurately locate the
GMPP [73]. Numerous improvements have been made to address this issue, such as the
Fusion Firefly Algorithm (FFA) proposed by the authors in [74]. A schematic of this is
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presented in Figure 19. In FFA, a Neighbourhood Attraction Firefly Algorithm (NaFA) is
integrated with the conventional firefly algorithm to stop pinning down at LMPPs. This
hybrid method outdoes P and O, PSO, Genetic Algorithm (GA), and NaFA in terms of
accuracy, tracking speed, and efficiency.

Energies 2023, 15, x FOR PEER REVIEW 20 of 65 
 

 

YES

NO

Start

Initialize the salp population based on search bound

Calculate the fitness value P of each salp

Select half number of salp as leader and follower

Assign salp with largest fitness to the food source F

l = 2

Update the coefficient (ci)

i ≤ N/2

Rank the salps, and 
determine the 

promising solution 

Update the position of 
the leader group

Update the position of 
the follower salps 

i < n i = i +1

Calculate the fitness value P of each salp 

Assign the position of optimal salp to food source F

Output Pbest and Dm

l < lm l = l +1

Any irradiance 
variation

Adjust 
the salps 
based on 

the 
searching 

space

YES NO

YES

NO

YES

NO

 

Figure 16. Flowchart of SSA-GWO MPPT technique [70]. 

2.2.17. Tunicate Swarm Algorithm (TSA) with PSO 
A hybrid technique in which a TSA is combined with the PSO algorithm for MP ex-

traction from the PV system is presented in [71]. A flowchart of the proposed method is 
presented in Figure 17. The performance of the proposed method is improved by integrat-
ing a PSO algorithm that enhances the exploitation ability of TSA. The performance of 
TSA-PSO is verified through simulation results under different PSCs. From the results, it 
can be observed that the proposed method tracks the GMPP accurately with a fast con-
vergence speed and reduced steady-state oscillations than the TSA and PSO when they 
are used individually.  

NO

NO

Start

 Initialize parameters of TSA, PSO, iteration numbers, population size and duty cycle

Measure voltage and current of PV panel for random duty cycle and calculate power

Calculate the fitness of each tunicate and update the position

Generate initial population randomly and calculate the fitness of tunicate

Update the location of each tunicate

Call PSO algorithm Get updated position

Termination       
criteria achieved ?

Stop
YES

 

Figure 17. Flowchart of TSA-PSO MPPT technique [71]. 

Figure 16. Flowchart of SSA-GWO MPPT technique [70].

Energies 2023, 15, x FOR PEER REVIEW 20 of 65 
 

 

YES

NO

Start

Initialize the salp population based on search bound

Calculate the fitness value P of each salp

Select half number of salp as leader and follower

Assign salp with largest fitness to the food source F

l = 2

Update the coefficient (ci)

i ≤ N/2

Rank the salps, and 
determine the 

promising solution 

Update the position of 
the leader group

Update the position of 
the follower salps 

i < n i = i +1

Calculate the fitness value P of each salp 

Assign the position of optimal salp to food source F

Output Pbest and Dm

l < lm l = l +1

Any irradiance 
variation

Adjust 
the salps 
based on 

the 
searching 

space

YES NO

YES

NO

YES

NO

 

Figure 16. Flowchart of SSA-GWO MPPT technique [70]. 

2.2.17. Tunicate Swarm Algorithm (TSA) with PSO 
A hybrid technique in which a TSA is combined with the PSO algorithm for MP ex-

traction from the PV system is presented in [71]. A flowchart of the proposed method is 
presented in Figure 17. The performance of the proposed method is improved by integrat-
ing a PSO algorithm that enhances the exploitation ability of TSA. The performance of 
TSA-PSO is verified through simulation results under different PSCs. From the results, it 
can be observed that the proposed method tracks the GMPP accurately with a fast con-
vergence speed and reduced steady-state oscillations than the TSA and PSO when they 
are used individually.  

NO

NO

Start

 Initialize parameters of TSA, PSO, iteration numbers, population size and duty cycle

Measure voltage and current of PV panel for random duty cycle and calculate power

Calculate the fitness of each tunicate and update the position

Generate initial population randomly and calculate the fitness of tunicate

Update the location of each tunicate

Call PSO algorithm Get updated position

Termination       
criteria achieved ?

Stop
YES

 

Figure 17. Flowchart of TSA-PSO MPPT technique [71]. Figure 17. Flowchart of TSA-PSO MPPT technique [71].



Energies 2023, 16, 5665 21 of 64

Energies 2023, 15, x FOR PEER REVIEW 21 of 65 
 

 

2.2.18. Artificial Fish Swarm Algorithm (FSA) with PSO 
In [72], the authors combine FSA and Particle Swarm Optimization with Extended 

Memory (PSOEM) for a PV MPPT application. In this method, the velocity (inertia factor 
and memory) and learning capability of PSOEM are incorporated into FSA. Hence, such 
a controller is applied to efficiently and optimally predict the output voltage values for PV 
panels. Hence, this method efficiently tracks the GMPP with low oscillations around MPP 
under different PSCs. A flowchart of this technique is presented in Figure 18. 

Start

Initialize the position and speed of the fish

Confirm the objective function and input light 
intensity and temperature

Looking for the individual optimal and global

Update the particle position and speed

Calculate the adaptation value of fish to 
determine to find maximum output

Output the optimal solution

Termination condition

End

YES

NO

 

Figure 18. Flowchart of FSA-PSOEM MPPT technique [72]. 

2.2.19. Fusion Firefly Algorithms 
The operation of the FA is based on the behaviour of a firefly. Hence, its basic princi-

ple is based on the attraction phenomenon of a firefly, which usually attracts a firefly from 
a dim light to a bright light [20]. In FA, to maximize the objective function, its value is 
compared with the illumination of a firefly. Moreover, the illumination of a firefly repre-
sents the output power, and the location of a firefly denotes a duty cycle. FA has fewer 
regulatory parameters, converge on maximum value with low fluctuations, high tracking 
speed, and high accuracy. However, in rapid VEC, it is sometimes unable to accurately 
locate the GMPP [73]. Numerous improvements have been made to address this issue, 
such as the Fusion Firefly Algorithm (FFA) proposed by the authors in [74]. A schematic 
of this is presented in Figure 19. In FFA, a Neighbourhood Attraction Firefly Algorithm 
(NaFA) is integrated with the conventional firefly algorithm to stop pinning down at 
LMPPs. This hybrid method outdoes P and O, PSO, Genetic Algorithm (GA), and NaFA 
in terms of accuracy, tracking speed, and efficiency.  

Figure 18. Flowchart of FSA-PSOEM MPPT technique [72].

Energies 2023, 15, x FOR PEER REVIEW 22 of 65 
 

 

YES

NO

Set control parameters
Generate initial solutions VPVI  = Xi           (i= 1, 2, 3,…….n)

Compute fitness: f(x) = PPV

Rank fireflies and find the best

Compare brightness
f(xj) > f(xi)

Evaluate new solution & update fitness
 ( ) 2

i jr
i j or e γβ β −=

Move FFi to FFj using
 ( ) ( )

2

1 2ijr
i i o j ix x e x x randγβ α−= + − + −

Cycles >= MXG

Rank fireflies and find Global best = Vref

Check weather
 

( ), ,

,

%PV new PV last

PV last

P P
P

P
−

≥ Δ

NO

NOYES

YES

 

Figure 19. Flowchart for MFA [74]. 

2.2.20. FA with FLC 
A hybrid MPPT technique that combines FA with FLC is proposed in [75]. In this 

technique, the FA algorithm is used to tune the Membership Function (MF) of the FLC to 
extract the MP from the PV panel. The coefficient of FA enables quick convergence in every 
iteration. The basic movements of FA can be provided as follows: 

( )2

1 0
ijr

i i j i iX x e x xλβ α−
+ = + − + ∈  (15) 

where r represents the distance between two fireflies; α is the randomization parameter; 
β0 shows the attractiveness; xi and xj are the spatial coordination to i and j, respectively; 
and ∈i is a constant ranging from 0 to 1. The MF of the FLC is tuned by the FA and the 
inputs of the FLC are provided as: 

( ) ( )1P P k P kΔ = − −  (16) 

( ) ( )1I I k I kΔ = − −  (17) 

where ΔP and ΔI represent the change in the PV panel’s output power and current, re-
spectively. The output of the FLC is provided as: 

( ) ( )1D D k D kΔ = − −  (18) 

where ΔD is the change in the duty cycle of the boost converter. Moreover, different rules 
for the FLC are set based on the FA in order to reach GMPP. This hybrid algorithm out-
performs P and O and FLC methods in terms of tracking accuracy and speed and attains 
the highest efficiency of 99.98%. 

2.2.21. Adaptive Cuckoo Search Algorithm (ACSA) 
The fixed or constant switching parameters in the CSA engage in long random jumps 

at irregular intervals that result in power losses near MPP at a steady state. As the position 
of every particle of CSA symbolizes a value allocated to the gate of the switch (duty cycle) 
of the converter, any abrupt or unwanted change in the duty cycle causes unwanted 
glitches and oscillations in output power. Moreover, when using a CSA, high oscillations 
are observed at a steady state and has a high failure rate to accurately locate the GMPP 
[21]. Hence, to overcome these limitations and enhance the tracking accuracy and conver-
gence efficiency of CSA, the authors in [76] proposed an ACSA. In this approach, the fixed 
parameters of the CSA are continuously updated at every sampling time to eliminate the 

Figure 19. Flowchart for MFA [74].



Energies 2023, 16, 5665 22 of 64

2.2.20. FA with FLC

A hybrid MPPT technique that combines FA with FLC is proposed in [75]. In this
technique, the FA algorithm is used to tune the Membership Function (MF) of the FLC to
extract the MP from the PV panel. The coefficient of FA enables quick convergence in every
iteration. The basic movements of FA can be provided as follows:

Xi+1 = xi + β0e−λr2
ij
(
xj − xi

)
+ α ∈i (15)

where r represents the distance between two fireflies; α is the randomization parameter; β0
shows the attractiveness; xi and xj are the spatial coordination to i and j, respectively; and
∈i is a constant ranging from 0 to 1. The MF of the FLC is tuned by the FA and the inputs
of the FLC are provided as:

∆P = P(k)− P(k− 1) (16)

∆I = I(k)− I(k− 1) (17)

where ∆P and ∆I represent the change in the PV panel’s output power and current, respec-
tively. The output of the FLC is provided as:

∆D = D(k)− D(k− 1) (18)

where ∆D is the change in the duty cycle of the boost converter. Moreover, different rules for
the FLC are set based on the FA in order to reach GMPP. This hybrid algorithm outperforms
P and O and FLC methods in terms of tracking accuracy and speed and attains the highest
efficiency of 99.98%.

2.2.21. Adaptive Cuckoo Search Algorithm (ACSA)

The fixed or constant switching parameters in the CSA engage in long random jumps
at irregular intervals that result in power losses near MPP at a steady state. As the position
of every particle of CSA symbolizes a value allocated to the gate of the switch (duty cycle) of
the converter, any abrupt or unwanted change in the duty cycle causes unwanted glitches
and oscillations in output power. Moreover, when using a CSA, high oscillations are
observed at a steady state and has a high failure rate to accurately locate the GMPP [21].
Hence, to overcome these limitations and enhance the tracking accuracy and convergence
efficiency of CSA, the authors in [76] proposed an ACSA. In this approach, the fixed
parameters of the CSA are continuously updated at every sampling time to eliminate the
undesirable glitches in voltage and power output waveforms. The efficiency of CSA can be
enhanced by updating the switching parameters as follows:

Paci = Pa_max

(
Ci
Ti

)
(19)

where Ci and Ti represent the current and total number of iterations, respectively. As the
switching parameters are increased exponentially along with iterations and is presented as:

Paci = (Pa_max) exp
(

Ci
Ti

)
(20)

Taking cube of switching parameter would yield (20) as:

Paci = (Pa_max)

(
Ci
Ti

)3
(21)

During the search process in ACSA, appropriate samples must be selected for a smooth
operation. The samples are defined as the duty cycle, i.e., Di (i = 1, 2, 3, . . .. . ., n), where n is
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the total number of samples. The value of power at MPP is defined as the fitness function
(J). The voltage samples produced according to Levy’s distribution are provided as follows:

Dt+1
i = Dt

i + α⊕ Levy(λ) (22)

α = α0(dbest − di) (23)

where α is the step size and λ denotes a variance.
In the proposed method, fast convergence is achieved due to the high initial population,

while the large steps yield better GMPP and avoid the LMPP traps. Furthermore, this
technique minimizes the computational time, improves the PV system’s performance, and
significantly minimizes the oscillation around GMPP.

2.2.22. CSA with Golden Section Search (GSS)

Similarly, the author in [77] proposed a hybrid method that combines the advantages
of both CSA and GSS in one algorithm. In this method, CSA is responsible for accurately
locating the tracking area where GMPP lies, whereas GSS is responsible for locating the
exact GMPP. This method has the advantage of high tracking accuracy by limiting the MPP
inside a specified tracking area. The tracking area is continuously shrunk by using a golden
ratio until the GMPP is accurately located. Although the tracking speed to locate the GMPP
is increased but it makes the algorithm complex and expensive.

2.2.23. ANN with Rational Quadratic Gaussian Process Regression (RQGPR) and Coarse
Gaussian Support Vector Machine (CGSVM)

An ANN is very flexible in terms of input and output variables. Therefore, when it is
used to extract the MP from the PV, the input variables can be non-electrical (irradiance,
temperature) or electrical (power, current, voltage). Similarly, the output can be current or
voltage at MPP or the duty cycle of the converter. Moreover, ANN shows very efficient
performance, having a fast dynamic response and low steady-state oscillations. Besides all
these advantages, a major challenge in designing an ANN-based MPPT technique is that it
requires large and accurate data sets to train the ANN for efficient tracking [78].

To accurately train the ANN that efficiently and precisely tracks the MPP under PSC,
different hybrid techniques have been developed. The authors in [79] proposed a RQGPR. A
RQGPR method uses real-time samples to effectively create large, accurate, and acceptable
training data sets that are required to train an ANN for proper tracking of GMPPT under
PSCs. Similarly, the same authors use a CGSVM to train ANN for the MPPT task [79]. In
this method, a few data sets (19 instances) were collected from the PSIM software, and
based on these data sets, a CGSVM method is used to predict and generate a new training
data set for ANN. The schematic of a CGSVM-trained ANN is presented in Figure 20. From
this research, it can be observed that the regression error and mean square error statistics of
the RQGPR and CGSVM-based ANN methods are better compared with the conventional
ANN-based MPPT technique.
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2.2.24. ANN with Fuzzy Particle Swarm Optimization Gravitational Search Algorithm
(FPSOGSA)

To improve the tracking performance of the ANN-based MPPT technique, it is com-
bined with the FPSOGSA [80]. In this hybrid technique, FPSOGSA is used to train and
optimize an ANN algorithm. Hence, by using FPSOGSA, an appropriate initiation function
for all the layers of the ANN structure is determined that results in fast and accurate track-
ing efficiency with low steady state. However, the implementation cost and complexity
of this algorithm are very high. A schematic of an FPSOGSA-trained ANN is shown in
Figure 21.
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2.2.25. ANN with GSA and Pattern Search Algorithm (PSA)

The author in [81] proposed a hybrid algorithm in which GSA and PSA are combined
together to train an ANN algorithm for MPPT applications. A schematic flowchart of this
MPPT technique is presented in Figure 22. In this method, temperature and irradiance are
considered input variables, while the optimal voltage is taken as the output variable of
GSA-PSA. The optimal output voltage of GSA-PSA is used to regulate the ANN, which in
turn has the responsibility to track the MPP accurately. Moreover, a P and O algorithm is
also used in this technique that considers the sampled current, voltage, and output of ANN
as input variables and starts to operate when ANN is unable to accurately locate the MPP.
Hence, by using this hybrid technique, the number of samples required for ANN training
is considerably reduced, resulting in a low computational burden.
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2.2.26. ANN with GA

The author in [82] proposed a hybrid technique in which a GA is used to optimize the
ANN algorithm to accurately find the GMPP under PSC. In this method, the optimized
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data from the GA is used to train the ANN by using a Bayesian regulation technique
that predicts the MPP at given irradiance and temperature. Hence, the performance of
the proposed technique to track the MPP is considerably improved compared with the
conventional ANN algorithm.

2.2.27. ANN with FLC

In [83], the authors proposed an ANFIS technique that combines the advantages of
ANN with FLC while discarding the disadvantages. An ANFIS is flexible, optimal, and
adaptable to any new configuration of PV system. The system under consideration in [83]
uses a Battery Energy Storage System (BESS) in a PV system. Therefore, initially, the
amount of PV-generated energy is forecasted to set the output trends by utilizing an ANFIS
algorithm, and then the capacity of BESS is calculated based on the forecasted output data.
The load power is then calculated and categorized into two sections by using a Cartesian
plan, i.e., left plane and right plane, from the peak load, for the purpose of seeking BESS
equal capacity. Moreover, FLC provides network-switching sequence over consumption to
choose the best BESS utilization for power peak curtailment. A schematic flowchart of the
proposed method is presented in Figure 23.
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2.2.28. ANN with Scanning Procedure (SP) Technique

A hybrid MPPT technique proposed in [84] combines an ANN algorithm with the SP
technique. In this method, initially, SP is activated to compare the value of actual power
with the previous power and store the value that is highest among them, referred to as the
MP value (PM(k)). To obtain the GMPP, every PM(k) is compared with the previous MP
value (PM(k − 1)) such that GMPP = PM(k). (PM(k − 1)). Once the GMPP is detected, in the
next step, an ANN is activated to generate a suitable duty cycle that is used to control the
switch of the converter.

2.2.29. ANN with Ant Colony Optimization (ACO)

In [85], an ACO technique and an ANN algorithm are integrated together to form
the ACO-ANN technique. In this hybrid technique, an ACO is used to train the multi-
layer ANN, develop the connection weights, and generate the optimal duty cycle for the
converter. Hence, ANN acts as a podium to generate the optimal duty cycle for the switch
to reach the MPP with a fast dynamic response and enable the PV generator to operate near
the MPP.
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2.2.30. ANN with Monte Carlo (MC) Filtering

The authors in [86] proposed a hybrid MPPT technique where ANN is combined with
sequential MC filtering. In this method, ANN is used for forecasting the MPP, whereas
MC filtering is used for state estimation. Moreover, IC is used as a state-space model for
the sequential estimation of MPP, whereas ANN is used to predict the GMPP based on
observed data (irradiance, current, voltage, etc.) in order to improve the estimation made
by MC. Furthermore, in a proposed method, a detection technique is used to detect a rapid
variation in irradiance. Upon detection of rapidly varying irradiance, the MC-based MPPT
technique uses ANN support for MP extraction.

2.2.31. ANN with Back Stepping (BS) Controller

In [87], an ANN vision-based MPPT technique is combined with BS controller to accu-
rately locate the GMPP under PSCs. In this method, real-time changes in solar irradiance
and PSCs are identified by an ANN-based webcam to provide MP and a reference voltage.
A BS controller is used to control the DC–DC converter by controlling the time varying
error between the actual PV output voltage and the ANN-generated maximum reference
voltage. However, the proposed method efficiently extracts the MP from the PV panel, but
in the case of large power plants, the applicability, complexity, computational process, and
computational burden are not taken into consideration.

2.2.32. Improved ANN with PSO

The authors in [88] proposed a hybrid MPPT technique in which an Improved ANN
(IANN) is combined with the PSO algorithm, where the primary focus is to improve
the conversion efficiency and tracking capability. Generally, IANN executes a mapping
among the input and output patterns rather than a problem statement. Therefore, it is
very beneficial in forecasting the non-linear behaviour of varying solar irradiance and
temperature. The tracking efficiency (ηMPP) of IANN-PSO is provided as:

ηMPP =
avg(Pss)

max(PEC)
(24)

where avg(Pss) in the average output power and max(PEC) is the maximum available
power. The output equation of IANN is provided as:

θIANN = ∑ eiwi + θ (25)

where ei denotes an input error, wi presents the weight function of related input, and θ
denotes the minimum number of neurons required for activation.

All the weight values for IANN are placed in a space having n dimensions; therefore,
the weights should be optimized in such a manner that they track the position of the
particles in PSO. During the evaluation of particle fitness, the optimal weights are allocated
to IANN, and thus its predicted accuracy is determined as the fitness for particles. The
fitness function of the particles in PSO is provided as:

f itness f unction = max[ηMPP]T (26)

If the fitness is best for the particles, it would be considered as a personal best (Pbest),
and if it is best for the swarm, it would be taken as a Gbest. The position of Gbest after some
iterations yields to optimized weights for IANN. Moreover, the position of each particle is
provided as:

vi(t) = vi(t− 1) + c1r1[Pbest(t)− xi(t− 1)] + c2r2[gbest(t)− xi(t− 1)] (27)
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where xi(t) is the position of the particle, vi(t) is the velocity, and c1 and c2 present the
irradiance and temperature, respectively. A flowchart of the IANN-PSO is presented in
Figure 24.
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2.2.33. Radial Basis Function Neural Network (RBFNN) with PSO

An estimation mechanism based on automatic learning methods such as the RBFNN
creates a model for an unknown function to find a relation among the input and output
data. In RBFNN, the weight, centre, and variance of the radial base function must be
selected appropriately. If these variables are not selected appropriately, then it can affect the
accuracy and validity of the model. Moreover, the unwanted growth in the size of hidden
layers of RBFNN increases the computational time, which is another disadvantage [19].
Therefore, to cope with these issues, the authors in [89] proposed a novel hybrid MPPT
technique in which RBFNN is combined with PSO to extract the MP under PSCs. In
this method, an adaptive control strategy based on PSO is used to optimize the RBFNN
parameters. The adaptive PSO dynamically adjusts the new velocity vector and inertia
weight factors at every sampling time. The adaptive PSO also determines the connection
weights, widths, and centres of RBFNN to ensure a good follow-up of MPPT. Moreover,
FLC is also used in this system to generate the controlled signals for the switch of the boost
converter.

2.2.34. RBFNN with Back-Stepping Terminal Sliding Mode Controller (BTSMC)

Similarly, another RBFNN-based MPPT technique in which it is combined with a
nonlinear BTSMC is presented in [90]. In this method, RBFNN uses a relation between PSC,
i.e., irradiance, temperature, and maximum PV voltage, to generate a reference voltage.
The BTSMC tracks the reference voltage and generates the control signal for the switch
of the non-inverting buck-boost converter. The proposed method improves the transient
response, extracts the MP from the PV panel due to less chattering, and increases tracking
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accuracy compared with individual usage of RBFNN and SMC. Moreover, a Lyapunov
function is used to validate the finite time stability of the system.

2.2.35. GWO with β-Algorithm

A GWO technique a prominent MPPT techniques that ensures fast tracking and
rapid convergence under PSC. However, high oscillations are observed around MPP at
steady-state conditions [91]. Therefore, to cope with this challenge, the researchers in [92]
proposed a hybrid technique in which GWO is combined with the β-algorithm for PV
MPPT application. In this method, a disadvantageous feature of GWO (high steady-state
oscillations) and β-algorithm (variables dependency on PV array characteristics) is active
while their advantageous features are enhanced. The main objective of the proposed GWO-
β technique is to reduce the power oscillations around GMPP and enhance the convergence
speed that results in high efficiency. In this method, a GWO method is used to attain a
GMPP, meanwhile a β technique is applied to calculate the MPPT reference according to PV
current and voltage at GMPP. A flowchart of this proposed MPPT technique is presented in
Figure 25.
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Figure 25. Flowchart of GWO-Beta hybrid MPPT technique [92].

2.2.36. GWO with FLC

As FLC has an advantage of very low steady-state oscillation around MPP but it may
stick to one of the LMPPs. Therefore, the authors in [93] combined a GWO with FLC such
that the resultant controller has low oscillations and fluctuations around MPP and tracks
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the GMPP accurately with a fast dynamic response under PSC. In this hybrid technique,
a GWO is initially applied to track the GMPP in an efficient and fast way. Then an FLC
is applied to reduce the steady-state power oscillations around GMPP that were tracked
by GWO. Hence, the advantageous features of GWO (the ability to track GMPP under
PSC) and FLC (low oscillations around GMPP) were enhanced, which results in high
conversion efficiency.

2.2.37. GWO with Crow Search Algorithm (CSA)

The operation of the FA is based on the behaviour of a firefly. The authors in [25]
combine GWO with the CSA, referred to as GWO-CSA, for MPP tracking under PSC. In this
technique, the advantages of both algorithms are combined, resulting in high convergence
speed and accuracy, and particularly avoids getting trapped by LMPP. Initially, a GWO
technique is used to solve the MPPT problem and determine the optimum duty cycle. The
duty cycle determined by GWO is then used as an input to CSA. The performance of this
technique is tested considering different irradiances, temperatures, and types of DC–DC
converters. It is concluded that the GWO-CSA shows high performance and efficiency
compared with the individual use of GWO and CSA.

2.2.38. GWO with Golden Section Optimization (GSO)

In [94], a GWO is integrated with GSO to track the MP. The operation of this MPPT
technique can be divided into two stages, as presented in Figure 26. In the 1st stage, a
modified GWO is applied for global search. In a modified GWO, the weights of the wolf
leaders are adjusted automatically with hunting evaluations that contribute to accelerating
the hunting. Furthermore, an idea of search density is also presented, which determines the
wolf count and maximum number of iterations. In a 2nd stage, a GSO is applied for local
search to reduce tracking time by avoiding unnecessary searches. Moreover, to increase the
MPPT system reliability, a restart judgement based on the quasi-incline of the P-V curve is
proposed in this technique.

2.2.39. ANFIS with Crowded Plant Height Optimization (CPHO)

The authors in [95] proposed a hybrid MPPT technique to cope with the problems of
low tracking efficiency and speed, high steady-state oscillations, and low performance dur-
ing PSCs of the conventional techniques. In this hybrid technique, an ANFIS is combined
with the CPHO algorithm. Under UEC, a CPHO is used to determine the MPP.

However, in the case of PSCs, to accurately locate a real GMPP and generate an optimal
duty cycle, a combined approach of ANFIS and CPHO algorithms is used. The performance
of the ANFIS-CPHO is divided into two stages. In the 1st stage, an ANFIS estimates a
GMPP among numerous LMPPs and tracks near a peak power point. In the 2nd stage, a
CPHO algorithm is activated to locate an accurate GMPP. As a result, a proposed algorithm
detects the GMPP with more precision and accuracy with low duty cycle oscillations. A
proposed algorithm was compared with ANFIS, and it is found that the time required for
ANFIS to reach the GMPP was 92 ms, while ANFIS-CPHO only takes 39 ms.
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2.2.40. FLC with MSFLA

FLC is very flexible in terms of input and output variables and shows significant per-
formance to track the MPPT with low steady-state oscillations. Besides all these advantages,
a major challenge in designing FLC-based techniques is that they are very dependent on
the user’s knowledge and may become stuck on one of the LMPP that affect the system’s
performance. Therefore, the authors in [96] proposed a hybrid MPPT technique that com-
bines FLC with the Modified Shuffled Frog Leaping Algorithm (MSFLA) to overcome the
disadvantageous features of FLC. In this method, a theoretical framework for efficiently
tuning the controller’s parameters is developed that accurately tracks the GMPP under
different PSCs. Moreover, simulation and hardware results show that 99% efficiency is
achieved by the FLC-MSFLA technique with fast convergence speed and low oscillations.
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2.2.41. Beta Fuzzy Logic Controller

To enhance the tracking capability of conventional FLC, the authors in [97] in-
troduced a beta (β) parameter as an input of the FLC. In this work, a β variable was
introduced rather than the PV output power or varying terminal voltage as a 3rd input
of FLC. Hence, the FLC with β parameter covers a wider range of operating conditions
and simplifies the rule number, improving steady and dynamic performances as a result.
Moreover, this method reduces the user knowledge dependency by measuring the cur-
rent and voltage at every sampling time. It also enhances tracking accuracy and speed
and offers zero oscillations.

2.2.42. FLC with GA

While designing FLC, two major steps were involved: structure and parameter identi-
fication. Structure identification involves the selection of a suitable control structure, such
as the size of the rule base. In the parameter identification process, the values of parameters
are determined, such as the contents of the rule base and the shape of the membership
function. Therefore, GA is used to optimize the Fuzzy Rules (FRs) and Membership Func-
tions (MFs) of FLC to overcome its disadvantageous feature, i.e., dependency on human
knowledge [98]. In this method, both the FRs and MFs are optimized simultaneously,
which results in high controller performance [99]. A GA is used to accurately calculate the
peak locations and base lengths of the membership function in FLC, for which the FRs have
already been generated. Thus, the proposed solution leads to improved performance of the
MPPT tracker with a fast response time and reduced oscillations.

2.2.43. FLC with PI

A PI controller consists of proportional and integral gains, whose values are generally
fixed constants. Hence, in case of system uncertainty or under PSC, a PI controller with fixed
gain values is unable to perform satisfactorily. Therefore, to cope with this limitation of a PI
controller, the authors in [100] proposed a technique in which the fixed gain parameters are
updated at every sampling time by using FLC. The P-V characteristic curves of PV panels
are used as the inputs of FLC. The FRs and MFs of FLC are designed on the fact that if a slop
increases, it gets away from the MPP, and if a slop decreases, it moves towards the MPP.
Moreover, the gains of PI controllers are adjusted in such a manner that the gains increase
in the transient-state and decrease in the steady state. Hence, this approach increases the
tracking speed of the algorithm and improves the steady-state error.

2.2.44. FLC with Teaching Learning-Based Optimization (TLBO)

The authors in [101] used a TLBO approach for optimizing the MFs of FLC and
generating an appropriate duty cycle for MPPT. A schematic flowchart of this hybrid
technique is presented in Figure 27. A TLBO has low dependency on system parameters;
typical control factors like number of generations and population size [102]. This technique
consists of two phases, i.e., Teacher Phase (TP) and Learner Phase (LP) and examines the
effect of teachers on learners. In a TP, the learners attain knowledge from the teacher.
Generally, a teacher is considered a competent knowledgeable person who shares their
expertise with the learners. In an LP, the learners gain knowledge through interaction with
each other. During the LP, learners also gain knowledge via engaging with one another; as
a result, their performance is enhanced. A learner increases his or her knowledge through
random interactions with other learners. If other learners have higher knowledge, then
the peer learner picks up and learn new things. Additionally, simulation studies show
that, compared with conventional FLC, TLBO-based MFs improve both MPPT convergence
speed and tracking accuracy.
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2.2.45. Hybrid Taguchi Genetic Algorithm (HTGA)

The usage of a GA for PV MPPT applications is not very favourable due to its com-
plicated calculations, possibility to trap LMPP, and low tracking accuracy. Therefore, to
overcome these limitations, it is combined with different other algorithms, and as a result,
some new hybrid techniques have come into existence. One such example is a HTGA that
is proposed in [103] for the extraction of MP from the PV system. Although, HTGA is
more complex than GA, it enhances the calculation capability of variables, shows better
performance under PSCs, and has better tracking accuracy. The operational methodology
of HTGA consists of ten steps, as presented in Figure 28. These steps are: 1. start an
algorithm; 2. initialize and set the parameters population N = 100, mutation rate y%, and
crossover rate x%; 3. generate the position; 4. P = I × V × Fƒ represents the power of the
PV system, where ƒ is the fitness function and is provided as f = P2; 5. when the algorithm
meets the termination criteria, i.e., Pmax = I × V × Fƒ, then the algorithm skips to step 9.
On the contrary, if the termination criteria are not satisfied, then the algorithm moves on
to step 6; in 6 step, crossover operation is performed, i.e., x% of the chromosomes doing
two-point crossover; 7. the Taguchi method is applied to generate the new chromosomes;
8. the newly generated chromosomes generated by the Taguchi method are then passed
through a mutation operation where the mutation nodes are selected randomly; 9. the
fitness value and the output of the algorithm are achieved; 10. end of the algorithm.
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2.2.46. GA with FA and DE

In [104], a hybrid M PPT technique was designed where GA is combined with FA
while DE is used to enhance the calculation process. In this method, the complex calculation
of GA is simplified by integrating the attractive process of FA and the mutation process
of DE. Due to this integration, the proposed method overcomes the disadvantages of GA,
such as its low convergence speed and high execution time. Moreover, compared with GA,
the proposed technique improves tracking accuracy by 4.16% and execution time by 69.4%.
Similarly, compared with FA, the tracking accuracy and execution time are improved by
1.85% and 42.9%, respectively. Hence, it can be concluded that the high accuracy and
fast dynamic response under PSCs are the main advantageous features of this method. A
schematic flowchart of this technique is depicted in Figure 29.
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2.2.47. GA with ACO

To enhance the speed and robustness of the GA MPPT technique, the authors in [105]
proposed a hybrid technique where GA is combined with ACO. A flowchart of hybrid
GA-ACO is presented in Figure 30. A GA is used to find a feasible solution and ensure
fast convergence, while an ACO is used to search a subspace and avoid the LMPP traps.
Due to these characteristics, a proposed technique converges very fast, and in some cases,
GA-ACO accurately locates the GMPP in the 1st iteration. In the same environmental
conditions, a GA-ACO is compared with P and O and ACO algorithms, and it can be
concluded that both (P and O and ACO) algorithms take more than 20 iterations to reach
a solution, while the GA-ACO technique takes only 10 iterations. Hence, it is stable,
robust, and accurate, and can reach GMPP with rapid speed even in harsh temperature
and irradiance conditions.
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2.2.48. Deterministic Modified Jaya (DM-Jaya) Method

One of the major drawbacks of the Jaya technique is the stochastic process, where
the movement of particles is based on irregular numbers. This unpredictable process may
result in a high computational burden, which in turn affects the convergence speed and the
tracking accuracy. Therefore, to cope with this drawback, the authors in [106] proposed a
DM-Jaya method for GMPP tracking. In this method, the step size in the neighbourhood of
GMPP and the method used to update the formula of the conventional Jaya method are
greatly improved. With this approach, the random or irregular numbers in terms of update
solutions are eliminated, making the particle solutions’ movement toward the GMPP more
deterministic. These improvements provide many pros, including the tuning of only one
parameter, fast convergence speed, easy implementation, and zero steady-state oscillations.
A flowchart of this proposed DM-Jaya is depicted in Figure 31.
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2.2.49. Jaya Method with DE

A hybrid MPPT technique where the Jaya method is combined with the DE method
was proposed in [107]. In this hybrid technique, all the solutions are pushed away from
the MPP by the Jaya method, while all the solutions are pulled towards the MPP by the
DE algorithm. Hence, by using this push-pull mechanism, the proposed MPPT method
results in fast convergence. Moreover, a combined method like this can efficiently improve
searching capability while reducing the number of search agents and iterations.

2.2.50. Estimation and Revision (E and R) Method

To track the MPP of the PV system under PSCs, the authors in [108] proposed a
hybrid algorithm referred to as the E and R method, as presented in Figure 32. In this
computational method, the mathematical model and equations of the PV are used to find
the MPP. An E and R method consists of three stages: MPP estimation, revision, and steady
state. In the MPP estimation stage, the temperature of the PV module is measured, and the
VMPP is estimated using (28), as provided:
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In the revision stage, a fixed step size P and O algorithm can be used. However, in
this technique, the authors use a Secant Method (SM) [109] in the revision stage. An SM
method has the advantage of variable step size and depends on the condition that dP/dV
is equal to zero at MPP. In a revision stage, the MPP is tracked until the value of dP/dV
comes below the predefined tolerance level. If the value of dP/dV becomes lower than the
tolerance level, then the algorithm shifts towards the next stage, i.e., steady state. In this
stage, the output power is monitored, if the variation in the power exceeds the tolerance
level, then the algorithm moves back to the estimation stage and the process starts again.

2.2.51. Whale Optimization (WO) with DE

In this technique, two bio-inspired algorithms, i.e., WO and DE techniques, are com-
bined to increase the accuracy and dynamic response of the system to track the MPP under
PSC [12]. Due to the fast dynamic response and high searching capability of the DE algo-
rithm, it is integrated in series with the WO. A DE algorithm pulls up the WO algorithm to
jump out of the stagnation on LMPP to reduce the number of iterations or spiral paths. A
DE algorithm in this technique chooses three favourable positions of the whale. All three
positions go through a process of mutation, crossover, and selection in the WO algorithm
to select the single best position of the whale. Therefore, in every spiral path, the WO
algorithm obtains support from the DE algorithm, which reduces the iteration number and
computation burden. Due to these features, this technique shows high convergence speed
and tracks the MPP with high accuracy and reduced steady-state oscillations.

2.2.52. Dynamic Leader-Based Collective Intelligence (DLCI) Algorithm

The authors in [110] proposed a DLCI algorithm for PV MPPT applications. This
method consists of five different sub-optimizers (GWO, WOA, MFO, ABC, and PSO) that
autonomously search for an optimal solution and coordinate with the Dynamic Leader (DL)
to improve the quality of the system. A sub-optimizer with the best solution is selected
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as DL such that it guides the other sub-optimizers for efficient searching. A schematic
flowchart of the DLCI optimization framework is presented in Figure 33. Although, this
method results in high computational and implementation complexity, it enhances the
search capability and offers fast convergence compared with the use of an individual sub-
optimizer algorithm. Moreover, it offers low steady-state oscillations and high conversion
efficiency compared with the single meta-heuristic-based MPPT method.
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2.2.53. Cauchy and Gaussian Sine Cosine Optimization (CGSCO)

In [111], a Cauchy density and Gaussian distribution function is integrated with the
Sine Cosine Algorithm (SCA) to develop a hybrid technique referred to as CGSCO. In this
technique, the main objective is to extract the MP from the PV system and efficiently charge
the battery by maximizing the battery-charging current. To track the MPP, initially, an SCA
is utilized to generate the initial population, then a Cauchy density is applied to improve
the searching capability of the population and avoid getting trapped in LMPPs. Moreover,
a Gaussian function is utilized to enhance the exploration part of the searching mechanism.
The combined effect of these algorithms results in fast convergence of MPP (only in a few
steps) with low computational burden. Moreover, this technique does not depend on the
initial parameter values and uses only the current sensor for sensing, which results in a
reduction in implementation cost.

2.3. Combination of Conventional with Soft Computing Algorithms

The techniques that are categorized in this type are a combination of conventional
and soft computing algorithms. Numerous MPPT techniques that fall in this category are
discussed in detail below and are presented in Figure 34.
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2.3.1. P and O with Power Increment (PInc)

A traditional P and O method is unable to accurately locate the GMPP under VECs
and gets trapped in LMPP. Therefore, to cope with this challenge, a hybrid algorithm
is presented in [46], where a PInc method is integrated with the P and O technique to
discover the GMPP under VEC. A schematic flowchart is presented in Figure 35. This
technique is preferably endorsed for such sites that regularly face shading circumstances
due to the capability of the PInc method to differentiate between global and local maxima.
The operation of this algorithm can be divided into two stages. In the 1st stage, the PIN
technique is applied to change the PV panel voltage among the two initially defined values
to generate the converter duty cycle over a particular number of iterations. After the
completion of every iteration, the output power is evaluated by multiplying the measured
current with voltage. A new and old power are compared with each other; if the new
power’s value is larger than the previous one, then it is considered a new MPP. The PInc
stage limits the MPP within a specified area, and the algorithm is then switched to P and O
to accurately track the exact MPP. In this stage, the power calculation is evaluated again
and compared with the preceding one. The algorithm chooses the next perturbation step in
the same path if the power value is greater than the previous one, and vice versa.
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2.3.2. P and O with PSO

In [112], both P and O and PSO are combined with PSO to track the GMPP with
reduced oscillation under PSC. The operation of this technique is explained in 12 different
steps, as presented in Figure 36. In the 1st step, the nominal values of voltage and current
are set. Under UEC, a P and O is used to locate the MPP before the occurrence of any partial
shading scenario (2nd and 3rd steps). If P and O accurately tracks the MPP, it saves all the
information, i.e., power, voltage, etc. (4th step). The saved values of current and voltage
are then compared with the user-defined current and voltage values to detect the PSC (5th
step). Once the PSC is confirmed, the algorithm determines whether the 1st peak from the
right side is the GMPPP or LMPP (6th step). If the defined inequality power constraint is
satisfied, then the present GMPP is considered to be true. However, if it is not true, then
the “Main Program” calls the “subroutine” to track the GMPP (7th step). In this procedure,
an appropriate voltage window is defined where the PSO searches for GMPP (8th step)
and proceeds to the 9th step, where the output power extracted by the PSO is stored. In the
10th step, it is determined whether there is a necessity to track the other MPP peak or not.
If the power difference constraint is met, all the MPP values are compared to confirm the
value of GMPP. If it is not true, then the procedure repeats itself, and all the peaks are once
again taken into account in order to precisely locate the GMPP.
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2.3.3. P and O with Improved PSO

Another hybrid technique proposed in [113] combines an Improved PSO (IPSO) al-
gorithm with a variable step P and O technique. A schematic of this hybrid structure is
presented in Figure 37. In this hybrid technique, a traditional PSO method is modified
1st by incorporating the grouping concept of Shuffled Frog Leaping Algorithm (SFLA)
into PSO, which guarantees the searching of GMPP and ensures the differences among the
particles. In the next step, a variable step P and O is applied to efficiently and precisely
track the GMPP under PSC. When the effectiveness of this hybrid algorithm is compared



Energies 2023, 16, 5665 40 of 64

with PSO, it is found that the proposed technique outperforms PSO in terms of convergence
speed and accuracy.
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2.3.4. P and O with FLC

In [114], P and O is combined with the FLC to overcome the disadvantageous features
of slow tracking speed and large steady-state oscillations of P and O. In this hybrid tech-
nique, a FLC is implemented to locate the optimal operating point near the GMPP in the
1st stage. In the 2nd stage, a P and O is used to compare the two sequential points that
continuously deliver the maximum output power while also changing the duty cycle of the
converter based on the difference in sign among the two points on the P-V curve.

2.3.5. SSA with P and O

A conventional SSA has the advantage of simple upgrade functionality, but it creates
large oscillations at the output and is unable to perform fast tracking [29]. Therefore, the
authors in [115] proposed a hybrid technique in which an SSA is integrated with the P and
O to track the MPP. To track the MPP under UEC, the P and O is executed. However, in
the case of VEC or PSC, a combined approach of SSA and P and O is used for tracking
the MPP. In VEC, SSA is executed first to find the preliminary global peak and is then
followed by the P and O algorithm to achieve faster convergence. Hence, this results in
high tracking accuracy.

2.3.6. GWO with P and O

In [116], GWO and P and O are combined to improve the convergence speed, tracking
capability, and accuracy of the system. Unlike the other two-stage hybrid algorithms, a
GWO operates in the 1st stage while P and O operates in the 2nd stage. In the 1st stage, a
GWO is used in off-line mode to push the system operating point close to MPP. In the 2nd
stage, the P and O technique is used in an online mode to achieve faster convergence and
reduce the steady-state oscillations. Moreover, a GWO algorithm produces the controlled
signals (actually the location of the wolf) for the boost converter, thus eliminating the use
of the conventional controller (PI, etc.) loop. Besides all the advantages, this technique also
reduces the controller adjustment burden and simplifies the overall control structure.
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2.3.7. P and O with Artificial Bee Colony (ABC)

In [13] the P and O algorithm is combined with the ABC algorithm to enhance the
advantageous features of both algorithms. In this hybrid method, in a 1st stage, an ABC
algorithm is used for GMPP tracking while P and O in a 2nd stage is used to track a LMPP
to obtain an efficient and fast MPPT. Thus, the global and local searching capabilities of
ABC and P and O, respectively, are efficiently combined to provide an optimum duty cycle
for switch of the converter. From the results it can be observed that this technique accurately
and efficiently tracks the MPP under PSC with low oscillations and high convergence speed
while attaining an efficiency of more than 99.5%. A complete schematic of this P and O-ABC
technique is shown in Figure 38.
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2.3.8. P and O with Adaptive Integral Derivative Sliding Mode (AIDSM) Controller

The authors in [117] proposed a voltage-oriented hybrid MPPT technique in which a P
and O is integrated with an AIDSM controller. In this method, initially, a P and O technique
is used for generating the reference output voltage of the PV module and providing the
control signal. Then an AIDSM is employed to regulate the measured PV voltage according
to the reference generated by the P and O algorithm. Moreover, an AIDSM consists of two
blocks. The 1st block is called an IDSM and is designed through a new sliding surface
where the integral term is added for minimizing the steady-state error and the derivative
term is added for eliminating the overshoot that occurs during fast variations in solar
insolation level. In the 2nd block, an adaptive technique is applied to determine the gains
of the IDSM controller at every irradiance level.

2.3.9. P and O with Fireworks Algorithm (FWA)

The author in [118] proposed a hybrid MPPT technique that can differentiate between
the uniform and non-uniform irradiance levels by using the PV panel current and voltage.
In this hybrid technique, P and O is combined with FWA. In this technique, P and O
is employed for tracking MPP under UEC and FWA is used for VEC. During UEC, a P
and O is employed because of its high potential to track the MPP with low steady-state
oscillations compared with FWA. Alternatively, under PSC or VEC, FWA is used due to its
high tracking capability of GMPP and fast convergence. Under PSC, when the proposed
technique is initiated, FWA is called having no prior information about the shading pattern
(step 1). P and O is applied for tracking of GMPP and check whether MPP is tracked or not
(steps 2 and 3). Once the GMPP is tracked, the values of current and voltage at MPP (IMPP
and VMPP, respectively) are stored and continuously monitored (step 4). When variations
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in the irradiance level occur, the values of IMPP and VMPP also vary, and as a result, the
power at MPP also changes. The variation in these values is compared and computed
against the recently stored values (step 5). Based on the difference in values of IMPP and
VMPP the current state of PSC is determined (step 6). When a PSC is not detected, the P and
O algorithm is allowed to perform its operation near the present MPP. On the contrary, if
PSC is detected, FWA is called to track the GMPP (step 1). A schematic flowchart of P and
O-FWA is presented in Figure 39.
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2.3.10. P and O with ACO

The authors in [119] presented a hybrid technique in which P and O is combined with
ACO to efficiently locate and extract the MPP under PSC. Initially, in the scanning stage,
the ACO’s foraging ants are used to carry out the global search, and after a predetermined
number of ant movements, the most effective solution is determined. Once the most
optimal solution is attained, in the next step, the P and O method is used to track the exact
location of GMPP. This cascaded structure integrates the advantageous features of both P
and O and ACO and leads towards efficient convergence with fast and smooth tracking
characteristics.

2.3.11. FLC with Adaptive P and O

A hybrid technique presented in [120] combines FLC with Adaptive Perturb and
Observe (AP and O) and is referred to as Artificial Intelligence-Based Adaptive Perturb
and Observe (AIAP and O). A schematic flowchart of AIAP and O is depicted in Figure 40.
The operation of this hybrid technique is based on the variation in the converter’s duty
cycle. As the converter’s duty cycle varies, the system’s output power changes accordingly.
Therefore, the system’s output power is examined to determine whether to decrease or
increase the duty cycle in the upcoming cycle. If an increment in duty cycle results in
high power, then the direction of perturbation is the same as the previous cycle. On
the contrary, if a decrease in power is observed, then the direction of perturbation is in
contrast with the previous cycle. Hence, the increment or decrement on the duty cycle is
based on the perturbation (∆D) that is generated by the AI system. Although this hybrid
technique increases the mathematical computation, it provides fast and efficient accuracy
with reduced oscillation around MPP.
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2.3.12. MP and O with FLC

In [121], an MP and O technique is combined with FLC for MPPT application. In
this method, the step size of the duty cycle of the P and O algorithm is made adaptive
using FLC. This method improves the steady as well as dynamic response effectively and
simultaneously. The FLC computes the desired step size of duty cycle in every atmospheric
condition from the P-V curve and change in sign of PV output power. Hence, if the
operating point of the PV system is far from the MPP, then the duty cycle takes a large step.
As soon as the PV operating point becomes close to the MPP, the step size becomes smaller.
Lastly, when the MPP is achieved, the step size becomes very small until a change in the
environmental conditions happens.

2.3.13. P and O with GSA

The authors in [122] combined P and O and GSA together to enhance the tracking
speed and accuracy of an individual method for MPPT applications. This hybrid method
operates in five steps. In the 1st step, the size of the population is assigned along with the
upper and lower limits of the converter’s duty cycle, which is generally set in the range
of 10% to 90% in the 1st step. In the 2nd step, to attain an optimal convergence speed, the
agents (solar voltages) are placed uniformly between the search space intervals. Based
on the current and voltage, the output power is measured for every agent (the mass of
the agent is considered as power) in the 3rd step. The fourth step involves calculating the
force on each agent and the force between the agents. In the final step, the acceleration of
each agent is computed. As the proposed hybrid technique operates in a cascaded manner,
before triggering the P and O technique, the last three steps are frequently repeated until the
convergence criteria are satisfied. When the P and O algorithm is activated, it continuously
searches for the GMPP. For every two subsequent perturbations, a microcontroller measures
the power variation. If the power variation exceeds the assigned threshold value, the MPPT
is reinitiated.
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2.3.14. P and O with Surface-Based Polynomial Fitting (SPF)

In [123], an SPF algorithm is combined with a P and O algorithm for PV MPPT
applications. In this method, to extract the MP from the PV panel under UEC, the P and
O technique is utilized. However, in the case of VEC, a combined approach of SPF-P
and O is employed. In this combined approach, the P and O efficiency is improved by
using a polynomial estimation that is optimized over the structure of the data. At last,
in the MPPT stage, the resultant coefficients of the algorithm are used to achieve a more
accurate estimation that fits the PV panel characteristic curves. The proficiency and efficacy
of the SPF-P and O technique are verified under 133 different shading patterns, and it is
concluded that this method tracks the GMPP accurately in all cases with fast convergence
and low steady-state oscillations.

2.3.15. P and O with SA

The MPP locating technique proposed in [124] combines the SA algorithm with the
P and O algorithm for GMPP searching. In this method, initially, an SA algorithm is
employed, which is a random search technique inspired by the mechanism of annealing
in metals. In SA, initially the duty cycle value is set high, and it is compared with the
randomly generated value. In the next step, the power generated by these duty cycles
is compared. If a random duty cycle generates more power, then it is assumed to be the
current best solution, and this power is compared with the level of acceptable probability
(the predetermined limit). The last duty cycle calculated is taken into consideration as the
current solution if the acceptance probability is greater than the random value; however, if
it is lower, the initial duty cycle computed is the current solution. Hence, a duty cycle that
generates the worst power may be selected as the best optimal solution, thus enabling the
system to escape the LMPP trap as the algorithm restarts and scans the whole search space
after finding the best solution. After repeating the 3 or 4 iterations, a resultant duty cycle is
then fed to P and O. The P and O then continuously searches for the GMPP. After every
perturbation, the power difference between two adjacent perturbations is calculated and
compared with the predefined threshold value to investigate; if the difference is large, then
it means that irradiance variation occurs.

2.3.16. Simplified Accelerated Particle Swarm Optimization with Hill Climbing

The authors in [125] proposed a hybrid MPPT technique in which a Simplified Ac-
celerated Particle Swarm Optimization (SAPSO) is combined with Hill Climbing (HC)
algorithm. In this method, initially, the HC algorithm is used to explore the nearest MPP.
It measures the actual PV current and voltage, then calculates the power and compares it
with the previous measured value. Hence, the duty cycle of the power switch is adjusted
either by decreasing or by increasing the perturbation size that automatically leads to a new
operating point on P-V curve. If the perturbation size is small, then a deferred convergence
might happen before switching to SAPSO method. On the contrary, if the perturbation
size is large, then it can skip the nearest LMPP. In this method, a convergence is defined
that allows the algorithm to switch towards SAPSO method. When a PV panel is subjected
to PSC, the GMPP is located between 10 and 90% of VOC on P-V curve. After tracking
LMPP by the HC, the search space for SAPSO becomes smaller and ranges from voltage at
LMPP to 90% of VOC. This results in faster convergence compared with PSO and better
performance compared with HC algorithm. A schematic flowchart of SAPSO-HC algorithm
is shown in Figure 41.
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2.3.17. Incremental Conductance with FLC

An Incremental Conductance (IC) algorithm is unable to accurately locate the GMPP
in case of VECs due to its slow convergence speed, high steady-state oscillations, and
possibly to trap in LMPP. Therefore, to overcome these disadvantages, the authors in [126]
proposed a hybrid algorithm in which IC is combined with FLC. In this algorithm, an
FLC is used to adopt the variable step size of an IC algorithm and adjust the duty cycle to
drive the switch of the Cuk converter. Due to the adoptable feature of the FLC, this hybrid
technique accurately locates the GMPP under PSCs with low steady-state oscillations and
fast convergence speed compared with conventional IC. Similarly, the authors in [127]
combined IC with FA to achieve faster convergence, and good tracking accuracy.

2.3.18. IC with GOA

A hybrid technique that combines IC with GOA was proposed in [128]. GOA displays
well-defined supremacy in the event of convergence, power extraction, yields a good
steady-state and dynamic responses, and accuracy to track the MPP under PSC, GOA has a
high tracking time that needs to be enhanced [22]. Hence, to enhance the tracking time in
this hybrid algorithm, the operation of this technique can be categorized into two stages.
In the 1st stage, the GOA is used to locate a suitable tracking area where the GMPP lies.
In the 2nd stage, an IC algorithm is used to accurately locate the GMPP within the area
defined by the GOA in the 1st stage. This hybrid algorithm enhances the tracking speed of
the GOA and locate the GMPP with high accuracy.

2.3.19. IC with Moth Flame Optimizer

In [129], an IC is combined with the Moth Flame Optimizer (MFO) to enhance the
advantageous feature of individual algorithms and eliminate the disadvantageous feature.
Hence, this combined approach results in a faster convergence in the case of uniform
irradiance, and results in high accuracy and speed to track the GMPP in the case of non-
uniform irradiance distribution. In a uniform irradiance distribution, there exists only
a single peak in the P-V graph of the PV system. Therefore, to track the MPP under
normal operation, an IC technique is used. However, in the case of non-uniform irradiance
distribution, when there are multiple LMPP and one GMPP, an MFO algorithm is used to
efficiently and accurately track the GMPP.
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2.3.20. IC with Parallel and Compact Pigeon-Inspired Optimization

In [130], to overcome the disadvantages of IC algorithm, it was combined with Parallel
and Compact Pigeon-Inspired Optimization (PCPIO) algorithm. In a proposed hybrid
MPPT technique, a PCPIO is utilized to quickly locate the area where MPP lies and then
a variable step size IC method is used to exactly locate the MPP. In this method, a local
solution to the problem is avoided by introducing compound constraints, thus resulting
in high accuracy and fast convergence speed. The simulations that are performed in
a Simulink platform shows that the proposed method significantly reduced the power
oscillation, achieve accurate and fast tracking, and enhance the stability of the system under
complex VECs.

2.3.21. IC with PSO

The authors of [131] combined IC with PSO for PV MPPT application. The operation
of this hybrid technique is divided into two stages. In the 1st stage, an IC is applied to track
the 1st LMPP. In an IC stage, the PV voltage is either decremented or incremented with
a small step in a right direction to track the GMPP. In the 2nd stage, PSO is employed to
track the GMPP under intense VECs. An initial condition for the 1st particle of PSO is set to
the converged value. The values of PSO particles in other cycles are set with n − 1 and the
values range from the previous converged value to the upper bound of the search space.
As a result, the number of particles remain the same during the cycles. A flowchart of the
proposed IC-PSO method is depicted in Figure 42.
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2.3.22. IC with Dragonfly Optimization

In [132], a variable step IC was combined with Dragonfly Optimization (DFO) to
accurately locate the GMPP among multiple LMPPs. In this method, the disadvantageous
features of both algorithms are eliminated while enhancing the advantageous characteristics.
These two algorithms are executed sequentially in such a manner that a variable step IC is
applied initially due to its high performance under UEC. However, in the case of VEC, IC
is particularly used to trap LMPP. Therefore, to avoid the local traps, a DFO is used in a
2nd stage to accurately locate the GMPP under VEC.

2.3.23. PInc with IC

To enhance the tracking performance of the IC MPPT technique, the authors of [133]
proposed a hybrid technique where PInc is combined with the IC algorithm. The PInc-IC
method uses either Constant Frequency Variable Duty Cycle (CFVD) or Variable Frequency
Constant Duty Cycle (VFCD) method to perform its control actions [134,135]. In PInc-IC
technique, a two phased method, i.e., Conductance Threshold Zone (CTZ) and Power
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Threshold Zone (PTZ) are used to identify the threshold zones on the IPV-VPV and PPV-VPV
curves, respectively. A CTZ is established along the IPV-VPV curve and around the MPP,
whereas, a PTZ is established along the PPV-VPV curve. Both CTZ and PTZ are equal,
referring to boundaries, and are mutually called the Threshold Tracking Zone (TTZ).
Considerably, the variation in power along the PPV-VPV curve has a noticeable variation in
the slope, whereas the variation in conductance along the IPV-VPV curve is less sensitive
to PV voltage; however, both of these are ideal for the tracking control. In the proposed
technique, before entering the TTZ, the PInc performs a coarse tracking along the PPV-VPV
curve while in TTZ an IC performs a fine tracking along PPV-VPV curve. A detailed
schematic flowchart of PInc-IC technique is presented in Figure 43.
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2.3.24. ANN with P and O

An ANN is very flexible in terms of input and output variables; therefore, when it
is used to extract the MP from the PV panel, the input variables can be non-electrical
(irradiance and temperature) or electrical (power, current, and voltage). Similarly, the
output can be current or voltage at MPP or the duty cycle of the converter. Moreover,
ANN shows significant performance with low steady-state oscillations and fast dynamic
response. Besides all these advantages, a major challenge in designing an ANN-based
MPPT technique is that it requires large and accurate training data sets to train ANN for
efficient tracking. To accurately train the ANN that efficiently and precisely track the MPP
under PSC, it is combined with the P and O technique in [136]. The operation of this method
is performed in two stages. In the 1st stage, an ANN algorithm is activated when PSCs are
identified. An ANN samples the data from different operating points on the I-V curve and
use these values to predict the GMPP region. Once the GMPP region is predicated, in a 2nd
stage, a P and O algorithm is applied to the local search area to exactly locate the GMPP.
This method predicts the MPP region directly and does not require any irradiance sensor;
therefore, the cost is relatively reduced. The other major advantages of this method include
simple structure, high tracking accuracy, and tracking speed. A schematic flowchart of this
technique is presented in Figure 44.
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2.3.25. ANN with IC

In [137], the authors combined an ANN algorithm with the IC method for PV MPPT
application. The operation of this method is divided into two stages. In the 1st stage, an
ANN algorithm is trained with respect to I-V characteristics of a PV panel operating
close to MPP corresponding to different T and G levels. The I-V characteristics are
considered as the input data of ANN while the MPP is recorded as the output. In the
2nd stage, an IC technique is used to find the exact MPP. Moreover, in the case of PSCs,
when the characteristics of the PV changes, then a trained ANN algorithm changes
its output characteristics close to MPP according to the new G and T level and is then
accurately tracked by IC in the 2nd stage. The schematic of ANN-IC is presented in
Figure 45.
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2.3.26. ANFIS with P and O

To efficiently track the MPP, the authors in [138] proposed an FA-trained ANFIS
technique that is combined with the P and O technique. This method identifies and tracks
the MPP in two stages. In the 1st stage, an FA is used to generate the optimal operating
point based on different P-V curves that are used to train the membership function of
ANFIS. In the 2nd stage, the combination of ANFIS and P and O is applied for MPPT
tracking. In the 2nd stage, the trained ANFIS is applied 1st to approximate the MPP
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based on the irradiance level or pattern. Then the P and O algorithm starts to operate
in a tracking cycle and starts the MPP tracking from that point. An ANFIS is unable to
accurately locate the GMPP (P and O cover the deficiency); therefore, compared with the
individual usage of the ANFIS technique, in a proposed method, less samples are required
for ANFIS training.

2.3.27. FLC with Angle of Incremental Conductance

FLC is very flexible in terms of input and output variables and shows significant
performance to track the MPPT with low steady-state oscillations. Besides all these
advantages, a major challenge in designing an FLC-based technique is that it is depen-
dent on the user’s knowledge and may stick to one of the LMPPs that affect the system
performance. Therefore, to extract the MP from the PV system and minimize power
fluctuations in transient and steady states, a hybrid MPPT method is proposed where
Angle of Incremental Conductance (AIC) method is combined with Interval Type-2
Takagi Sugeno Kang FLC (IT2-TSK-FLC) [139]. In this technique, an AIC method is
used due its well-defined finite range of input variable and MPP operation in steady
state. Moreover, an AIC also produces an error function and is then used as an input for
IT2-TSK-FLC. Moreover, IT2-TSK-FLC is used to handle the temperature and irradiance
uncertainties and generate a suitable duty cycle to drive the converter’s power switch. A
proposed method shows high capability to adapt new operating point at any moment
and handle the harsh VECs efficiently.

2.3.28. FLC with HC

A hybrid MPPT method that combines a Modified Hill Climb (MHC) with FLC
is proposed in [140]. In this work, both the MHC and FLC are integrated in such a
manner that the resultant algorithm enhances the advantageous features and eliminate
the disadvantageous features (slow convergence, steady-state oscillations, low tracking
accuracy in case of HC and user dependency, and lack of capability to track the GMPP
in case of FLC). In the MHC-FLC method, the inputs and outputs of FLC are divided
into 4 variable subsets, i.e., positive big, positive small, negative big, and negative small.
As there are 4 subsets, therefore 16 fuzzy rules are set that are based on the regulation
of MHC.

2.3.29. GA with P and O

In [141], a GA is combined with the P and O algorithm where GA is applied in the
1st stage followed by the P and O algorithm in the 2nd stage. The aim of this technique is
to track the GMPP under VECs with fast tracking speed, low oscillations, and a reduced
number of iterations. Initially, an average of 6 chromosomes are taken in the range of 10%
to 90% as 6 duty cycle ratios that are distributed uniformly. A GA then activated to execute
the 1st 3 chromosomes and the duty cycle ratios to determine the MP generated by the PV
system, which is assumed to be an initial point of P and O algorithm. Hence, in the 2nd
stage, to ensure fast and accurate convergence to GMPP, the P and O algorithm is applied
where the length of step size decreases as the search proceeds. To update the step size
length for next move, the following equation is used:

dk = dk−1 + ∆dk (29)

where, ∆dk = α∆dk−1 is a step size with α = 0.9. For better and further understanding, the
flowchart of GA-P and O is presented in Figure 46.
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2.3.30. Modified FOCV with Current Sensor-Less Auto Modulation

The authors in [142] proposed a hybrid MPPT technique in which a Modified FOCV
(MFOCV) is combined with Current Sensor-Less Auto Modulation (CSAM) to determine
MPP. In this method, MFOCV is applied 1st, where initially, the PV array voltage (VPV) is
compared with the predefined lower (VMPPL) and upper (VMMPH) voltage values. In the
next step, a variation in duty cycle (D) is estimated in reference with the variation in VMPPL
and VMMPH to determine the operating point. In the 2nd stage, the CSAM algorithm is
activated for fine-tuning of MPP under VECs and to ensure fast convergence that followed
the provided equations as:

dVPV
dD < −VPV

1
1−D , D = D + ∆D

dVPV
dD = −VPV

1
1−D , D = D

dVPV
dD > −VPV

1
1−D , D = D− ∆D

(30)

Based on (30), the step size of the duty cycle is determined, i.e., when the system oper-
ating point is far from MPP, then MFOCV takes the large steps to ensure fast convergence.
On the contrary, if the operating point is close to MPP then MFOCV take the small duty
cycle steps to prevent the tracking oscillations.

2.3.31. Improved Open Circuit Voltage with Smart Power Scanning

In [143], an Improved Open Circuit Voltage (IOCV) method is combined with the
Smart Power Scanning (SPS) method to accurately locate the MPP. In this method, a 0.8
VOC model-based SPS procedure that is based on the change in sign of PV power is used.
During this procedure, the scanning of voltage range is extended where GMPP is searched.
Moreover, the tracking efficiency is significantly improved due to prevention of blind
searching; as a result, the tracking speed is also enhanced. A schematic flowchart of
IOCV-SPS is presented in Figure 47.
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2.3.32. ABC with HC

An ABC algorithm is independent of initial parameters settings and is easy to develop
with less regulated constraints. It can easily resolve problems involving multi-modal and
multi-dimensional optimization [144]. ABC algorithm has only two control parameters
in MPPT application that results in simplicity. Although it can track GMPP under PSCs,
due to its slow convergence speed and performance degradation in terms of exploitation, a
precise and accurate GMPP cannot be guaranteed [145]. Therefore, to cope with these issues,
the ABC algorithm is combined with HC in [146]. This combined approach enhances the
searching capability and convergence speed of the ABC algorithm. This battery-charging
current (Icharge) versus D characteristics of the circuitry are scanned to identify the type
of shading pattern. Once a shading pattern is recognized, the proposed algorithm uses
either HC or ABC to track the GMPP. A proposed solution reduces the search space of ABC
algorithm that results in improved convergence speed. Moreover, due to usage of a single
current sensor, the overall cost of the system is considerably reduced.

2.3.33. ABC with P and O

ABC and P and O algorithms are combined to create a new hybrid MPPT technique,
which is referred to as ABC-P and O [147]. Under uniform irradiation, the MPP is tracked
using the P and O approach while an ABC algorithm is applied where irradiance varies
rapidly. Additionally, two-layered control loops are designed that optimally regulate the
duty cycle of the converter’s switch to remove the oscillations from the output current and
voltage waveforms. These control loops (i.e., inner current control and outer voltage control
loops) together with the proposed MPPT technique allow one to control a PV system’s
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output voltage even in adverse climatic conditions. Moreover, reference output of this
method responds with a voltage rather than the duty cycle, as a result the steady-state
oscillations in the output waveforms are almost negligible. This approach guarantees quick
convergence at a low computing cost and great efficacy.

3. Performance Evaluation Parameters and Comparative Analysis

The hybrid MPPT algorithms show very efficient performance and accurately track the
MPP under PSC. However, every MPPT technique has different features and characteristics
that make its selection a function of numerous parameters such as accuracy, convergence
speed, implementation cost, etc. Besides the MPPT technique, there are many other factors
that should be considered while installing a PV system, such as location, season, PV panel
tilts, and orientations, etc. All these parameters are discussed in detail below. Moreover, a
comprehensive comparison of the aforementioned MPPT techniques is presented in Table 2.

3.1. Tracking Accuracy

In conventional algorithms like P and O, high oscillations occur near the MPP under
UEC; however, in the case of VEC or PSC, this algorithm cannot track the MPP accu-
rately [148]. Similarly, the main disadvantages of the INC technique are its high compu-
tational time, high steady-state oscillations, and lack of tracking accuracy. Therefore, a
variable step size IC algorithm is proposed in [149] that enhances the tracking efficiency,
but at the same time it limits the tracking speed, and high oscillations are observed around
the MPP. Hence, different hybrid techniques are proposed that achieve high tracking speed
in the under fast VEC, such as MFA, which attained higher tracking precision and accuracy
than conventional FA and PSO techniques [150]. In an ANN-based FLC hybrid algorithm,
a higher tracking accuracy is attained than conventional ANN and FLC techniques [151].

3.2. Implementation Complexity

To select an appropriate MPPT technique for a PV system on the basis of imple-
mentation complexity is one of the most important factors to consider. The number of
optimization parameters, the size of a PV system, the input and output variables of the
MPPT algorithm, the number of steps in the algorithm, and other systematic parameters
should be considered while analysing the complexity of the MPPT technique. Hence, some
MPPT techniques have simple implementations that do not require any prior calibration
or training, some techniques require system knowledge and proper training, and some
techniques require extra hardware for their implementation [30]. The IC technique has
a simple implementation, but due to recent advancements in technologies to extract the
MP, its implementation has become complex [9]. Similarly, in the case of an intelligent
algorithms, if the initial points are selected incorrectly, then it significantly increases its im-
plantation complexity [152]. In the case of hybrid MPPT algorithms such as CSA-GSS [153],
ABC-HC [146], etc., a high accuracy in locating the GMPP is achieved at the expense of
increased implementation complexity. As most of the hybrid algorithms are implemented
in digital platform, that requires software experts and computer programmers.

3.3. Tracking Speed

An efficient MPPT algorithm must be able to converge to its desired rating with good
accuracy and speed, irrespective of any environmental variation. The level of complexity
and accuracy of the MPPT technique are typically the two key elements that influence
the tracking speed. Generally, a single individual MPPT algorithm requires more time to
converge to GMPP compared with the hybrid algorithms. The hybrid algorithms have
high convergence speed and reach the GMPP with minimal oscillations. The main barrier
while designing a fast and accurate convergent MPPT technique is the cost; therefore, the
designer should keep the cost in mind while designing [154].
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3.4. Steady-State Oscillation

Another important factor that should be considered when selecting MPPT is its sta-
bility around the MPP. In most of the online MPPT techniques, the power losses are
usually due to oscillations around the MPP [155]. These oscillations become extreme if
a traditional MPPT technique like P and O is used. In this case, the P and O algorithm
continuously searches for the operating point on the I-V or P-V curve even if the MPP is
already tracked [156]. These large oscillations cause power loss, and thus the efficiency of
the overall system decreases. In modified algorithms, such as those with variable step size,
the steady-state oscillations are considerably reduced compared with traditional ones [157].
Moreover, all intelligent, meta-heuristic, and hybrid algorithms significantly control the
oscillations around the MPP.

3.5. Power Conversion Efficiency

The quality of the MPPT algorithm is determined by its power efficiency and is said to
be efficient when it accurately tracks the GMPP with fast convergence speed and low steady-
state oscillations under any environmental conditions. The traditional MPPT techniques did
not accurately track the GMPP and often became stuck in the LMPP under PSC; therefore,
their efficiency is low. On the contrary, the novel soft computing and hybrid algorithms
can accurately track the GMPP under VEC, showing high efficiency. For example, the PSO
technique has high tracking accuracy and shows fast convergence with zero steady-state
oscillations; therefore, it exhibits high conversion efficiency [158]. The efficiency of different
hybrid algorithms is presented in Table 2. Besides the MPPT technique, a DC–DC converter
that integrated the PV generation with the load also affected the efficiency of the system.

3.6. Sensors

Sensors are necessary to sense the input and output variables that are needed to
track the MPP. To extract the MP from the PV panel, there are four different types of
sensors used: irradiance, voltage, temperature, and current sensors. The usage of these
sensors totally depends on the MPPT technique that is under consideration. For example, a
traditional offline OCV technique utilizes only a voltage sensor [149]. The power angle-
based technique does not require a current sensor when operating in a grid connected
mode [159]. In hybrid techniques, such as FSCC-P and O, it is not necessary to use an
irradiance sensor [156]. Hence, the MPPT techniques that utilize fewer sensors are more
desirable, as a smaller number of sensors reduces implementation complexity and cost.

3.7. DC–DC Converter Selection

DC–DC converters play a prominent role in the integration of PV panels output with
load. They are used to regulate and maintain the PV panel output voltage at a constant
value irrespective of any variation in PV generation or load [160]. Usually, conventional con-
verters such as boost, buck, Cuk, SEPIC, etc., are used for integration purposes. However,
when these converters are operated at a high duty cycle to meet the application demands,
they possess some drawbacks, such as (a) the parasitic losses associated with the resistances
of capacitors, diodes, and inductors increase, causing low efficiency; (b) the stress across
the switch increases; and (c) the conduction and switching losses increase [161]. Hence, to
overcome these disadvantages, the authors have proposed numerous boosting techniques
that accomplish a high voltage conversion ratio with a low duty cycle, for example, voltage
multiplier cells [162], coupled inductors [163], switched inductors [164], etc. Based on
these boosting techniques, numerous topologies are reported in the literature, such as
single switch quadratic buck–boost [165], modified SEPIC [166], high gain boost [167], and
modified Cuk [168] converters. These newly developed modified converter topologies sig-
nificantly overcome the drawbacks of conventional converters and widen the applications
of the PV system.
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3.8. Cost

The cost dependency of the MPPT technique mainly relies on the type of control
method (analogue or digital), the computational process, the required sensors, power
components, and circuitry [148]. It also involves the operator’s training cost and the MPPT
maintenance cost. A digitally designed system is more expensive than analogue controllers
as it requires more difficult programming. In general, the traditional techniques such as
INC and P and O that are implemented on analogue platforms are cheaper compared
with soft computing or hybrid techniques. However, the traditional MPPT techniques are
also not very cheap, as they require high computational steps and at least two sensors for
operation [154]. On the contrary, the techniques that involve AI, such as FA with FLC [75]
and ANFIS with ABC [169], are very expensive due to their high hardware implementation
complexity and require high-performance processors and software [148].

3.9. PSCs Handling

A PV system can be partially or completely shaded by flying objects, large trees, tall
buildings, etc., thus resulting in numerous LMPPs and one GMPP. Hence, during shaded
conditions, sometimes the applied MPPT technique tracks the LMPPs rather than the GMPP
that causes huge power losses. Generally, techniques such as P and O, IC, etc., cannot
accurately locate the GMPP under PSCs. Hence, to overcome this problem, numerous
soft computing and hybrid algorithms are developed. The detailed description of the
hybrid algorithms is already discussed in the above sections. Moreover, to handle PSC,
voltage equalizers, DC–DC converters, micro-inverters, etc., are employed along with
MPPT algorithms. A voltage equalizer is used in a series of connected panels to avoid an
unwanted LMPP. A micro-inverter is usually interconnected in every module to accurately
track the GMPP under PSCs [170].

3.10. PV Module Connections

An individual PV cell generates very little voltage and current; therefore, they are
interconnected to form an array or module. There are numerous cell configurations present
in the literature, in which usually 36 cells are connected in Series (SC), Bridge-Linked (BL),
Total Cross-Tied (TCT), Series Parallel (SP), and Honey Comb (HCB). BL, HCB, and TCT
are categorized based on their power extraction ability. When a PV array having these cell
configurations is exposed to PSC, a power mismatch occurs. If a short circuit occurs at
the array terminals due to a power mismatch, then different voltages are created that are
negatively biased in some cells. Therefore, the Newton Raphson method and Piece-wise
linear parallel branches model are developed to solve the mismatch problem [171]. In the
SC module, cells are connected in series, while in the SP module, every array is treated as
an individual unit that tracks the MPP individually for every array. Additionally, each cell
in an SP module has independent but identical irradiance; as a result, the output power is
affected by minor variations in MPP voltages [172].

3.11. Location and Seasons

A primary factor that influences the PV system’s performance is the geographical
position and climate of the site where it is installed. Therefore, for a location that is subjected
to frequent climatic variation, a MPPT technique that has the ability to track the GMPP
accurately and precisely with a fast convergence speed should be selected. Besides MPPT
technique, a selection of suitable solar cells greatly affects the efficiency of the system [173].
An investigative study was performed by the authors in [148] about the performance of the
crystalline silicon solar cells in different locations. In this study, it is found that the energy
production is 8% in Aswan, Egypt; 30% in Turkey; 39% in Berlin, Germany; and nearly
16.8% in Stuttgart, Germany.
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Table 2. Comparative assessment of different hybrid MPPT techniques.

Ref. Year Algorithm C S.U. T.A. T.S. O.L. PV.M.D. E.V. C.T. Cost η

Combination of Conventional Algorithms

[42] 2017 P and O-FSCC L V, I, T M L H No No Buck Boost H M
[44] 2016 FSCC-IC L I, V M L L Yes No N.G. L M
[46] 2016 FOCV-P and O L I, V M L M Yes Yes Buck L M
[47] 2016 FOCV-IC L I, V M L L Yes No Boost L M
[48] 2017 P and O-IC M V, I M M M No Yes Boost H M

[49] 2008 MP and O-MP
and O M V, I M M M No Yes Boost H M

[51] 2014 EPP-IC M V, I M M L No No Boost M M

Combination of Soft Computing Algorithms

[12] 2017 WO-DE H I, V H H M Yes No N.G. H H
[25] 2020 GWO-CSA H I, V H H L No No Buck-Boost H VH
[52] 2021 PSO-DE H I, V VH VH L No No SEPIC H VH
[54] 2013 PSO-PI H V, I H H L No Yes NG H H
[55] 2018 PSO-OD H V, I H VH L No Yes Boost H VH
[56] 2019 PSO-ANFIS H V, I V.H V.H L No Yes Zeta H VH
[57] 2018 PSO-OCC H I H H L Yes No Boost H H
[60] 2017 PSO-EL H V, I VH VH L No No Boost H VH
[61] 2017 PSO-SA H V, I H V.H L No No NG H VH
[62] 2021 PSO-LFO H V, I V.H V.H L No Yes Boost H VH
[63] 2015 PSO-FLC H V, I VH H L No Yes Boost H VH
[64] 2020 PSO-TSMC H V, I VH VH L No No NG H VH
[65] 2013 PSO-GSA H I, V H L H No No Boost H H
[66] 2011 ANN-PSO VH V, I V.H H VL No No Boost VH H
[67] 2017 PSO-SFLA H I, V, P H H L No No Boost H H
[68] 2018 MPV-PSO H V, I H H L No Yes Boost VH H
[69] 2019 ISSA-PSO H V, I VH V.H. VL No No NG VH VH
[70] 2019 SSA-GWO H V, I VH V.H. VL No No Buck Boost H VH
[71] 2022 TSA-PSO VH V, I VH H VL No Yes Boost VH H

[72] 2017 PSOEM-FSA VH V, I H VH L No Yes Interleaved
Boost VH VH

[74] 2020 FFA H I, V V.H. V.H. L No Yes Interleaved
Boost H VH

[75] 2016 FA-FLC H I, V H H L Yes No Boost H H
[76] 2019 ACSA M I, V M H L Yes No Boost M H
[77] 2019 CSA-GSS V.H. V, I V.H. V.H. L No Yes N.G. H VH

[79] 2018 RQGPR trained
ANN VH V, I VH VH L No No Cuk H VH

[79] 2018 CGSVM trained
ANN VH V, I VH VH L No Yes Cuk H VH

[80] 2018 FPSOGSA-trained
ANN VH V, I VH VH VL No Yes Boost VH VH

[81] 2022 GS-PS trained ANN VH V, I,
G, T VH VH VL No No Buck VH VH

[82] 2016 ANN-GA VH V, I VH H VL No No NG VH H
[83] 2018 ANFIS H V, I, P H H L No Yes Buck H VH
[84] 2017 ANN-SP H I, V, G H M L Yes No Boost H H
[85] 2022 ANN-ACO VH V, I VH V.H. L No Yes Boost H VH
[86] 2019 ANN-MC VH I, V H H L No No NG VH H
[87] 2018 ANN vision-BS VH V, I VH VH VL No Yes Buck Boost VH VH
[88] 2020 IANN-PSO H I, V VH VH L No No NG H VH
[89] 2019 RBFNN-PSO VH I, V VH VH L No Yes Boost H VH
[90] 2021 RBFNN-BTSMC VH G, T VH V.H. VL No No Buck Boost VH VH
[92] 2018 GWO-Beta VH V, I VH VH VL No Yes Boost H VH
[93] 2019 GWO-FLC H I, V VH VH L No No Boost H VH
[94] 2018 GWO-GSO VH V, I H V.H. L No Yes Boost H VH
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Table 2. Cont.

Ref. Year Algorithm C S.U. T.A. T.S. O.L. PV.M.D. E.V. C.T. Cost η

[95] 2021 ANFIS-CPHO VH V, I VH VH VL No No Boost H VH
[96] 2020 MSFLA-FLC VH V, I, P VH VH L No No NG VH VH
[97] 2019 Beta-FLC H I, V H H VL No Yes Boost H H
[99] 2011 FLC-GA VH I, V VH VH L No Yes Boost H VH
[100] 2019 PI-FLC H I, V H VH L No No Boost H H
[101] 2019 TLBO-FLC H V, I H H L No Yes Boost H H
[103] 2018 HTGA VH V, I, P VH H M Yes No Buck H VH
[104] 2018 GA + FA and DE M I, V M H L Yes Yes Buck H VH
[105] 2021 GA + ACO H V, I H H L No No Boost VH VH
[106] 2020 DM-Jaya H V, I H H L No Yes Boost H VH
[107] 2017 Jaya-DE H I, V, D VH VH L No Yes Boost H VH
[108] 2013 E and R M V, I H M L Yes No NG M M
[110] 2018 DLCI VH V, I V.H. V.H. L No Yes N.G. VH VH
[111] 2017 CGSCO VH I VH VH L No Yes Boost VH VH

Combination of Conventional with Soft Computing Algorithms

[13] 2019 IP and O-ABC M I, V VH H L No Yes Boost H VH
[46] 2016 P and O-PInc M V, I M L M No Yes Buck M M
[112] 2016 P and O-PSO H I, V V.H. V.H. L No Yes Boost H H
[113] 2017 P and O-IPSO H V, I H V.H. L No Yes Buck Boost H VH
[114] 2018 P and O-FLC M I, V H M L No No Boost M H
[115] 2021 P and O-SSA H V, I H H L No Yes Boost H VH
[116] 2016 P and O-GWO H I, V V.H. V.H. L No Yes Boost M VH
[117] 2019 P and O-AIDSM VH I, V H VH L No Yes Boost VH VH
[118] 2016 P and O-FWA H I, V H H M Yes Yes Boost H H
[119] 2015 P and O-ACO H I, V VH VH L No Yes Boost H VH
[120] 2021 AIAPO H V, I H H L No No Boost VH VH
[121] 2015 AP and O-FLC M I, V M M L Yes Yes Cuk M M
[122] 2016 GSA-P and O H V, I H H L No Yes Boost H H
[123] 2021 SPF-P and O H V, I H H VL No Yes Boost VH H
[124] 2015 SA-P and O H V, I H H L No No NG H VH
[125] 2018 SAPSO-HC H I, V VH H L No Yes Buck H H
[126] 2014 IC-FLC M V, I M M M No No Cuk M M
[127] 2016 IC-FA H I, V H H M Yes No Boost H H

[128] 2020 IC-GOA H V, I V.H. V.H. L Yes Yes Interleaved
Boost H VH

[129] 2019 IC-MFO M V, I H M M Yes No Boost M M
[130] 2020 PCPIO-IC H V, I VH H VL No No Boost VH VH
[131] 2014 IC-PSO H I, V VH H L No No NG H H
[132] 2022 IC-DFO H V, I H H L No No Boost H VH
[133] 2012 Pinc-IC M V, I M M L Yes Yes Fly back L M
[136] 2014 ANN-P and O H V, I VH H L No Yes Buck Boost VH H
[137] 2010 ANN-IC H I M H L No No Boost H H
[138] 2020 FA-ANFIS-P and O VH V, I, G VH VH VL No No Buck Boost VH VH
[139] 2020 AIC-FLC H I, V M H L Yes Yes Boost H VH
[140] 2010 HC-FLC M I, V M H L No No Boost M M
[141] 2015 P and O-GA H I, V H H L No Yes Boost VH H
[142] 2016 MFOCV-CSAM H V, I H VH L No Yes Boost M H
[143] 2018 IOCV-SPS M I, V M H L No Yes SEPIC M H
[146] 2018 ABC-HC VH I, V H H L No Yes Boost H H
[147] 2021 ABC-P and O M V, I V.H V.H L Yes Yes Boost VH VH

Abbreviations: C: complexity; S.U.: sensors used; T.A.: tracking accuracy; T.S.: tracking speed; O.L.: oscillation
level; PV.M.D.: PV module dependency; E.V.: experimental validation; C.T.: converter topology; S.A.: stand alone;
G.C.: grid connected; L: low; M: medium; H: high; V.H.: very high; N.P.: not provided.

4. Conclusions and Future Work

To extract the MP from the PV system under UEC or VEC, different MPPT techniques
are developed. However, an optimum individual MPPT technique, i.e., conventional, meta-
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heuristic, artificial intelligence, etc., or even hybrid MPPT technique does not exist, as these
vary with cost, complexity, efficiency, convergence speed, etc. However, compared with the
usage of an individual technique, the usage of a hybrid technique is a better solution to
track the MPP under PSC, as it results in better speed, accuracy, and efficiency. Therefore, in
this research work, numerous MPPT techniques are reviewed, and their working principle
and schematic diagram, along with their prominent features, are described. A total of
93 different hybrid MPPT techniques are discussed and classified into three categories:
combinations of conventional algorithms, combinations of soft computing algorithms, and
combinations of conventional and soft computing algorithms. From the above discussed
hybrid techniques, it can be concluded that the techniques that are developed by combining
two or more soft computing methods show high tracking accuracy and efficiency with
fast convergence speed and low steady-state oscillations as compared with the other two
types. Moreover, different factors such as algorithm complexity, cost, DC–DC converter,
etc., are discussed that enable the researchers and engineers to select the most suitable and
appropriate MPPT technique based on the requirements. Finally, a reasonable evaluation
criteria based on cost, complexity, accuracy, etc., is employed to make a complete and
detailed comparative analysis of different MPPT techniques as listed in Table 2.

In the future, the following aspects regarding PV MPPT techniques can be considered:
(a) the hybrid techniques provide optimal performance but at the expense of simplicity
and computational burden. Hence, a hybrid technique can be developed that results
in high accuracy and convergence speed with a low computational burden and ease of
implementation; (b) the performance of the techniques to detect the occurrence of PSC can
be further improved; (c) the combination of AI-based algorithms is gaining popularity;
therefore, attention should be provided to optimizing the weighting parameters of these
algorithms; (d) currently, most of the hybrid algorithms are evaluated through simulation
tests only, and consideration should be provided to test the MPPT performance through
hardware experiments; (e) to reduce the measurement errors, hardware implantation
complexity, and cost, more attention should be provided to develop sensor-less hybrid
techniques; (f) due to the increase in the development of different MPPT techniques, more
guidelines should be provided in the selection of specific MPPT techniques for specific
operation scenarios.

Author Contributions: Conceptualization, supervision, project administration, writing—original
draft, H.L.; writing—review and editing, writing—original draft, methodology, M.Y.A.K.; software,
formal analysis, investigation, resources, and visualization, X.Y. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khan, M.Y.A.; Liu, H.; Alhani, E.; Karim, H. Design of a phase disposition PWM technique for reduced switch asymmetric

31-level inverter. In Proceedings of the 2021 International Conference on Computing, Electronic and Electrical Engineering (ICE
Cube), Quetta, Pakistan, 26–27 October A2021; pp. 1–10.

2. Gibb, D.; Ledanois, N.; Ranalder, L.; Yaqoob, H.; Murdock, H.E.; Achury, N.; Andre, T.; Benachir, I.; Dhar, A.; Gicquel, S.
Renewables 2022 global status report+ Renewable energy data in perspective+ Press releases+ Regional fact sheets+ Country fact
sheets. In Energy Planning, Policy and Economy; IEAE: Paris, France, 2022.

3. Ali Khan, M.Y.; Liu, H.; Yang, Z.; Yuan, X. A comprehensive review on grid connected photovoltaic inverters, their modulation
techniques, and control strategies. Energies 2020, 13, 4185. [CrossRef]

4. Priyadarshi, N.; Bhaskar, M.; Sanjeevikumar, P.; Azam, F.; Khan, B. High-power DC-DC converter with proposed HSFNA MPPT
for photovoltaic based ultra-fast charging system of electric vehicles. IET Renew. Power Gener. 2022, 1–13. [CrossRef]

5. Alik, R.; Jusoh, A. An enhanced P&O checking algorithm MPPT for high tracking efficiency of partially shaded PV module. Sol.
Energy 2018, 163, 570–580.

https://doi.org/10.3390/en13164185
https://doi.org/10.1049/rpg2.12513


Energies 2023, 16, 5665 58 of 64

6. Xiao, W.; Dunford, W.G. A modified adaptive hill climbing MPPT method for photovoltaic power systems. In Proceedings of the
2004 IEEE 35th Annual Power Electronics Specialists Conference, (IEEE Cat. No. 04CH37551), Aachen, Germany, 20–25 June 2004;
pp. 1957–1963.

7. Belhachat, F.; Larbes, C. Global maximum power point tracking based on ANFIS approach for PV array configurations under
partial shading conditions. Renew. Sustain. Energy Rev. 2017, 77, 875–889. [CrossRef]

8. Khan, M.Y.A.; Liu, H.; Hashemzadeh, S.M.; Yuan, X. A novel high step-up DC–DC converter with improved P&O MPPT for
photovoltaic applications. Electr. Power Compon. Syst. 2021, 49, 884–900.

9. Loukriz, A.; Haddadi, M.; Messalti, S. Simulation and experimental design of a new advanced variable step size Incremental
Conductance MPPT algorithm for PV systems. ISA Trans. 2016, 62, 30–38. [CrossRef] [PubMed]

10. Yunliang, W.; Nan, B. Research of MPPT control method based on PSO algorithm. In Proceedings of the 2015 4th International
Conference on Computer Science and Network Technology (ICCSNT), Harbin, China, 19–20 December 2015; pp. 698–701.

11. Pervez, I.; Sarwar, A.; Tayyab, M.; Sarfraz, M. Gravitational search algorithm (GSA) based maximum power point tracking in a
solar PV based generation system. In Proceedings of the 2019 Innovations in Power and Advanced Computing Technologies
(i-PACT), Vellore, India, 22–23 March 2019; pp. 1–6.

12. Kumar, N.; Hussain, I.; Singh, B.; Panigrahi, B.K. MPPT in dynamic condition of partially shaded PV system by using WODE
technique. IEEE Trans. Sustain. Energy 2017, 8, 1204–1214. [CrossRef]

13. Pilakkat, D.; Kanthalakshmi, S. An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under
partial shading conditions. Sol. Energy 2019, 178, 37–47.

14. Fitriyah, F.; Efendi, M.Z.; Murdianto, F.D. Modeling and simulation of MPPT zeta converter using human psychology optimization
algorithm under partial shading condition. In Proceedings of the 2020 International Electronics Symposium (IES), Cagliari, Italy,
20–22 April 2020; pp. 14–20.

15. Rao, R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J.
Ind. Eng. Comput. 2016, 7, 19–34.

16. Baimel, D.; Tapuchi, S.; Bronshtein, S.; Horen, Y.; Baimel, N. Novel segmentation algorithm for maximum power point tracking in
pv systems under partial shading conditions. In Proceedings of the 2018 IEEE 18th International Power Electronics and Motion
Control Conference (PEMC), Budapest, Hungary, 26–30 August 2018; pp. 406–410.

17. Li, X.; Wen, H.; Hu, Y.; Jiang, L.; Xiao, W. Modified beta algorithm for GMPPT and partial shading detection in photovoltaic
systems. IEEE Trans. Power Electron. 2017, 33, 2172–2186. [CrossRef]

18. Guruambeth, R.; Ramabadran, R. Fuzzy logic controller for partial shaded photovoltaic array fed modular multilevel converter.
IET Power Electron. 2016, 9, 1694–1702. [CrossRef]

19. Elobaid, L.M.; Abdelsalam, A.K.; Zakzouk, E.E. Artificial neural network-based photovoltaic maximum power point tracking
techniques: A survey. IET Renew. Power Gener. 2015, 9, 1043–1063. [CrossRef]

20. Dhivya, P.; Kumar, K.R. MPPT based control of sepic converter using firefly algorithm for solar PV system under partial shaded
conditions. In Proceedings of the 2017 International Conference on Innovations in Green Energy and Healthcare Technologies
(IGEHT), Coimbatore, India, 16–18 March 2017; pp. 1–8.

21. Eltamaly, A.M. An improved cuckoo search algorithm for maximum power point tracking of photovoltaic systems under partial
shading conditions. Energies 2021, 14, 953. [CrossRef]

22. Sridhar, R.; Subramani, C.; Pathy, S. A grasshopper optimization algorithm aided maximum power point tracking for partially
shaded photovoltaic systems. Comput. Electr. Eng. 2021, 92, 107124. [CrossRef]

23. Kishore, D.K.; Mohamed, M.; Sudhakar, K.; Peddakapu, K. Swarm intelligence-based MPPT design for PV systems under diverse
partial shading conditions. Energy 2023, 265, 126366. [CrossRef]

24. Zhou, L.; Chen, Y.; Guo, K.; Jia, F. New approach for MPPT control of photovoltaic system with mutative-scale dual-carrier
chaotic search. IEEE Trans. Power Electron. 2010, 26, 1038–1048. [CrossRef]

25. Davoodkhani, F.; Arabi Nowdeh, S.; Abdelaziz, A.Y.; Mansoori, S.; Nasri, S.; Alijani, M. A new hybrid method based on gray wolf
optimizer-crow search algorithm for maximum power point tracking of photovoltaic energy system. In Modern Maximum Power
Point Tracking Techniques for Photovoltaic Energy Systems; Springer: Berlin/Heidelberg, Germany, 2020; pp. 421–438.

26. Batarseh, M.G.; Za’ter, M.E. Hybrid maximum power point tracking techniques: A comparative survey, suggested classification
and uninvestigated combinations. Sol. Energy 2018, 169, 535–555. [CrossRef]

27. Yang, B.; Zhu, T.; Wang, J.; Shu, H.; Yu, T.; Zhang, X.; Yao, W.; Sun, L. Comprehensive overview of maximum power point
tracking algorithms of PV systems under partial shading condition. J. Clean. Prod. 2020, 268, 121983. [CrossRef]

28. Ali, A.; Almutairi, K.; Padmanaban, S.; Tirth, V.; Algarni, S.; Irshad, K.; Islam, S.; Zahir, M.H.; Shafiullah, M.; Malik, M.Z.
Investigation of MPPT techniques under uniform and non-uniform solar irradiation condition–a retrospection. IEEE Access 2020,
8, 127368–127392. [CrossRef]

29. Wasim, M.S.; Amjad, M.; Habib, S.; Abbasi, M.A.; Bhatti, A.R.; Muyeen, S. A critical review and performance comparisons
of swarm-based optimization algorithms in maximum power point tracking of photovoltaic systems under partial shading
conditions. Energy Rep. 2022, 8, 4871–4898. [CrossRef]

30. Ali, A.; Almutairi, K.; Malik, M.Z.; Irshad, K.; Tirth, V.; Algarni, S.; Zahir, M.H.; Islam, S.; Shafiullah, M.; Shukla, N.K. Review of
online and soft computing maximum power point tracking techniques under non-uniform solar irradiation conditions. Energies
2020, 13, 3256. [CrossRef]

https://doi.org/10.1016/j.rser.2017.02.056
https://doi.org/10.1016/j.isatra.2015.08.006
https://www.ncbi.nlm.nih.gov/pubmed/26337741
https://doi.org/10.1109/TSTE.2017.2669525
https://doi.org/10.1109/TPEL.2017.2697459
https://doi.org/10.1049/iet-pel.2015.0737
https://doi.org/10.1049/iet-rpg.2014.0359
https://doi.org/10.3390/en14040953
https://doi.org/10.1016/j.compeleceng.2021.107124
https://doi.org/10.1016/j.energy.2022.126366
https://doi.org/10.1109/TPEL.2010.2078519
https://doi.org/10.1016/j.solener.2018.04.045
https://doi.org/10.1016/j.jclepro.2020.121983
https://doi.org/10.1109/ACCESS.2020.3007710
https://doi.org/10.1016/j.egyr.2022.03.175
https://doi.org/10.3390/en13123256


Energies 2023, 16, 5665 59 of 64

31. Jalil, M.F.; Khatoon, S.; Nasiruddin, I.; Bansal, R. Review of PV array modelling, configuration and MPPT techniques. Int. J. Model.
Simul. 2022, 42, 533–550. [CrossRef]

32. Sarvi, M.; Azadian, A. A comprehensive review and classified comparison of MPPT algorithms in PV systems. Energy Syst. 2022,
13, 281–320. [CrossRef]

33. Hanzaei, S.H.; Gorji, S.A.; Ektesabi, M. A scheme-based review of MPPT techniques with respect to input variables including
solar irradiance and PV arrays’ temperature. IEEE Access 2020, 8, 182229–182239. [CrossRef]

34. Omar, F.A.; Pamuk, N.; KULAKSIZ, A.A. A critical evaluation of maximum power point tracking techniques for PV systems
working under partial shading conditions. Turk. J. Eng. 2023, 7, 73–81. [CrossRef]

35. Verma, P.; Alam, A.; Sarwar, A.; Tariq, M.; Vahedi, H.; Gupta, D.; Ahmad, S.; Shah Noor Mohamed, A. Meta-heuristic optimization
techniques used for maximum power point tracking in solar pv system. Electronics 2021, 10, 2419. [CrossRef]

36. Bollipo, R.B.; Mikkili, S.; Bonthagorla, P.K. Critical review on PV MPPT techniques: Classical, intelligent and optimisation. IET
Renew. Power Gener. 2020, 14, 1433–1452. [CrossRef]

37. Baba, A.O.; Liu, G.; Chen, X. Classification and evaluation review of maximum power point tracking methods. Sustain. Futures
2020, 2, 100020. [CrossRef]

38. Naseem, M.; Husain, M.A.; Minai, A.F.; Khan, A.N.; Amir, M.; Dinesh Kumar, J.; Iqbal, A. Assessment of meta-heuristic and
classical methods for GMPPT of PV system. Trans. Electr. Electron. Mater. 2021, 22, 217–234. [CrossRef]

39. Alrubaie, A.J.; Al-Khaykan, A.; Malik, R.; Talib, S.H.; Mousa, M.I.; Kadhim, A.M. Review on MPPT techniques in solar system. In
Proceedings of the 2022 8th International Engineering Conference on Sustainable Technology and Development (IEC), Erbil, Iraq,
23–24 February 2022; pp. 123–128.

40. Raj, S.A.; Samuel, G.G. Survey of AI based MPPT algorithms in PV systems. In Proceedings of the 2022 4th International
Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 January 2022; pp. 597–604.

41. Sandali, A.; Oukhoya, T.; Cheriti, A. Modeling and design of PV grid connected system using a modified fractional short-circuit
current MPPT. In Proceedings of the 2014 International Renewable and Sustainable Energy Conference (IRSEC), Ouarzazate,
Morocco, 17–19 October 2014; pp. 224–229.

42. Sher, H.A.; Murtaza, A.F.; Al-Haddad, K. In A hybrid maximum power point tracking method for photovoltaic applications
with reduced offline measurements. In Proceedings of the 2017 IEEE International Conference on Industrial Technology (ICIT),
Toronto, ON, Canada, 22–25 March 2017; pp. 1482–1485.

43. Penella, M.T.; Gasulla, M. A simple and efficient MPPT method for low-power PV cells. Int. J. Photoenergy 2014, 2014, 153428.
[CrossRef]

44. Labeeb, K.; Shankar, S.; Ramprabhakar, J. Hybrid MPPT controller for accurate and quick tracking. In Proceedings of the 2016
IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore,
India, 20–21 May 2016; pp. 1533–1537.

45. Soualmia, A.; Chenni, R. A survey of maximum peak power tracking techniques used in photovoltaic power systems. In
Proceedings of the 2016 Future Technologies Conference (FTC), San Francisco, CA, USA, 6–7 December 2016; pp. 430–443.

46. Al-Soeidat, M.R.; Cembrano, A.; Lu, D.D. Comparing effectiveness of hybrid mppt algorithms under partial shading conditions.
In Proceedings of the 2016 IEEE International Conference on Power System Technology (POWERCON), Wollongong, NSW,
Australia, 28 September–1 October 2016; pp. 1–6.

47. Javed, M.Y.; Gulzar, M.M.; Rizvi, S.T.H.; Arif, A. A hybrid technique to harvest maximum power from PV systems under partial
shading conditions. In Proceedings of the 2016 International Conference on Emerging Technologies (ICET), Islamabad, Pakistan,
18–19 October 2016; pp. 1–5.

48. Yüksek, G.; Mete, A.N. A hybrid variable step size MPPT method based on P&O and INC methods. In Proceedings of the 2017
10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 30 November–2 December 2017;
pp. 949–953.

49. Patel, H.; Agarwal, V. Maximum power point tracking scheme for PV systems operating under partially shaded conditions. IEEE
Trans. Ind. Electron. 2008, 55, 1689–1698. [CrossRef]

50. Ansari, F.; Chatterji, S.; Iqbal, A.; Afzal, A. Control of MPPT for photovoltaic systems using advanced algorithm EPP. In
Proceedings of the 2009 International Conference on Power Systems, Kharagpur, India, 27–29 December 2009; pp. 1–6.

51. Rout, A.; Samantara, S.; Dash, G.; Choudhury, S.; Sharma, R.; Dash, B. Modeling and simulation of hybrid MPPT based standalone
PV system with upgraded multilevel inverter. In Proceedings of the 2014 Annual IEEE India Conference (INDICON), Pune, India,
11–13 December 2014; pp. 1–6.

52. Ahmad, M.S.; Ahmad, A. Hybrid pso-de technique to optimize energy resource for pv system. Int. J. Electr. Eng. Technol. IJEET
2021, 12, 128–139.

53. Seyedmahmoudian, M.; Rahmani, R.; Mekhilef, S.; Oo, A.M.T.; Stojcevski, A.; Soon, T.K.; Ghandhari, A.S. Simulation and
hardware implementation of new maximum power point tracking technique for partially shaded PV system using hybrid DEPSO
method. IEEE Trans. Sustain. Energy 2015, 6, 850–862. [CrossRef]

54. Phimmasone, V.; Kondo, Y.; Shiota, N.; Miyatake, M. The effectiveness evaluation of the newly improved pso-based mppt
controlling multiple PV arrays. In Proceedings of the 2013 1st International Future Energy Electronics Conference (IFEEC), Tainan,
Taiwan, 3–6 November 2013; pp. 81–86.

https://doi.org/10.1080/02286203.2021.1938810
https://doi.org/10.1007/s12667-021-00427-x
https://doi.org/10.1109/ACCESS.2020.3028580
https://doi.org/10.31127/tuje.1032674
https://doi.org/10.3390/electronics10192419
https://doi.org/10.1049/iet-rpg.2019.1163
https://doi.org/10.1016/j.sftr.2020.100020
https://doi.org/10.1007/s42341-021-00306-3
https://doi.org/10.1155/2014/153428
https://doi.org/10.1109/TIE.2008.917118
https://doi.org/10.1109/TSTE.2015.2413359


Energies 2023, 16, 5665 60 of 64

55. Li, H.; Yang, D.; Su, W.; Lü, J.; Yu, X. An overall distribution particle swarm optimization MPPT algorithm for photovoltaic
system under partial shading. IEEE Trans. Ind. Electron. 2018, 66, 265–275. [CrossRef]

56. Priyadarshi, N.; Padmanaban, S.; Holm-Nielsen, J.B.; Blaabjerg, F.; Bhaskar, M.S. An experimental estimation of hybrid ANFIS–
PSO-based MPPT for PV grid integration under fluctuating sun irradiance. IEEE Syst. J. 2019, 14, 1218–1229. [CrossRef]

57. Anoop, K.; Nandakumar, M. A novel maximum power point tracking method based on particle swarm optimization combined
with one cycle control. In Proceedings of the 2018 International Conference on Power, Instrumentation, Control and Computing
(PICC), Thrissur, India, 18–20 January 2018; pp. 1–6.

58. Anoop, K.; Nandakumar, M. A Novel control strategy for power extraction from Photo Voltaic panels based on One Cycle
Control. In Proceedings of the 2014 IEEE 6th India International Conference on Power Electronics (IICPE), Kurukshetra, India,
8–10 December 2014; pp. 1–6.

59. Ram, J.P.; Rajasekar, N.; Miyatake, M. Design and overview of maximum power point tracking techniques in wind and solar
photovoltaic systems: A review. Renew. Sustain. Energy Rev. 2017, 73, 1138–1159. [CrossRef]

60. Gavhane, P.S.; Krishnamurthy, S.; Dixit, R.; Ram, J.P.; Rajasekar, N. EL-PSO based MPPT for solar PV under partial shaded
condition. Energy Procedia 2017, 117, 1047–1053. [CrossRef]

61. Guan, T.; Zhuo, F. An improved SA-PSO global maximum power point tracking method of photovoltaic system under partial
shading conditions. In Proceedings of the 2017 IEEE International Conference on Environment and Electrical Engineering and
2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 6–9 June 2017; pp. 1–5.

62. Charin, C.; Ishak, D.; Zainuri, M.A.A.M.; Ismail, B.; Jamil, M.K.M. A hybrid of bio-inspired algorithm based on Levy flight and
particle swarm optimizations for photovoltaic system under partial shading conditions. Sol. Energy 2021, 217, 1–14. [CrossRef]

63. Cheng, P.-C.; Peng, B.-R.; Liu, Y.-H.; Cheng, Y.-S.; Huang, J.-W. Optimization of a fuzzy-logic-control-based MPPT algorithm
using the particle swarm optimization technique. Energies 2015, 8, 5338–5360. [CrossRef]

64. Lamzouri, F.E.-z.; Boufounas, E.; Brahmi, A.; El Amrani, A. Optimized TSMC control based MPPT for PV system under variable
atmospheric conditions using PSO algorithm. Procedia Comput. Sci. 2020, 170, 887–892. [CrossRef]

65. Dhas, B.G.S.; Deepa, S. A hybrid PSO and GSA-based maximum power point tracking algorithm for PV systems. In Pro-
ceedings of the 2013 IEEE International Conference on Computational Intelligence and Computing Research, Enathi, India,
26–28 December 2013; pp. 1–4.

66. Ngan, M.S.; Tan, C.W. Multiple peaks tracking algorithm using particle swarm optimization incorporated with artificial neural
network. Int. J. Electron. Commun. Eng. 2011, 5, 1325–1331.

67. Mao, M.; Zhang, L.; Duan, Q.; Oghorada, O.; Duan, P.; Hu, B. A two-stage particle swarm optimization algorithm for MPPT of
partially shaded PV arrays. Int. J. Green Energy 2017, 14, 694–702. [CrossRef]

68. Sen, T.; Pragallapati, N.; Agarwal, V.; Kumar, R. Global maximum power point tracking of PV arrays under partial shading
conditions using a modified particle velocity-based PSO technique. IET Renew. Power Gener. 2018, 12, 555–564. [CrossRef]

69. Ibrahim, R.A.; Ewees, A.A.; Oliva, D.; Abd Elaziz, M.; Lu, S. Improved salp swarm algorithm based on particle swarm
optimization for feature selection. J. Ambient Intell. Humaniz. Comput. 2019, 10, 3155–3169. [CrossRef]

70. Wan, Y.; Mao, M.; Zhou, L.; Zhang, Q.; Xi, X.; Zheng, C. A novel nature-inspired maximum power point tracking (MPPT)
controller based on SSA-GWO algorithm for partially shaded photovoltaic systems. Electronics 2019, 8, 680. [CrossRef]

71. Sharma, A.; Sharma, A.; Jately, V.; Averbukh, M.; Rajput, S.; Azzopardi, B. A novel TSA-PSO based hybrid algorithm for GMPP
tracking under partial shading conditions. Energies 2022, 15, 3164. [CrossRef]

72. Mao, M.; Duan, Q.; Duan, P.; Hu, B. Comprehensive improvement of artificial fish swarm algorithm for global MPPT in PV
system under partial shading conditions. Trans. Inst. Meas. Control 2018, 40, 2178–2199. [CrossRef]

73. Nugraha, S.D.; Wahjono, E.; Sunarno, E.; Anggriawan, D.O.; Prasetyono, E.; Tjahjono, A. Maximum power point tracking of
photovoltaic module for battery charging based on modified firefly algorithm. In Proceedings of the 2016 International Electronics
Symposium (IES), Denpasar, Indonesia, 29–30 September 2016; pp. 238–243.

74. Huang, Y.-P.; Huang, M.-Y.; Ye, C.-E. A fusion firefly algorithm with simplified propagation for photovoltaic MPPT under partial
shading conditions. IEEE Trans. Sustain. Energy 2020, 11, 2641–2652. [CrossRef]

75. Ajiatmo, D.; Robandi, I. A hybrid Fuzzy Logic Controller-Firefly Algorithm (FLC-FA) based for MPPT Photovoltaic (PV) system
in solar car. In Proceedings of the 2016 IEEE International Conference on Power and Renewable Energy (ICPRE), Shanghai, China,
21–23 October 2016; pp. 606–610.

76. Mirza, A.F.; Ling, Q.; Javed, M.Y.; Mansoor, M. Novel MPPT techniques for photovoltaic systems under uniform irradiance and
Partial shading. Sol. Energy 2019, 184, 628–648. [CrossRef]

77. Nugraha, D.A.; Lian, K.-L. A novel MPPT method based on cuckoo search algorithm and golden section search algorithm for
partially shaded PV system. Can. J. Electr. Comput. Eng. 2019, 42, 173–182. [CrossRef]

78. Kiran, S.R.; Basha, C.H.; Singh, V.P.; Dhanamjayulu, C.; Prusty, B.R.; Khan, B. Reduced simulative performance analysis of variable
step size ANN based MPPT techniques for partially shaded solar PV systems. IEEE Access 2022, 10, 48875–48889. [CrossRef]

79. Farayola, A.M.; Hasan, A.N.; Ali, A. Optimization of PV systems using data mining and regression learner MPPT techniques.
Indones. J. Electr. Eng. Comput. Sci. 2018, 10, 1080–1089. [CrossRef]

80. Duman, S.; Yorukeren, N.; Altas, I.H. A novel MPPT algorithm based on optimized artificial neural network by using FPSOGSA
for standalone photovoltaic energy systems. Neural Comput. Appl. 2018, 29, 257–278. [CrossRef]

https://doi.org/10.1109/TIE.2018.2829668
https://doi.org/10.1109/JSYST.2019.2949083
https://doi.org/10.1016/j.rser.2017.02.009
https://doi.org/10.1016/j.egypro.2017.05.227
https://doi.org/10.1016/j.solener.2021.01.049
https://doi.org/10.3390/en8065338
https://doi.org/10.1016/j.procs.2020.03.116
https://doi.org/10.1080/15435075.2017.1324792
https://doi.org/10.1049/iet-rpg.2016.0838
https://doi.org/10.1007/s12652-018-1031-9
https://doi.org/10.3390/electronics8060680
https://doi.org/10.3390/en15093164
https://doi.org/10.1177/0142331217697374
https://doi.org/10.1109/TSTE.2020.2968752
https://doi.org/10.1016/j.solener.2019.04.034
https://doi.org/10.1109/CJECE.2019.2914723
https://doi.org/10.1109/ACCESS.2022.3172322
https://doi.org/10.11591/ijeecs.v10.i3.pp1080-1089
https://doi.org/10.1007/s00521-016-2447-9


Energies 2023, 16, 5665 61 of 64

81. Alkhalaf, S.; Ali, Z.M.; Oikawa, H. A novel hybrid gravitational and pattern search algorithm based MPPT controller with ANN
and perturb and observe for photovoltaic system. Soft Comput. 2022, 26, 7293–7315. [CrossRef]

82. Prasad, L.B.; Sahu, S.; Gupta, M.; Srivastava, R.; Mozhui, L.; Asthana, D.N. An improved method for MPPT using ANN and GA
with maximum power comparison through Perturb & Observe technique. In Proceedings of the 2016 IEEE Uttar Pradesh Section
International Conference on Electrical, Computer and Electronics Engineering (UPCON), Varanasi, India, 9–11 December 2016;
pp. 206–211.
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