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Abstract: The electric power sector plays a central role in changing the EU’s energy landscape and
establishing Europe as the first climate-neutral continent in the world. This paper investigates
fundamental shifts in the EU’s electric power sector by carrying out its logarithmic mean Divisia
index decomposition by stages of electricity flows on a large-scale basis (for both the entire EU
and its 25 member states) for the period 1995–2021 and identifies the individual contribution of
each EU member state to these shifts. In this study, four decomposition models were proposed
and 14 impact factors (extensive, structural, and intensive) affecting the development of the EU
electric power sector were evaluated in absolute and relative terms. It was found that the wind–gas
transition, which took place in the EU’s electric power sector, was accompanied by an increase in the
transformation efficiency of inputs in electricity generation and a drop in the intensity of final energy
consumption. The non-industrial reorientation of the EU’s economy also resulted in a decrease in the
final electricity consumption. At the same time, this transition led to negative shifts in the structure
and utilization of its generation capacities. The fundamental shifts occurred mainly at the expense
of large economies (Germany, France, Spain, and Italy), but smaller economies (Romania, Poland,
Croatia, the Netherlands, and others) made significant efforts to accelerate them, although their
contributions on a pan-European scale were less tangible.

Keywords: electric power sector; LMDI decomposition; impact factors; efficiency; structural shifts;
electricity flows; energy transition; EU

1. Introduction

The EU is striving to change its energy landscape and make Europe the first climate-
neutral continent in the world by 2050 [1]. To this end, tectonic fundamental shifts, where
the central place belongs to the transformation of the electric power sector, are being
implemented. The idea of rebuilding the EU’s electric power sector is not new; it was first
enshrined in the EU Commission Working Document “The Internal Energy Market” (1988)
and gradually progressed, with targets steadily raised through the adoption of the EU’s
First (1996), Second (2003), Third (2009), and Fourth (2018–2019) Energy Packages [2–6].

The last one, the so-called Winter Package, “Clean Energy for All Europeans”, includes
three legislative documents that focus directly on electricity issues, while others consider
electricity as an important part of the energy transition of Europe as a whole [6]. Since the
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start of the Russian invasion of Ukraine, the European Commission has raised its targets
again. Thus, at present, according to the RePowerEU Plan, it is expected to ensure the
generation of renewable energy at a level of 45% by 2030 [7]. This goal does not seem too
ambitious, given that the share of RESs in total electricity generation increased from 14%
in 1995 to 35% in 2021 [8]. At the same time, this challenge requires understanding the
factors that have contributed to positive fundamental shifts in the electric power sector
in the past in order to transpose them into the future as well as to overcome the negative
impacts of others. This theoretical and applied problem constitutes the aim of this paper
as a study of the fundamental shifts in the development of the EU’s electric power sector
over the long-term horizon. It implies an assessment of the individual contributions of EU
member states to the overall shifts in the EU’s electric power sector development. To solve
this problem, a large-scale decomposition analysis based on the input–output model of
electricity flows was chosen.

The rest of the paper is organized as follows. Section 2 examines the specifics of decom-
position analysis, focusing on the shortcomings of previous research on its application to
the electric power sector. Section 3 presents the proposed methodology for decomposition
analysis of the electric power sector by stages of electricity flows. Section 4 focuses on the
results of the decomposition analysis of the EU’s electric power sector development. The
discussion is presented in Section 5, and the conclusions are drawn in Section 6.

2. Literature Review

Developing issues in the electric power sector have received a lot of attention in re-
search. A wide range of these problems have formed a relevant research field in economics,
which includes studying the sustainability of electric power sector development [9–13],
the liberalization of electricity markets [14–18], electricity pricing policy and price fluc-
tuations [19–22], and the forecasting of energy mix and fuel consumption [23,24]. Today,
the electric power sector’s development is considered relevant to ensuring EU energy
security [25–28] and its energy transition to decarbonization [29–35].

Decomposition analysis should be seen as one of the powerful tools for studying
long-term extensive, structural, and intensive shifts in the energy sector. This approach
emerged in the early 1980s [36], and today two of its forms are used in practice: structural
decomposition analysis (SDA) [37] and index decomposition analysis (IDA) [38,39]. Ac-
cording to Hoekstra and van der Bergh (2003), the differences between them are that the
former is based on input–output coefficients and final demand per sector, while the latter is
based on output per sector. IDA is most commonly used to examine aggregated industry
data and is also more suitable for detailed studies over time and by country [40]. Initially,
IDA was performed based on the Laspeyres decomposition method [41–44], but later,
researchers switched to the Divisia decomposition technique [45–49], using the arithmetic
mean Divisia index (AMDI) [50,51], and to the logarithmic mean Divisia index (LMDI)
method [52–54], as well as to using both of them [55]. The LMDI decomposition approach,
proposed by Ang and Zhang [38], yields an almost perfect decomposition, leaving no resid-
uals in the decomposition model compared to the AMDI decomposition approach [56]. As
discovered by one of the inventors, after more than 15 years of using LMDI decomposition,
it was proven to produce results with no residuals, involving many factors and spatial
decomposition and integrating the physical and economic components ([36], p. 234). There
are two types of LMDI models: LMDI-I and LMDI-II, which can be applied additively
or multiplicatively. The results they provide are very similar, so researchers prefer to use
LMDI-I models because of the ease of computational procedures [36,38,39,46].

One can find many applications of the LMDI decomposition method for large-scale
energy studies ([56–60], etc.), but so far insufficient attention has been paid to decomposi-
tion analysis of the electric power sector specifically, and, in most cases, such analysis is
restricted to one stage of electricity flows or one country. The Web of Science database con-
tains 1163 publications focusing on the LMDI decomposition method, and only 108 of them
deal with problems of the electric power sector’s development (as of 10 May 2023) [61]. To
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formalize the research field of LMDI decomposition of electric power sector development,
a bibliographic analysis was conducted using VOSviewer (Appendix A), designed by the
Centre for Science and Technology Studies (CWTS) of Leiden University [62]. This analysis
revealed that the LMDI decomposition of electric power sector development prioritized the
issue of CO2 emissions, seeking to achieve carbon neutrality and mitigate climate change.
The main driving factors considered included urbanization, economic growth, intensity,
and efficiency, which could affect electricity consumption and production. Table 1 shows
some typical studies on LMDI decomposition analysis of electric power sector development
which are closely related to our study.

Table 1. Summary of recent studies on LMDI decomposition of electric power sector development.
Source: Own study based on the WoS database [61].

Study Result Factor Impact Factors Countries Studied Years

Zhongfu et al. (2011) [63] CO2 emissions in the
electric power sector

CO2 emission coefficient, energy
intensity of power generation, power

generation and consumption ratio,
electricity intensity of the gross domestic

product (GDP), provincial structural
change, and the energy intensity of

the GDP

China 1998–2008

Karmellos et al. (2016) [64] CO2 emissions in the
electric power sector

Level of activity, electricity intensity,
electricity trade, efficiency of electricity

generation, and fuel mix
EU-28 2000–2012

Jiang (2017) [65] CO2 emissions in the
electric power sector

Electricity output effect, energy mix
effect, and conversion efficiency effect US 1990–2014

Xie et al. (2019) [66] CO2 emissions in the
electric power sector

Energy consumption in power
generation, thermal power structure,

power generation structure, transmission
and distribution loss, electrification,
energy intensity, and economic scale

China 1985–2016

De Oliveira-De Jesus
(2019) [67]

CO2 emissions intensity of
electricity

Fuel mix, thermal efficiency, fossil share,
and geographical effects

Latin America and the
Caribbean 1990–2014

Rüstemoğlu (2019) [68] CO2 emissions in the
electric power sector

Economic activity, the fuel structure
effect, the pollution effect, and

electricity intensity
Germany 1990–2015

Chen et al. (2019) [69] Solar PV electricity output Solar system efficiency, curtailment
issues, and solar resources China and the US 2008–2015

Yu et al. (2020) [70] Thermal power generation
Economic growth, electricity security,
substitution effect, electricity intensity,

and technological structure
25 EU countries 1997–2017

Miškinis et al. (2021) [71] CO2 emissions

Impact of population change, economic
growth, decline in energy intensity, RES
deployment, and reduction in emissions
intensity on change in GHG emissions

Baltic States 2010–2019

Sadorsky (2021) [72] Wind energy consumption Renewable energy share component and
improvements in energy intensity 17 European countries 2002–2017

Rivera-Niquepa et al.
(2022) [73]

CO2 emissions intensities
of electricity generation

Carbon intensity, generation efficiency,
and contribution of fossil generation at

the specific and total level of
electricity production

8 Colombian
administrations 1990–2020

Shi et al. (2022) [74] CO2 emissions from
electricity systems

Total energy consumed in power
generation stage, generation structure,

carbon emissions factors by power
generation and by grids, electricity
consumption, GDP, and population

Gansu Province,
China 2000–2019

Yu et al. (2023) [75] Renewable electricity
generation

Electricity consumption scale, electricity
productivity, output productivity,

technical efficiency, and carbon emissions
China 1995–2018
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Table 1. Cont.

Study Result Factor Impact Factors Countries Studied Years

Koilakou et al. (2023) [76] Carbon and
energy intensity

Income, population, energy intensity,
and energy structure The US and Germany 2000–2017

Zhang et al. (2023) [77] CO2 emissions intensities
of electricity generation

Energy structure, energy intensity, clean
production, supply structure, and power

loss effects
6 Chinese regions 2005–2020

Thus, there is now a lack of profound research into the simultaneous decomposition
of the entire electric power sector for all stages of electricity flows; only [74] conducted
such research for the Gansu province of China. Most previous studies focused on the
decomposition analysis of the driving factors influencing CO2 emissions from the electric
power sector [63–68,71,73,74,76,77], and such analysis was rarely conducted by type of
electric power generation [69,70,72,75]. In recent years, there has been an increase in the
number of profound studies on decomposition analysis of electric power sector develop-
ment [64,67,69–73,76,77], but we struggled to find a large-scale decomposition analysis of
the EU’s electric power sector; only the authors of [64] investigated it, using five impact fac-
tors to decompose CO2 emissions form the electric power sector, and the authors of [70,71]
developed a decomposition model of the EU’s wind and thermal energy sectors, using two
and five impact factors, respectively.

At the same time, shifts at each stage of electricity flows necessarily entail changes
in the entire balance of the electric power sector, so that it must be maintained constantly.
Conducting a decomposition of the electric power sector for all stages of electricity flows
simultaneously makes it possible to comprehensively track shifts in individual impact
factors. Thus, there is an objective need to deepen decomposition analysis with respect to
the stages of electricity flows and conduct it on a large scale for the entire EU.

3. Materials and Methods

The decomposition analysis of the EU’s electric power sector involved the formation
of a database using the information from the Eurostat Database for 1995–2021, both for
the EU as a whole and for continental EU member states. The choice of the period was
conditioned by the availability of data for all components. Countries such as Luxembourg,
Malta, and Cyprus were excluded due to the fact that they did not have a complete data
set for the entire study period, such that their inclusion could have narrowed the long-
term horizon of the study. Thus, the current research is based on the following Eurostat
datasets: transformation inputs and gross electricity generation from energy flow Sankey
diagram data [78]; supply, transformation, and consumption of electricity [79]; gross and
net electricity generation by type of fuel [80]; electricity generation capacities by main fuel
groups [81]; economic outputs by sectors [82]; and households’ expenditures [83].

One of the problematic issues in conducting the decomposition analysis of the EU’s
electric power sector is the different classifications of various data, both by fuel type within
the energy database and by type of economic activity. In some cases, these issues can be
resolved by combining the data into common groups:

• Table A1 presents a grouped classification of transformation inputs and types of
electricity generation according to the UN classification [84];

• Table A2 presents the combined types of economic activity according to the European
Community classification [85].

In other cases, it was necessary to divide the decomposition equation into compo-
nents: (i) for gross and net electricity generation, and (ii) for available electricity and final
electricity consumption.

The division of the electric power sector into the stages of transformation, supply, and
consumption of electricity allowed for the following equations, which formed the basis of
the decomposition analysis:
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(1) For the supply-side decomposition:

GEG = ∑N
i=1 TI × TIi

TI
× GEGi

TIi
= ∑N

i=1 TI × STIi × E f fTIi , (1)

NEG = ∑M
j=1 GC ×

GCj

GC
×

GEGj

GCj × 8760
×

NEGj

GEGj
= ∑M

j=1 GC × SGCJ × CUFJ × E f fNEGj , (2)

(2) For the demand-side decomposition:

FEC = ∑L
l=1 EO × EOl

EO
× FECl

EOl
= ∑L

l=1 EO × SEOl × IntEOl , (3)

(3) And an extra equation for balancing the supply and demand sides:

FEC = (NEG + Imp − Exp)× FEC
AVEl

= (NEG + Imp − Exp)× E f fD, (4)

where:
(1) GEG is the gross electricity generation; TI is the transformation input for electricity

generation; i . . . N is the detailed classification by type of fuel for electricity generation;
STIi =

TIi
TI is the transformation input structure of electricity generation; and E f fTIi =

GEGi
TIi

is the transformation efficiency of electricity generation;
(2) NEG is the net electricity generation; GC is the generation capacity; j . . . M is the

general classification by type of fuel for electricity generation; SGCJ =
GCj
GC is the generation

capacity structure; CUFJ =
GEGj

GCj×8760 is the capacity utilization factor; and E f fNEGj =
NEGj
GEGj

is the generation efficiency;
(3) FEC is the final electricity consumption; EO is the economic output; l . . . L is the

classification by type of economic activity; SEOl =
EOl
EO is the structure of economic activity;

and IntEOl =
FECl
EOl

is the intensity of electricity consumption.
(4) AVEl is the available electricity, which can be found as NEG + Imp − Exp; Imp

is the import of electricity; Exp is the export of electricity; and E f fD = FEC
AVEl is the

distribution efficiency.
As can be seen, each of the equations, except (4), includes extensive, structural, and

intensive impacts. Equation (4) has 3 extensive and 1 intensive impact.
Based on the LMDI-I method proposed by B. W. Ang [36,38,39,46], we applied the

following models for decomposition analysis:

ImpactE =
EFi,t − EFi,t−1

(ln EFi,t − ln EFi,t−1)
× ln

IFi,t

IFi,t−1
, (5)

ImpactP = exp
(

EFi,t − EFi,t−1

(ln EFi,t − ln EFi,t−1)
/ EFt − EFt−1

(ln EFt − ln EFt−1)
× ln

IFi,t

IFi,t−1

)
, (6)

where Impact, GWh, and Impact, % are the impacts of extensive, structural, and intensive
factors in absolute and relative terms; EFi,t and EFi,t−1 are the electricity flows from indi-
vidual sources in the current and previous year (GEG, NEG, and FEC); EFt and EFt−1 are
the general electricity flows in the current and previous year; and IFi,t and IFi,t−1 are the
impact factors in the current and previous year.

Conducting a large-scale decomposition of the EU’s electric power sector required
applying the software package Microsoft Power BI (developed by IBM Corp; [86]) for
big data analysis and visualization. As a result of this analysis, the effect of each of the
14 impact factors on changes in the EU’s electric power sector was determined (Table 2).
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Table 2. Factors effecting the fundamental shifts in the EU’s electric power sector.

Impacted Factor Impacting Factor Calculation of Impact in Absolute Terms (GWh)

Gross electricity generation

Input volume impact GEGi,t−GEGi,t−1
(ln GEGi,t−ln GEGi,t−1)

× ln TIt
TIt−1

Input structure impact GEGi,t−GEGi,t−1
(ln GEGi,t−ln GEGi,t−1)

× ln
STIi t

STIi t−1

Transformation efficiency impact GEGi,t−GEGi,t−1
(ln GEGi,t−ln GEGi,t−1)

× ln
E f fTIi t

E f fTIi t−1

Net electricity generation

Generation capacity impact NEGj,t−NEGj,t−1

(ln NEGj,t−ln NEGj,t−1)
× ln GCt

GCt−1

Generation capacity structure impact NEGj,t−NEGj,t−1

(ln NEGj,t−ln NEGj,t−1)
× ln CUFJ t

CUFJ t−1

Capacity utilization factor impact NEGj,t−NEGj,t−1

(ln NEGj,t−ln NEGj,t−1)
× ln CUFJ t

CUFJ t−1

Generation efficiency impact NEGj,t−NEGj,t−1

(ln NEGj,t−ln NEGj,t−1)
× ln

E f fNEGj t

E f fNEGj t−1

Final electricity consumption

Net electricity generation impact FECt−FECt−1
(ln FECt−ln FECt−1)

× ln NEGt
NEGt−1

Import impact FECt−FECt−1
(ln FECt−ln FECt−1)

× ln Impt
Impt−1

Export impact FECt−FECt−1
(ln FECt−ln FECt−1)

× ln Expt
Expt−1

Distribution efficiency impact FECt−FECt−1
(ln FECt−ln FECt−1)

× ln E f fD t
E f fD t−1

Output volume impact FECl,t−FECl,t−1
(ln FECl,t−ln FECl,t−1)

× ln EOt
EOt−1

Output structure impact FECl,t−FECl,t−1
(ln FECl,t−ln FECl,t−1)

× ln
SEOl t

SEOl t−1

Consumption intensity impact FECl,t−FECl,t−1
(ln FECl,t−ln FECl,t−1)

× ln
IntEOl t

IntEOl t−1

These impact factors included: (i) extensive factors, which reflect changes in input or
output volumes; structural factors, which aim to determine structural shifts in the input or
output; (ii) intensive (efficiency) factors, which reflect the available useful electricity ob-
tained after transformation, generation, and distribution, as well as the electricity consumed.
As regards efficiency, it is important to note that the rest of the share up to 100% is a measure
of inefficiency, and such values should be considered as transformation, generation, and
distribution losses, respectively. The contribution of each country to the fundamental shifts
in the EU’s electric power sector development was determined as the impact of a specific
factor for an individual country on the general impact of this factor for the EU as a whole.
The main limitation of this research was the lack of a unified classification of electricity
generation types for gross electricity generation, net electricity generation, and generation
capacities, which made it impossible to deepen the study. Data analysis [79–81] in line with
Sankey diagrams [78] will allow for a more detailed decomposition and new conclusions
to be drawn regarding the fundamental shifts in the EU’s electric power sector.

4. Results

First of all, we constructed Sankey diagrams, which allowed us to visualize the changes
in the EU’s electric power sector in 1995–2021 (Figure 1) and served as the starting point for
a further study to explain their causes.

In order to explain the impact of individual factors on the EU’s electric power sec-
tor, LMDI decomposition was carried out by the stages of electricity flows, which are
sequentially presented below.

The LMDI decomposition of gross electricity generation by transformation inputs is
presented in Figure 2; the distribution of these impacts across the EU member states is
shown in Appendix C.

In 1996–2021, the EU’s gross electricity generation grew by 612 TWh (21.2%). Moreover,
in 1995–2008, there was a steep upward trend, which resulted in an increase of 637 TWh
(22.1%), whereas in 2008–2021, a fluctuating trend was observed which caused a total
decrease in its level by −26 TWh (−0.2%). The largest drops in the EU’s gross electricity
generation occurred in the crisis years of 2009 and 2020: −154 TWh (−4.5%) and −134 TWh
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(−4.0%), respectively. However, in the subsequent recovery years, 2010 and 2021, increases
of 184 TWh (5.7%) and 147 TWh (4.6%), respectively, were observed.
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Figure 1. Comparison of the Sankey diagrams of the EU’s electric power sector for 1995 and 2020.
Source: Calculations by the authors based on [78–80].

The pursuit of responsible consumption of energy resources resulted in a reduction
in the transformation inputs for the electric power sector (extensive impact factor), which
could have led to a decrease in gross electricity generation of −134 TWh (−1.7%). At
the same time, we can see that, in 1995–2006, there was an increase in the volume of
transformation inputs that caused an increase in gross electricity generation of 479 TWh
(15.8%), whereas in 2007–2021, a negative impact of this factor on the trends of gross power
generation, which could have led to a decrease of −612 TWh (−17.5%), has already been
noted. However, this did not happen due to structural and intensive factors. It was only
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in the after-crisis years, 2010 and 2021, that there occurred additional accumulations of
transformation inputs to meet the electricity generation demand: +199 TWh (3.6%) and
183 TWh (+5.8%), respectively.
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Figure 2. Decomposition analysis of the EU’s gross electricity generation in 1995–2021. Source:
Calculations by the authors based on [78,79].

The increase in the EU’s gross electricity generation was mainly due to shifts in
the structure of its transformation inputs (structural impact factor), which made it pos-
sible to generate additional 600 TWh (+19.2%) in 1995–2021. At the same time, through-
out the studied period, these changes caused positive shifts in the structure of gross
electricity generation, and only during some years, 2002, 2011, 2014, and 2021, unfavor-
able market conditions caused structural shifts that negatively affected the EU’s gross
electricity generation.

The development of electricity generation technologies in the EU also made it possible
to achieve positive shifts in transformation efficiency (intensive impact factor). In general,
the EU’s transformation efficiency grew from 41.8% in 1995 to 53.5% in 2021, which resulted
in an increase in its gross electricity generation of +145 TWh (+4.6%). At the same time,
although there was an overall positive effect of transformation efficiency on gross electricity
generation, the impact of this factor showed a volatile trend.

Thus, it can be stated that the increase in gross electricity generation was mainly
caused by changes in the structure of transformation inputs (98%), while transforma-
tion efficiency and input volumes exerted a mutually compensating effect, and only a
small part of the increase in transformation efficiency (2%) caused a growth in gross
electricity generation.

The largest increase in the EU’s gross electricity generation was provided by countries
such as Spain (+55.5%, or 18.4% of the EU total), Germany (+19.2%, or 18% of the EU
total), Italy (+39.1%, or 16.8% of the EU total), France (+17.2%, or 13.9% of the EU total),
and Sweden (+26.9%, or 6.8% of the EU total). The only countries that decreased their
gross electric electricity generation were Romania (by −47.2%, or −7.9% of the EU total),
Lithuania (by −5.4%, or −2.0% of the EU total), Bulgaria (by −3.6%, or −0.8% of the EU
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total), Denmark (by −8.6%, or −0.4% of the EU total), and Hungary (by −0.2%, or −0.3%
of the EU total). All countries that reduced their demand for transformation inputs also cut
the amount of their gross electricity generation, while all countries that developed their
electricity generation also required additional transformation inputs, excluding Germany,
Greece, Sweden, Slovenia, the Slovak Republic, and Estonia. The greatest positive impacts
of the structural shifts on gross electricity generation were achieved by Germany (+34%),
Spain (+49%), France (+9%), Italy (+15%), and Sweden (+26%). The transformation input
structure had a negative impact on gross electricity generation only in Romania (−3%),
the Slovak Republic (−0.6%), the Czech Republic (−0.8%), and Latvia (−2%). The largest
increases in gross electricity generation due to growth in transformation efficiency were
observed in Italy (+16%), Germany (+7%), the Netherlands (+12%), Austria (+20%), and
Belgium (+13%). Transformation efficiency had a negative impact on gross electricity
generation in the following countries: Spain (−2%), France (−0.5%), and Estonia (−6%).

The decomposition analysis by type of transformation input allowed us to determine
their individual impacts on gross electricity generation (Table 3).

Table 3. General impact of transformation inputs on the EU’s gross electricity generation in 1995–2021.

Energy Source
Input Structure Impact (%) Transformation Efficiency Impact (%)

Growth Rate Share from the EU Growth Rate Share from the EU

Natural gas 11.90 60.77 2.80 60.40
Lignite −4.60 −24.89 0.60 11.85

Other bituminous coal −8.50 −47.22 0.40 9.99
Waste 2.20 11.41 0.40 9.09

Nuclear heat −1.70 −9.61 0.30 6.20
Biofuels 7.60 40.50 0.20 5.44
Hydro 1.20 5.69 0.10 2.41
Solar 5.20 28.92 0.10 1.86

Manufactured gases 0.00 0.80 0.10 1.79
Other solid fossil fuels 0.00 −0.20 0.10 1.17

Wind 12.60 70.09 0.00 0.21
Oil and oil products −6.70 −36.26 −0.50 −10.40

Source: Calculations by the authors based on [78,79].

Wind energy had the greatest positive impact on the EU’s gross electricity generation.
The increase in its share from 0.1% in 1995 to 6.2% in 2021 allowed an increase in gross
electricity generation of 420 TWh. At the same time, gas-fired power generation grew
from 9.5% in 1995 to 17.9% in 2021, providing an additional 364 TWh of gross electricity
generation. The share of biofuels also increased 10-fold, from 0.7% to 7.1%, resulting in an
increase in gross electricity generation of 243 TWh. In total, RESs provided an additional
871 TWh (+26.6%) of gross electricity generation, while fossil fuels caused a decrease of
708 TWh (−21.5%). Among the types of transformation inputs, the greatest influence on
the growth in gross electricity generation through transformation efficiency was exerted
by natural gas (+88 TWh, or +2.8%), the transformation efficiency of oil-based electricity
generation had a negative impact, and the individual contributions of the others amounted
to less than 1 %. Thus, in 1995–2021, the wind–gas transition of the EU’s electric power
sector took place. The transition was marked by abandoning fossil fuel sources in favor
of wind generation along with the development and improvement of the efficiency of
gas-fired generation.

Figure 3 presents the decomposition of the EU’s net electricity generation by type of
generation capacity; the distribution of the impacts across EU member states is shown in
Appendix C.
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In 1995–2021, the EU’s net electricity generation grew by 515 TWh (21.1%), with an
increase of 577 TWh (22.8%) in 1995–2008 and a decrease of −63 TWh (−1.7%) in 2009–2021.
The reason for this growth was an increase in generation capacities of 431 GW (+57.9%),
which could have provided an increase in the net electricity generation of 1556 TWh. How-
ever, structural shifts in generation capacities had a negative impact, leading to a decrease
in the net electricity generation of −766 TWh (−27%) Similarly, the CUF exerted a negative
impact on net electricity generation, causing it to drop by −199 TWh (−5.7%). However,
before 2005, the CUF contributed to an increase in the net electricity generation of 121 TWh
(+4.9%), while after 2006 a variable negative impact was observed which caused a decline
of −319 TWh (−12%). Generation efficiency also exerted a negative impact, causing a
decrease of −75 TWh (−2.5%). Before 2007, the increase in generation efficiency resulted
in an increase in net electricity generation of 53 TWh (2%), whereas after 2008 there was
a drop in net electricity generation by −128 TWh (−4.6%) due to a decline in generation
efficiency. Thus, the wind–gas transition of the EU’s electric power sector was accom-
panied by negative shifts in the structure and utilization of its generation capacities and
generation efficiency.

Among EU countries, Spain, Germany, and France made the greatest contributions to
the growth of the EU’s net electricity generation, while only Lithuania showed a reduction
in it. The greatest impacts of the increase in the EU’s generation capacities on net electricity
generation were observed in Germany, Spain, and Italy, while the highest growth rates in
net electricity generation for this factor were achieved in Bulgaria, Estonia, and Croatia,
with only Lithuania showing negative growth. In all the studied countries, the structural
shifts in generation capacities had a negative impact on their net electricity generation,
the most powerful occurring in Germany, Bulgaria, and Belgium. The CUF demonstrated
different impacts on net electricity generation: the largest decreases were recorded in
Spain, the Netherlands, and Poland, while the largest increases were recorded in Bulgaria,
Sweden, and Spain. Due to reducing the efficiency of net electricity generation, negative
growth was observed in Italy and Lithuania, while the largest drops were recorded in
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Estonia and Denmark. The increase in net electricity generation caused positive shifts in
Romania, Poland, and the Netherlands. Thus, although the influence of countries with
large economies on the increase in net electricity generation was the most tangible, it was
countries with smaller economies that were making the greatest efforts.

The decomposition analysis by generation capacities allowed us to determine their
individual impacts on net electricity generation (Table 4).

Table 4. Impacts of different types of generation capacities on the net electricity generation in the EU
in 1995–2021.

Type of
Capacities

GC Structure Impact (%) CUF Impact (%) Generation Efficiency Impact (%)

Growth Rate Share from the EU Growth Rate Share from the EU Growth Rate Share from the EU

Combustible −17.2 −62.8 −7.1 −110.9 −2.8 −107.7
Hydropower −5.8 −20.5 −0.9 −16.1 0.2 4.1

Nuclear −19.1 −69.2 0.9 8.7 0.2 5.1
Solar 4.8 17.4 0.3 3.4 −0.0 −0.9
Wind 9.8 35.1 1.1 14.9 −0.0 −0.7

Source: Calculations by the authors based on [80,81].

As can be seen from Table 3, the greatest negative impact was exerted by combustible
capacities, which caused a total drop in the EU’s net electricity generation of −782 TWh.
Due to the decommissioning of nuclear capacities, the EU’s net electricity generation
decreased by −530 TWh. The reduction in the volume and utilization of hydropower
capacities resulted in a decline in its net electricity generation by −189 TWh, while the
improvement in its efficiency provided an additional 3.5 TWh of electricity. Due to the
development of intermittent RES capacities, it became possible to increase the net electricity
generation by +439 TWh. However, there was a slight drop in their efficiency, which
led to a decrease in net electricity generation by −1 TWh. Thus, the rate and volume
of the abandonment of traditional generation capacities outpaced the development of
renewable ones.

Figure 4 shows the LMDI decomposition of the EU’s electricity balance; Appendix D
presents the distribution of these impacts across EU countries.

In 1995–2021, the EU’s final electricity consumption increased by 495 TWh (21.5%),
including an upward trend in 1995–2008, which provided an increase of 568 TWh (23.7%),
whereas in 2009–2021 there was a variable downward trend, which resulted in negative
growth of −73 TWh (−2.2%). Therefore, after the 2009 crisis, the EU’s final electricity
consumption decreased at a faster rate compared to the growth in its electricity generation.
In 1995–2021, the EU’s net electricity generation provided an increase in its final electricity
consumption of 410 TWh (82%). In 1995–2008, its growth resulted in covering 470 TWh,
whereas in 2009–2021, by contrast, its reduction caused a decrease in the EU’s final electricity
consumption of −60 TWh. The import growth caused a volatile upward trend, providing
an additional 167 TWh (34%) in the EU’s final electricity consumption, while the export
impact, by contrast, had a volatile downward trend, reducing the available electricity for
final electricity consumption by −156 TWh (−31%). The reduction in distribution losses
covered an additional 74 TWh, or 14%, of the EU’s total final electricity consumption.
However, if before 2011 the increase in distribution efficiency resulted in saving 104 TWh
of electricity, after 2012, there was a drop in this factor, which resulted in an additional
withdrawal of 30 TWh from the amount available for final electricity consumption.

All EU countries increased their final electricity consumption during the period under
study. The largest increases in electricity consumption were observed in Ireland, Croatia,
and Spain, ranging from 48% to 66.8%. However, Spain, France, Italy, and Poland covered
57.2% of the total European growth in final electricity consumption. The largest contributors
to the EU’s additional final electricity demand from their own net electricity generation
were Spain, Germany, Italy, France, and the Netherlands, which together covered 60.1%
of the EU’s total additional demand. The countries where net electricity generation had a
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negative impact on the supply of the EU’s final electricity consumption included Denmark,
Estonia, and Latvia. The increase in electricity imports of 49.1% was provided by France,
Finland, Denmark, and Hungary, while the increase in exports of 48.8% was covered by the
Netherlands, the Czech Republic, and Belgium. Countries such as Germany and Sweden
reduced their electricity import demands, while France, Denmark, and also Germany cut
their needs for electricity export. The greatest savings of electricity due to an increase in
distribution efficiency were recorded in Finland, France, and the Czech Republic, while
the greatest excess consumption of electricity due to a drop in distribution efficiency was
observed in Austria, Germany, and Denmark.
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The LMDI decomposition of final electricity consumption by type of economic activity
is shown in Figure 5; the distribution of the impacts across EU member states is shown in
Appendix F.

The shifts in final electricity consumption shown in Figure 5 caused a 67.1% increase
in the EU economy, resulting in an additional 1620 TWh of final electricity consumption,
including 1523 TWh (62.8%) in 1995–2008 and 97 TWh (4.3%) in 2009–2021. However,
structural shifts in the EU economy resulted in the reduction in this factor by −165 TWh
(−13%), and only in certain periods of economic recovery did these structural shifts cause
its growth. The decrease in consumption intensity resulted in its reduction by −883 TWh
(−34.5%). Thus, one of the driving forces of the EU’s energy transition has been responsible
final electricity consumption.

Among the EU countries, the largest impact on the growth in final electricity con-
sumption was due to the economic growth of countries with smaller economies, namely,
Estonia, Lithuania, Latvia, Romania, and the Slovak Republic, by more than 200%, but on a
pan-European scale, the contributions of these countries represented only 12.2%. On the
contrary, countries with large economies, such as Germany, France, Spain, and Italy, showed
moderate growth in final energy consumption due to their economic development—from
42.1% to 79.8%—but covered 55.4% of the total European growth. The structural shifts in the
economy had a mostly negative impact on the decrease in final electricity consumption, the
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strongest impacts being observed in Finland and Romania—reaching about −20%—while
only in some countries did the structural economic shifts lead to an increase in final elec-
tricity consumption, most notably in Croatia and Sweden (about 60%). The decrease in
consumption intensity also contributed to a decrease in final electricity consumption in all
EU countries. This impact was particularly noticeable in Latvia, Estonia, and Lithuania.
However, the Baltic countries’ contribution to the EU-wide reduction in final electricity
consumption was only −3.5%, while the decreases in consumption intensity in Germany,
France, Spain, and Italy ranged from 26.2% to 37.2%, amounting to −61.3% of the total final
electricity consumption savings for this factor.
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The decomposition analysis conducted by type of economic activity allowed the deter-
mination of individual structural and efficiency impacts on the final electricity consumption
(Table 5).

As can be seen from Table 5, almost all types of economic activities demonstrated a
negative impact on final electricity consumption, most significantly in the chemical and
chemical product, the paper, pulp, and printing, and also other sectors, which resulted in
electricity savings of −35.3%, −22.9%, and −19.5% of the total EU savings for this factor.
The increase in final electricity consumption due to positive structural shifts occurred
only in the services, coke and refined oil product, and transport and transport equipment
sectors, which together accounted for 36.0% of the growth in the EU’s final electricity
consumption. As a result of the reduction in consumption intensity, all types of activities
showed a decrease in final energy consumption, most significantly households, services,
and mining and quarrying, providing, in total, −69.7% of the EU’s electricity savings for
this factor.
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Table 5. Impacts of different types of economic activity on the final electricity consumption in the EU
in 1995–2021.

Economic Activity
Impact of Output Structure (%) Impact of Output Structure (%)

Growth Rate Share from the EU Growth Rate Share from the EU

Agriculture, fishing, and forestry −6.0 −0.5 −0.3 −0.1
Chemical and chemical products −35.3 −2.7 −3.1 −0.7

Coke and refined oil products 6.2 0.5 −3.8 −0.8
Construction −0.2 0.0 −0.5 −0.1

Food, beverages, and tobacco −9.5 −0.7 −1.1 −0.2
Households −8.3 −0.6 −33.8 −7.2
Machinery −15.5 −1.2 1.8 0.4

Metal and metal products −8.5 −0.7 −12.2 −2.6
Mining and quarrying −6.8 −0.5 −4.2 −0.9
Non-metallic minerals −6.5 −0.5 −3.4 −0.7

Other −19.5 −1.5 −1.6 −0.4
Paper, pulp, and printing −22.9 −1.7 −0.7 −0.2

Services 34.8 2.7 −23.7 −5.1
Textiles and leather −8.4 −0.6 −1.4 −0.3

Transport 5.2 0.4 −7.3 −1.6
Transport equipment 4.1 0.3 −4.3 −1.0

Wood and wood products −3.1 −0.2 −0.4 −0.1

Source: Calculations by the authors based on [79,82,83].

5. Discussion

The results of the research revealed the following root shifts in the EU’s electric power
sector development which must be discussed here:

• The EU is undergoing a wind–gas transition in the electric power sector. This has
enabled 131% of additional electricity demand to be covered, 70% by wind generation
and the rest by gas generation. Overall, the development of renewable generation has
provided +145% of additional electricity. At the same time, electricity generation from
fossil fuels decreased by −105%, −95% from combustible fossil fuels and −10% from
nuclear heat.

• This transition was accompanied by an increase in the energy efficiency of electricity
flows, resulting in total electricity savings of 1028 TWh, 85% due to a reduction in
the intensity of electricity consumption, while the remaining 15% of the savings came
from the increase in the transformation efficiency of inputs in electricity generation.
However, this transition led to a decrease in the efficiency of electricity generation and
distribution and consequently to overconsumption of electricity by 145 TWh.

• However, this transition was also accompanied by negative structural shifts in the
generation capacities and their efficiency, which ultimately led to a lack of 966 TWh in
net electricity generation, −50% due to combustible fossil fuel capacities, −55% due to
nuclear heat, and −16% due to hydropower capacities, while intermittent RESs (solar
and wind) managed to provide only +42% of additional electricity generation.

• The expansion of the EU’s economic activity required an increase in its final energy
consumption, but the structural shifts in its economy reoriented these volumes from
industry (−12%) to households and services and transport (+10%).

• Such changes required an increase in the EU’s external electricity flows, which entailed
additional electricity exports from net electricity generation (−31%) together with an in-
crease in its electricity imports (+34%) to cover the deficit in final electricity consumption.

Furthermore, the decomposition analysis allowed us to identify critical trends in the
development of the EU’s electricity sector, among which there are changes in trends in
gross and net electricity generation and final electricity consumption (after 2009) and in the
impacts of input transformation (from 2007), capacity utilization (from 2006), generation
efficiency (from 2008), and distribution efficiency (from 2012).
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The current challenges to the EU’s power sector development caused by the Russian
aggression in Ukraine prove the need to revise the underlying trends of its development.
The RePowerEU Plan declares the need for a rapid reduction in the dependence on Russian
fossil fuels and acceleration of the energy transition [7]. Consequently, further support for
the green energy transition by gas-fired generation is limited. At the same time, the rapid
advancement in wind generation requires further enhancement in balancing capacities.
The future development of the EU’s electric power sector should be based on solar and
offshore wind, the deployment of which is ensured by the introduction of electricity storage
capacities as well as further electrification of industry and transportation as demand
response management systems [7]. However, such future fundamental shifts in the EU’s
electricity sector require the implementation of important projects of common European
interest and their financing through the Innovation Fund [87,88].

6. Conclusions

The decomposition of the electric power sector based on the LMDI-I approach can be
seen as a powerful methodological tool for studying fundamental shifts in its development,
but it requires a lot of manual calculations. In this paper, four LMDI-I models for the
decomposition of the fundamental shifts in the EU’s electric power sector development have
been presented: for gross and net electricity generation, for final electricity consumption,
and for balancing supply and demand. In total, the proposed models allowed us to track the
electric power sector’s development by assessing 14 impact factors (extensive, structural,
and intensive) in absolute and relative terms.

In this study, we decomposed the EU’s electric power sector by stages of electricity
flows for the period 1995–2021 on a large-scale basis (both for the entire EU and for its
25 member states individually) and determined the contribution of each impact factor and
each member state to the development of the entire EU’s electric power sector. This was
achieved by means of big data analysis using the MS Power BI software.

Thus, the designed methodological support for LMDI decomposition allows future
fundamental shifts in the development of the electric power sector to be thoroughly and
quickly identified and for comparisons with general trends in the EU as a whole and
between its member states. Moreover, it can also serve as an analytical tool for regional and
state authorities to identify gaps and search for ways to develop the electric power sector.
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VOSviewer [62].

Appendix B

Table A1. Classification of energy sources for electricity generation decomposition.

Energy Source
(For the Purpose of Gross Electricity Generation)

General Classification of Energy Sources
(For the Purpose of Net Electricity Generation)

Natural gas Combustible fuels
Lignite Combustible fuels

Other bituminous coal Combustible fuels
Waste Combustible fuels

Nuclear heat Nuclear heat
Biofuels Nuclear heat
Hydro Hydro
Solar Solar

Manufactured gases Combustible fuels
Other solid fossil fuels Combustible fuels

Wind Wind
Oil and oil products Oil and oil products

Source: Based on [84].

Table A2. Classification of economic activity.

For Final Electricity Consumption For Economic Output Used in Decomposition

Agriculture and forestry Agriculture, fishing, and forestry Agriculture, fishing, and forestry
Fishing

Chemical and petrochemical Chemical and chemical products
Pharmaceutical products Chemical and chemical products

Coke oven and oil refinery Coke and refined oil products Coke and refined oil products
Construction Construction Construction
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Table A2. Cont.

For Final Electricity Consumption For Economic Output Used in Decomposition

Food, beverages, and tobacco Food, beverages, and tobacco Food, beverages, and tobacco
Households Household expenditures Households
Machinery Machinery Machinery

Iron and steel
Non-ferrous metals Basic metals and fabricated metal products Metal and metal products

Mining and quarrying Mining and quarrying Mining and quarrying
Non-metallic minerals Non-metallic minerals Non-metallic minerals

Not elsewhere specified Other Other
Paper, pulp, and printing Paper and paper products, reproduction Paper, pulp, and printing

Commercial and public services All services excluding the transport sector Services
Textiles and leather Textiles and leather Textiles and leather

Transport Transport sector Transport
Transport equipment Transport equipment Transport equipment

Wood and wood products Wood and wood products Wood and wood products

Source: Based on [85].

Appendix C

Table A3. Decomposition analysis of gross electricity generation in the EU member states in
1995–2021.

Geo 1 Input Volume Impact (%) Input Structure Impact (%) Transformation
Efficiency Impact (%) GEG Shifts (%)

GR 2 Share 3 GR Share GR Share GR Share

AT 11.4 −4.5 7.5 0.5 19.5 9.9 33.4 3.7
BE 21.2 −5.0 19.4 1.9 12.7 8.2 40.9 4.9
BG −8.1 6.1 8.3 0.4 2.7 0.7 −3.6 −0.8
CZ 10.7 −6.2 0.8 −0.1 6.4 4.3 15.7 2.3
DE −20.3 119.9 34.1 37.3 6.9 31.4 19.2 18.0
DK −16.1 18.0 30.3 2.5 11.6 4.7 8.6 −0.4
EE −8.8 1.9 262.9 1.5 −5.8 −0.5 178.5 0.9
EL −7.1 5.7 43.9 3.4 5.0 0.8 32.6 2.3
ES 20.4 −17.9 49.2 17.2 −1.8 −7.0 55.5 18.4
FI 12.4 −1.2 16.5 1.5 8.7 5.3 27.7 3.1
FR 9.1 −28.3 9.3 8.1 0.5 −0.7 17.2 13.9
HR 43.7 −3.5 25.0 0.1 9.4 1.0 57.3 1.1
HU −16.6 6.3 8.5 0.3 9.5 2.7 −0.2 −0.3
IE 23.2 −2.6 39.2 1.4 16.0 2.6 72.4 2.6
IT 10.6 −6.9 15.1 7.2 16.4 34.7 39.1 16.8
LT −91.0 17.5 132.9 2.7 12.9 0.5 −54.1 −2.0
LU 200.1 −0.8 73.2 0.1 43.9 0.9 179.2 0.4
LV 23.5 −1.0 21.0 0.0 5.7 0.3 30.8 0.3
NL 12.3 −8.1 9.8 1.4 11.6 10.5 29.9 5.7
PL 6.1 −7.3 8.5 2.8 2.9 3.9 16.4 5.3
PT 16.4 −0.8 58.5 2.8 10.1 2.7 56.4 3.6
RO −46.2 34.8 3.0 −0.7 3.8 1.8 −47.2 −7.9
SE 6.7 0.2 26.1 6.5 1.3 1.8 26.9 6.8
SK 2.2 0.2 −0.6 −0.3 10.2 2.4 9.0 0.3
SL 3.9 0.2 14.5 0.3 5.1 0.6 20.3 0.4

Source: Calculations by the authors based on [80,81]. Notes: Here and after: 1 Country abbreviations are used
according to ISO 3166-1 alpha-2 [87,88]; 2 GR = growth rate; 3 Share = the share of the total EU impact.
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Appendix D

Table A4. Decomposition analysis net electricity generation in the EU member states in 1995–2021.

Geo

GC Impact
(%)

GC Structure Impact
(%)

CUF Impact
(%)

Generation Efficiency
Impact (%)

NEG Shifts
(%)

GR Share GR Share GR Share GR Share GR Share

AT 46.3 1.9 −11.6 1.1 2.6 1.1 −6.7 5.7 27.4 3.1
BE 57.9 3.1 −33.9 3.8 23.5 −5.4 −4.3 4.9 39.5 5.0
BG 415.4 4.3 −43.1 2.4 53.7 −9.5 16.7 −7.7 20.5 1.2
CZ 43.6 1.9 −5.7 0.7 −9.7 4.3 9.9 −7.6 35.3 4.4
DE 75.2 27.8 −51.7 40.0 2.3 6.9 −8.6 70.3 12.2 11.4
DK 43.2 0.9 −13.2 0.7 11.4 0.4 −28.9 15.0 13.8 −0.5
EE 286.0 2.9 −15.8 0.2 198.7 −7.0 −101.3 18.6 20.0 −0.2
EL 86.2 2.8 −19.0 1.4 −25.2 9.0 0.5 0.1 36.0 2.8
ES 91.9 14.7 −19.0 6.7 −8.9 31.9 −1.6 6.5 53.7 20.9
FI 22.9 0.9 −5.3 0.5 18.7 −4.6 −14.3 14.5 19.3 1.7
FR 28.1 9.4 −15.7 11.3 4.3 −6.0 −2.5 17.9 12.7 11.4
HR 111.0 0.7 −38.5 0.8 47.1 −1.2 6.9 −0.7 69.7 1.1
HU 46.7 0.9 −20.4 0.9 −17.4 3.6 6.7 −2.6 12.6 0.5
IE 104.6 1.7 −12.0 0.5 −16.8 3.3 −4.9 2.0 63.3 2.8
IT 59.3 10.4 −16.7 6.4 2.2 4.2 −18.9 77.3 19.6 9.0
LT −37.3 −0.4 −0.6 0.5 63.1 −4.4 18.9 −2.9 −18.8 −1.4
LU 47.3 0.1 63.3 −0.1 25.1 0.1 −25.3 1.4 98.8 0.2
LV 36.9 0.1 1.6 0.0 15.1 0.9 47.8 −2.7 87.5 0.4
NL 94.2 6.1 −37.8 5.7 −14.0 10.2 8.4 −11.8 44.4 7.8
PL 60.4 5.6 −20.8 4.2 −16.1 13.6 7.6 −14.2 27.5 7.4
PT 85.1 2.5 −10.1 0.8 14.5 4.4 −8.4 5.1 54.2 3.8
RO 14.1 0.4 −5.0 0.4 −23.3 7.9 27.8 −18.2 7.7 0.4
SE 29.6 2.8 −21.9 4.6 18.0 −8.6 −0.5 1.4 21.3 4.7
SK 5.7 0.0 −2.1 0.2 13.5 −1.6 7.5 −2.2 19.1 0.8
SL 49.6 0.5 −14.7 0.3 −8.1 1.0 6.9 −1.0 30.0 0.7

Source: Calculations by the authors based on [80,81].

Appendix E

Table A5. Decomposition analysis of the electricity balance in the EU member states in 1995–2021.

Geo

NEG Impact
(%)

IMPORT Impact
(%)

EXPORT Impact
(%)

Distribution Efficiency
Impact, (%)

FEC Shifts
(%)

GR Share GR Share GR Share GR GR Share

AT 30.7 3.90 9.8 9.20 −7.8 6.10 −51.80 36.0 4.2
BE 27.2 5.60 4.9 3.20 −2.9 11.00 8.70 17.4 2.7
BG 27.9 1.20 1.5 1.00 −5.9 6.30 9.20 7.4 0.4
CZ 32.9 4.70 4.5 3.70 −9.8 11.00 33.50 20.1 2.4
DE 28.5 10.50 1.9 −4.30 −2.6 −0.30 −45.50 5.4 4.9
DK 25.9 −4.60 8.4 9.40 −8.4 −2.70 −50.00 1.5 0.1
EE 32.1 −0.40 7.4 4.20 −10.9 2.40 15.40 41.6 0.6
EL 32.6 3.10 4.2 2.80 −1.3 1.60 −7.50 31.9 2.7
ES 39.6 22.40 1.8 5.20 −1.4 6.00 −17.00 48.0 17.9
FI 27.4 0.70 3.5 9.60 −1.2 3.40 53.80 23.8 3.4
FR 33.2 8.80 0.7 11.50 −4.1 −1.90 36.50 22.6 17.8
HR 30.0 1.00 19.0 4.60 −10.2 3.50 7.30 50.2 1.3
HU 24.1 0.40 10.4 9.30 −4.8 3.50 26.00 36.3 2.8
IE 38.8 3.00 1.8 1.40 −0.8 0.40 −7.10 66.8 2.9
IT 25.9 9.70 4.3 4.80 −0.2 1.90 11.40 19.5 10.5
LT 18.2 −2.20 6.9 3.10 −4.0 0.50 18.50 40.3 0.8
LU 13.7 0.20 24.4 0.40 −7.1 0.20 2.20 26.2 0.3
LV 25.1 0.80 15.0 1.20 −9.9 1.80 −7.30 37.0 0.4
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Table A5. Cont.

Geo

NEG Impact
(%)

IMPORT Impact
(%)

EXPORT Impact
(%)

Distribution Efficiency
Impact, (%)

FEC Shifts
(%)

GR Share GR Share GR Share GR GR Share

NL 28.4 8.70 6.4 5.60 −3.1 12.50 −13.70 29.0 5.8
PL 28.6 8.10 1.7 6.20 −2.2 3.70 24.40 40.6 10.9
PT 36.9 4.20 5.4 3.00 −3.3 1.00 −9.40 47.5 3.6
RO 26.0 0.50 1.3 4.90 −2.2 3.80 −11.20 13.7 1.1
SE 26.4 7.30 2.4 −4.20 −3.7 14.30 20.00 2.7 0.6
SK 35.8 1.10 15.9 4.90 −18.4 7.00 3.70 14.3 0.7
SL 26.5 0.80 10.1 4.40 −9.8 3.90 −20.40 32.3 0.8

Source: Calculations by the authors based on [79].

Appendix F

Table A6. Decomposition analysis of the final electricity generation in the EU member states in
1995–2021.

Geo

Output Volume
Impact (%)

Output Structure
Impact (%)

Consumption
Intensity Impact (%)

FEC Shifts
(%)

GR Share GR Share GR Share GR Share

AT 88.2 3.3 −4.3 −6.4 −41.9 −3.1 36.0 4.2
BE 86.7 4.4 −2.6 −6.8 −46.9 −4.8 17.4 2.7
BG 181.5 3.2 4.1 3.1 −113.8 −4.1 7.4 0.4
CZ 178.0 6.3 −6.2 −10.1 −108.1 −7.6 20.1 2.4
DE 42.1 14.0 8.1 84.1 −37.2 −25.1 5.4 4.9
DK 95.4 2.0 −10.4 −9.8 −67.8 −2.6 1.5 0.1
EE 247.1 1.0 −8.6 −1.5 −132.7 −1.1 41.6 0.6
EL 56.7 1.5 −6.7 −7.5 −0.3 −0.1 31.9 2.7
ES 79.8 9.6 10.0 65.6 −26.2 −7.5 48.0 17.9
FI 96.6 4.7 −22.2 −50.8 −38.6 −3.9 23.8 3.4
FR 74.8 19.5 −5.9 −71.2 −34.2 −17.9 22.6 17.8
HR 30.7 −0.4 63.9 22.3 −44.2 −0.7 50.2 1.3
HU 158.4 3.3 −7.5 −6.7 −79.0 −3.3 36.3 2.8
IE 175.0 2.3 −2.6 −2.1 −74.3 −2.0 66.8 2.9
IT 72.3 12.3 −2.1 −17.5 −32.7 −10.8 19.5 10.5
LT 236.8 1.3 9.5 3.0 −131.1 −1.4 40.3 0.8
LU 229.5 0.8 −15.4 −2.7 −62.4 −0.5 26.2 0.3
LV 210.5 0.7 11.5 2.2 −135.2 −0.9 37.0 0.4
NL 95.8 6.2 −9.5 −27.2 −40.3 −5.1 29.0 5.8
PL 159.4 11.2 4.8 26.6 −80.9 −12.1 40.6 10.9
PT 62.6 1.5 8.8 12.2 −17.0 −1.1 47.5 3.6
RO 224.8 6.1 −20.0 −25.4 −103.8 −5.7 13.7 1.1
SE 12.9 4.9 58.9 139.8 −54.1 −8.8 2.7 0.6
SK 204.2 3.2 −11.4 −9.1 −108.9 −3.4 14.3 0.7
SL 115.7 0.9 −4.9 −1.7 −40.2 −0.6 32.3 0.8

Source: Calculations by the authors based on [79,82,83].

References
1. National Determined Contributions Registry. UNFCCC. Available online: https://unfccc.int/NDCREG (accessed on 1 May 2023).
2. The Internal Energy Market. Commission Working Document. EUR-LEX. Available online: https://eur-lex.europa.eu/procedure/

EN/107212 (accessed on 1 May 2023).
3. Directive 96/92/EC of the European Parliament and of the Council of 19 December 1996 Concerning Common Rules for the

Internal Market in Electricity. EUR-LEX. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A3
1996L0092 (accessed on 1 May 2023).

4. Directive 2003/54/EC of the European Parliament and of the Council of 26 June 2003 Concerning Common Rules for the
Internal Market in Electricity and Repealing Directive 96/92/EC—Statements Made with Regard to Decommissioning and Waste
Management Activities. EUR-LEX. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32003L0
054 (accessed on 1 May 2023).

https://unfccc.int/NDCREG
https://eur-lex.europa.eu/procedure/EN/107212
https://eur-lex.europa.eu/procedure/EN/107212
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31996L0092
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31996L0092
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32003L0054
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32003L0054


Energies 2023, 16, 5478 20 of 22

5. European Comission. Third Energy Package. Available online: https://energy.ec.europa.eu/topics/markets-and-consumers/
market-legislation/third-energy-package_en (accessed on 1 May 2023).

6. European Comission. Clean Energy for All Europeans Package. Available online: https://energy.ec.europa.eu/topics/energy-
strategy/clean-energy-all-europeans-package_en (accessed on 1 May 2023).

7. REPowerEU Plan. Communication from the Commission to the European Parliament, the European Council, the Council, the
European Economic and Social Committee and the Committee of the Regions. Available online: https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=COM%3A2022%3A230%3AFIN&qid=1653033742483 (accessed on 18 May 2023).

8. Eurostat Database. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 1 May 2023).
9. Afgan, N.H.; Carvalho, M.G.; Hovanov, N.V. Modelling of energy system sustainability index. Therm. Sci. 2005, 9, 3–16. [CrossRef]
10. Sannino, A.; Hammons, T.; McConnach, J. Global power systems for sustainable energy development. In Proceedings of the IEEE

Power Engineering Society General Meeting, Denver, CO, USA, 6–10 June 2004; pp. 2296–2297.
11. Wang, D.; Gryshova, I.; Balian, A.; Kyzym, M.; Salashenko, T.; Khaustova, V.; Davidyuk, O. Assessment of Power System

Sustainability and Compromises between the Development Goals. Sustainability 2022, 14, 2236. [CrossRef]
12. Roldán-Blay, C.; Miranda, V.; Carvalho, L.; Roldán-Porta, C. Optimal Generation Scheduling with Dynamic Profiles for the

Sustainable Development of Electricity Grids. Sustainability 2019, 11, 7111. [CrossRef]
13. Koval, V.; Savina, N.; Sribna, Y.; Filipishyna, L.; Zherlitsyn, D.; Saiapina, T. European energy partnership on sustainable energy

potential. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Riga, Latvia, 31 October–1 November
2022; Volume 1126, p. 012026.

14. Ahlqvist, V.; Holmberg, P.; Tangerås, T. A survey comparing centralized and decentralized electricity markets. Energy Strategy
Rev. 2022, 40, 100812. [CrossRef]
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24. Augustyn, A.; Kamiński, J. A review of methods applied for wind power generation forecasting. Polityka Energetyczna Energy
Policy J. 2018, 21, 139–150. [CrossRef]
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