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Abstract: Increasing wind capacity and capacity factors (CF) are essential for achieving the goals set 

by the Paris Climate Agreement. From 2010–2012 to 2018–2020, the 3-year mean CF of the global 

onshore wind turbine fleet rose from 0.22 to 0.25. Wind turbine siting, wind turbine technology, hub 

height, and curtailed wind energy are well-known CF drivers. However, the extent of these drivers 

for CF is unknown. Thus, the goal is to quantify the shares of the four drivers in CF development in 

Germany as a case. Newly developed national power curves from high-resolution wind speed mod-

els and hourly energy market data are the basis for the study. We created four scenarios, each with 

one driver kept constant at the 2010–2012 level, in order to quantify the share of a driver for CF 

change between 2010–2012 and 2019–2021. The results indicated that rising hub heights increased 

CF by 10.4%. Improved wind turbine technology caused 7.3% higher CF. However, the absolute CF 

increase amounted to only 11.9%. It is because less favorable wind turbine sites and curtailment in 

the later period moderated the CF increase by 2.1% and 3.6%, respectively. The drivers are mainly 

responsible for perennial CF development. In contrast, variations in wind resource availability drive 

the enormous CF inter-annual variability. No multi-year wind resource change was detected. 
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1. Introduction 

Replacing conventional energies with renewables is urgently needed for climate 

change mitigation. One step toward a decarbonized energy system is the globally installed 

onshore wind capacity (IC) of 769 GW [1]. However, to meet the 1.5 °C target, the world-

wide onshore installed capacity must increase to more than 5000 GW in 2050 [2]. The wind 

turbine fleet is unevenly distributed around the world since three countries, China (IC = 

303 GW), the USA (IC = 133 GW), and Germany (IC = 56 GW), comprise almost two-thirds 

of the globally installed capacity. 

Another requirement to achieve the 1.5 °C target is the rising wind turbine capacity 

factor (CF) derived from wind turbine power output and rated power (Pr). Recently, the 

3-year mean capacity factor of the global onshore wind turbine fleet rose from 0.22 in 

2010–2012 to 0.25 in 2018–2020 [1]. National capacity factor values vary, as shown by the 

capacity factor values in 2020, being 0.19 in China and 0.33 in the USA. The capacity factor 

is also subject to annual fluctuations. In 2010–2021, Germany’s capacity factor ranged 

from 0.163 in 2010 to 0.217 in 2020 (Figure 1a). An analysis of the capacity factor values 

over a 3- and 5-year moving time window (Figure 1b,c) reveals a positive linear trend. A 

relevant inter-annual variability is also apparent. Potential drivers for the spatiotemporal 

capacity factor variability are (1) wind turbine siting, (2) hub height, (3) wind turbine tech-

nology, and (4) curtailed wind energy. Wind turbine site suitability depends on the avail-

able wind resource, geographical restrictions, and the socio-economic potential [3–6]. 
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Figure 1. National capacity factor (CF) in 2010–2021 (black circles) in terms of (a) annual mean; (b) 

3-year mean; and (c) 5-year mean, including the linear trends (red line) with confidence intervals 

(dotted red line) and the coefficients of determination (R2). 

The capacity factor is affected by spatiotemporally diverse wind resources and tur-

bine characteristics. Wind speed (U) predominantly determines wind resources. It has an 

enormous spatiotemporal variability. Spatially, wind speed differs depending on the lat-

itude, longitude, land–sea distribution, orography, and land use [7]. Sub-hourly, hourly, 

daily, seasonal, and annual wind speed variations are part of the temporal variability [8]. 

Wind speed also has long-term variability in the range of decades, caused by the natural, 

internal decadal ocean/atmosphere oscillations of the climate system [9]. One example is 

the global terrestrial stilling from 1980 to 2010 and its reversal ever since. Likewise, an-

thropogenic climate change is altering global circulation systems and wind speed. A 

weakening of the air temperature gradient between the north pole and mid-latitudes 

could decrease future wind speeds [10] in many areas of the northern hemisphere with 

high installed capacity [11]. Another influencing factor for wind speed is the wake effect 

in wind farms, which lowers wind speed at individual wind turbine sites. However, the 

spatial extent to which existing wind turbines reduce the wind resource is difficult to 

quantify. Some studies indicate that wind turbine-induced wind speed decreases due to 

the extraction of kinetic energy could even cover whole countries or the globe [12]. Re-

cently, Li et al. [13] assumed that although onshore wind farms reduce local wind speeds, 

their influence is insufficient to overcome oceanic/atmosphere oscillations, and at their 

currently installed capacity, they do not affect the global wind speed distribution. 

Wind speed increases logarithmically with increasing height above ground [14,15]. 

Thus, the hub height (hhub) of wind turbines is relevant for the capacity factor [16]. A general 

trend toward higher hub heights in recent years exists [17]. Increasing the hub height from 

120 m to 140 m leads to higher global wind potential by about 12% [18]. Regional case studies 

also indicate increasing wind turbine power output as indicated for China, where the same 

hub height increase led to approximately 7% higher energy yields [19]. Thus, previously un-

developed low-wind resource regions become more prospective for wind turbines [20]. 

The increase in hub height is not the only trend of modern wind turbines. Many tur-

bine features have improved recently, leading to rising capacity factor values [21]. Higher 
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rated power (Pr) and larger rotor diameters (RD) characterize the development of the 

global wind turbine fleet [22]. One parameter quantifying the better wind resource exploi-

tation of modern wind turbines is the specific rating, which is the ratio of rated power to 

rotor swept area [23]. New wind turbine installations are also advantageous over the old 

because wind turbine performance declines smoothly with age [24]. The reasons for de-

creasing power outputs are deteriorating component reliability, aerodynamic and me-

chanical efficiency losses, and more downtime. The wind turbine power curve considers 

all components influencing wind turbine performance, as it defines the relationship be-

tween the wind turbine power output or capacity factor, and wind speed [25,26]. The main 

features of a power curve are the cut-in speed, rated speed, and cut-out speed. 

Wind energy curtailment considerably reduces the capacity factor. One major disad-

vantage of wind energy is its non-dispatchable nature [27,28]. The increasing share of var-

iable renewable energy in the power grid sometimes requires wind power curtailment 

[29,30]. Curtailment is defined as the reduction in the output of a generator from what it 

could otherwise produce given available resources [31]. One reason for curtailment is conges-

tion in the transmission system [32]. Interconnection and battery deployment enable the re-

duction in curtailment [33]. In countries with high installed capacities, such as China [34] and 

Germany [35], wind energy curtailment leads to relevant capacity factor reduction. 

The theoretical and qualitative influences of the wind turbine siting, hub height, tech-

nology, and curtailed wind energy on the capacity factor are well described and under-

stood. For individual wind turbine sites, it is often also possible to quantify the influence 

of capacity factor drivers. In contrast, there is a lack of quantitative estimates considering 

the combination of the above capacity factor drivers for national wind turbine fleets. 

Therefore, it is unknown how much hub height increases and improved technology are 

responsible for the capacity factor increase in many countries in recent years. It is also 

unclear how much decreasing wind resources at wind turbine sites possibly prevented 

even higher capacity factor values. 

Thus, the goal of this study was to quantify the shares of wind turbine (1) siting, (2) 

technology, (3) hub height, and (4) curtailment in capacity factor development. We struc-

tured this research as a case study of Germany’s onshore wind turbine fleet, since the 

installed capacity in that country is very high, and increased by 109% from 2010 to 2021. 

In addition, Germany has a high onshore wind turbine density that allows us to test the 

hypothesis that the 2010–2021 capacity factor increase was capped by decreasing wind 

speed due to wind energy expansion. 

2. Materials and Methods 

The workflow to quantify the shares of the drivers in CF development (Figure 2) com-

prise the following main steps: (1) obtaining wind turbine fleet data, including site coor-

dinates and hub heights from the German power plant platform Markstammdatenregister 

[36]; (2) obtaining the 6-hourly wind speeds at wind turbine sites from a German wind 

atlas [37]; (3) quantile mapping with reanalysis wind speed data [38] to develop hourly 

wind speed time series; (4) gaining national wind energy yield data from the Energy-

Charts platform [39]; (5) developing national power curves from wind speed and energy 

yield data; (6) obtaining curtailed wind energy yield; and (7) quantifying the shares of the 

drivers in CF development. 
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Figure 2. Workflow to quantify the shares of the drivers in capacity factor (CF) development. 

2.1. Wind Turbine Fleet Data 

The platform Marktstammdatenregister (MaStR) [36] hosted by the German Federal 

Network Agency contains information regarding the operating and planned electricity 

and gas generation plants in Germany. We extracted the data for all wind turbine sites 

operating at the end of 2021. The entries for the wind turbines included information on 

the date of commissioning, hhub, Pr, RD, turbine type, and explicit coordinates. Based on 

the year of commissioning, we created annual wind turbine fleets for 2010–2021. 

2.2. Wind Speed Data 

We used three different wind speed datasets in this study. The first dataset is the 

Wind Speed Complementarity model (WiCoMo) [37], a high-spatiotemporal resolution 

model developed for adjusting wind turbine site selection to residual load. It contains the 

Kappa distribution parameters (α, k, μ, о) at a 25 m × 25 m spatial resolution grid covering 

Germany. The grid cell-related Kappa quantile functions (UWiCoMo (F)) were calculated by 

[40–42]: 

𝑈𝑊𝑖𝐶𝑜𝑀𝑜(𝐹) = 𝜇 +
𝛼

𝑘
[1 − (

1 − 𝐹о

о
)

𝑘

] (1) 

The second dataset is the model Uncertainties in Ensembles of Regional Re-Analyses 

(UERRA) [43]. UERRA has a spatial resolution of 11 km × 11 km, and is 6-hourly available from 

1961–2019. It provides the regional scale wind speed for parameterization of WiCoMo. In 

this study, we used the UERRA variables wind speed in 10 m (UUERRA,10) and wind speed in 

100 m (UUERRA,100). 

The third dataset is the fifth-generation ECMWF atmospheric reanalysis of the global 

climate (ERA5) model [38]. The spatial resolution is 0.25° × 0.25°. The ERA5 variables are 

available hourly from 1959 onwards. The relevant variables for the current study are the 

wind vector components at 10 m (uERA5,10, vERA5,10) and 100 m (uERA5,100, vERA5,100). The wind 

vector components were used to calculate the hourly wind speed at 10 m (UERA5,10) and 100 

m (UERA5,100) with the following: 

𝑈𝐸𝑅𝐴5,10 = √𝑢𝐸𝑅𝐴5,10
2 + 𝑣𝐸𝑅𝐴5,10

2 (2) 

and the following: 

𝑈𝐸𝑅𝐴5,100 = √𝑢𝐸𝑅𝐴5,100
2 + 𝑣𝐸𝑅𝐴5,100

2 (3) 
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The goal was to generate hourly wind speeds on the 25 m × 25 m WiCoMo grid in 

2010–2021 for heights of 10 m (U10,HR), 90 m (U90,HR), and the wind turbine hub (Uhhub,HR) 

based on the presented variables from the three wind speed datasets. 

Building the U10,HR model required several intermediate steps. Firstly, the coarsely 

resolved UERA5,10 and UERA5,100 time series were converted to the higher resolution UERRA grid 

by quantile mapping [44,45], resulting in UQM,10 and UQM,100 time series. Next, the UQM,10 

time series were further quantile-mapped to the WiCoMo grid, yielding U10,HR. 

The extrapolation of the U10,HR to 90 m and hhub also required several steps, following 

the approach presented in [37]. First, hypothetical wind speed at 2000 m (UQM,2000) at the 

UERRA grid was calculated by estimating the power law exponents (PLEQM): 

𝑃𝐿𝐸𝑄𝑀 =

𝑙𝑛 (
𝑈𝑄𝑀,100

𝑈𝑄𝑀,10
)

𝑙𝑛 (
100𝑚
10𝑚

)
 (4) 

and applying the power law: 

𝑈𝑄𝑀,2000 = 𝑈𝑄𝑀,10 (
2000𝑚

10𝑚
)
𝑃𝐿𝐸𝑄𝑀

 (5) 

Based on the UQM,2000 and U10,HR, the high-resolution PLE time series were generated 

by the following: 

𝑃𝐿𝐸 =

𝑙𝑛 (
𝑈𝑄𝑀,2000

𝑈𝑄𝑀,10
)

𝑙𝑛 (
2000𝑚
10𝑚

)
 (6) 

Using the power law, the U90,HR was calculated as follows: 

𝑈90,𝐻𝑅 = 𝑈10,𝐻𝑅 (
90𝑚

10𝑚
)
𝑃𝐿𝐸

 (7) 

The U90,HR time series were extracted at all grid cells with a wind turbine. The mean 

of the U90,HR values was used to build the national mean U90,HR time series (U90). National 

time series were also created for the Uhhub,HR (Uhhub) data by averaging the Uhhub,HR values, 

assuming the actual hhub for each wind turbine location. 

2.3. Energy Market Data 

The platform Energy-Charts from Fraunhofer ISE [39] provides many energy market 

data. We used the national hourly onshore wind energy generation (OWE) from 2010–

2021. The variable OWE is an estimation by the transmission system operators based on 

reference wind turbines. The annual installed IC in 2010–2021 was also available from En-

ergy-Charts. 

A monitoring report from Germany’s Federal Network Agency and the German Fed-

eral Cartel Office contains outage work caused by feed-in management measures for 

many energy sources [46]. We used the report as the data source for the annually curtailed 

wind energy (CUE) in 2011–2020. 

2.4. Development of National Power Curves 

The development of national power curves started with calculating hourly CF values 

for each year with the following: 

𝐶𝐹 =
𝑂𝑊𝐸

𝐼𝐶 × 8760ℎ𝑟
 (8) 

Two variants of power curves with the mean Uhhub and U90 including all installed 

wind turbines were built. The Uhhub and U90 values were plotted against the CF for each 

year. Then, smoothing splines [47] with a parameter of 0.5 were fitted, yielding the 
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national power curves. The goodness-of-fit was evaluated using the coefficient of deter-

mination (R2). 

2.5. Quantification of the Shares of the Drivers 

We calculated the difference between the CF in 2019–2021 and 2010–2012 (ΔCF) as a 

function of wind speed classes for U90 and Uhhub. When ΔCF > 0, the CF for a given wind 

speed class has increased between the first and second period. When ΔCF < 0, the CF for 

a given wind speed class has decreased between the first and second period. Thus, ΔCF 

was used to analyze for which U classes the increase in the CF is mainly due. 

The ΔCF curves provide another option. Comparing the course of ΔCF by Uhhub and 

U90 enables the effect of the hhub increase on the annual changes of the power curves to be 

quantified. The higher ΔCF for U90 compared to ΔCF for Uhhub, the more the CF increase is 

due to the rise in hhub. 

We developed four scenarios, each with one driver kept constant at the mean 2010–

2012 level, in order to quantify the share of a driver for CF change. The other three drivers 

were kept at the mean 2019–2021 level. The first scenario (S1) assumed the wind turbine 

sites as they were in 2010. The second scenario (S2) assumed the technology as in 2010–2012. 

The third scenario (S3) assumed the hub heights as they were in 2010–2012. The fourth sce-

nario (S4) assumed the curtailment as it was in 2010–2012. In addition, one scenario (S19–

21) kept all of the conditions as they were in 2019–2021. 

The CF values were calculated assuming S1–S4 and S19–21. Different variants of the 

variables were used to calculate CF values for the scenarios. They are listed in Table 1. 

Changes in the mean CUE between 2010–2012 and 2019–2021 were considered using a 

factor which represents the increasing share of CUE in OWE. 

Table 1. Summary of the investigated scenarios S19–S21, S1, S2, S3, and S4 with height, power curve, 

curtailment factor, and sites. 

Scenario Description Height Power Curve Curtailment Sites 

S19–21 conditions as in 2019–2021 90 m 2019–2021 no factor  2019–2021 

S1 wind turbine sites as in 2010 90 m 2019–2021 no factor 2010 

S2 technology as in 2010–2012 90 m 2010–2012 factor (1.038) 2019–2021 

S3 hub height as in 2010–2012 hhub 2019–2021 no factor 2019–2021 

S4 curtailment as in 2010–2012 90 m 2019–2021 factor (0.964) 2019–2021 

Finally, the difference between the mean CF in 2019–2021 and the scenario-based CF 

was calculated. The magnitude and direction of ΔCF quantified the influence of (1) wind 

turbine siting (S1), (2) technical improvement (S2), (3) hub height increase (S3), and (4) 

curtailment (S4) on CF. 

3. Results and Discussion 

3.1. Development of Technical Features and Wind Resource 

Figure 3 compares the spatial distribution of the technical features hhub, Pr, and RD 

between the 2010 and 2021 wind turbine fleets. 

In 2010, the mean hhub in Germany was 78.6 m (Figure 3a). At 19.9% of all of the sites, 

the hhub was even below 70 m. Many of these wind turbines are in the northwest. One 

reason is the lower U increase with hhub in this region because of the generally low surface 

roughness. Nevertheless, there are also sites with a low hhub in other parts of the country. 

Only 25.9% of all wind turbine sites have hhub > 100 m. They occur throughout the coun-

try. The mean hhub increased to 97.4 m in 2021 (Figure 3b). The majority of wind turbines 

(54.7%) have hhub > 100.0 m. A relevant proportion of sites (17.5%) even have hhub > 140 

m. They are mainly in the southern half of the study area, where the pronounced orogra-

phy requires a higher hhub. 
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Figure 3. Spatial distributions of wind turbine features hub height (hhub), rated power (Pr), and 

rotor diameter (RD) with (a) hhub in 2010; (b) hhub in 2021; (c) Pr in 2010; (d) Pr in 2021; (e) RD in 

2010; (f) RD in 2021. A grid cell has a spatial resolution of 5 km × 5 km and contains the average 

hhub, Pr, and RD of wind turbines within the grid cell. 
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Figure 3c displays the Pr of 2010. The mean of Pr was 1.33 MW, and 69.4% of the 

wind turbines exceeded 1.00 MW. The proportion of such sites was higher in the northeast 

and southwest than in many other parts. Many wind turbines with PR > 2.00 MW are 

limited to the northwest. However, the share of Pr > 2.00 MW wind turbines was low 

(2.3%). In 2021, the mean Pr increased to 2.00 MW. More than two-thirds of the wind tur-

bines (69.4%) had a Pr > 2.00 MW. There were no distinct hot spot areas of such wind 

turbines. However, the proportion of Pr > 2.00 MW wind turbines was higher in the south 

than in the north. 

The mean RD in 2010 was 64.8 m (Figure 3e). Only about one-third of all wind tur-

bines (32.3%) had an RD > 80 m. Many of these wind turbines are in the east. Almost no 

wind turbine (0.04%) had an RD >100 m. Most of these pioneering wind turbines are in 

the north. In 2021, the mean of RD rose to 81.8 m (Figure 3f). Now, the majority of the 

wind turbines (53.9%) have an RD > 100 m. In some locations (2.9%), RD exceeds 140 m. 

The Pr and hhub increases in the wind turbine fleet are continuous processes that do 

not occur suddenly. The Pr values increased quasi-linearly between 2010 and 2021 (Figure 

4a). This happens because the wind turbine fleet is constantly supplemented with new 

wind turbines of higher Pr values, and old wind turbines with lower Pr values are being 

decommissioned [11]. The smallest mean Pr increase was between 2018 (1.87 MW) and 

2019 (1.88 MW) because the wind capacity increase in 2019 was substantially less than in 

previous years. 

 

Figure 4. Annual courses (black circles) with fitted polynomials (red line) including their 90% pre-

diction bounds (dotted red line) of mean (a) rated power (Pr); (b) hub height (hhub); (c) curtailed 

wind energy (CUE); (d) wind speed at 90 m (U90). The coefficients of determination (R2) are dis-

played for the fitted polynomials. 

The hhub values were also higher each year than the previous year (Figure 4b). The 

reasons for this development correspond to those for the Pr. In contrast to the Pr, the hhub 

increase has moderated in recent years. Thus, the decrease in newly installed capacity per 

year has more impact on hhub than on Pr. Accordingly, a second-degree polynomial re-

produces the hhub slope better than a first-degree polynomial. 

The role of onshore wind curtailment increased as the share of intermittent renewa-

bles in the electricity mix increased (Figure 4c). The CUE values rose from 410 GWh in 

2011 to 4145 GWh in 2020. The development of CUE has more fluctuations than the wind 

turbine properties Pr and hhub because the CUE depends on many more factors, including 

energy market properties [31]. The year with an abrupt CUE increase was 2015. In 2014, 

CUE = 1222 GWh, but in 2015, CUE = 4111 GWh. 
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The wind turbine fleets from 2010 to 2021 operated under different wind resource 

availability (Figure 4d). The U90 values had a high degree of inter-annual variability. In the 

Appendix A Figure A1 presents CF for each year between 2010 and 2021. The inter-annual 

variability in U90 was much more significant than the slight downward tendency. There 

are two possible rationales for the U90 decline. The first reason is that the wind speed in 

the study area is generally decreasing [12]. The second reason is that the siting quality of 

new wind turbines is decreasing. As will be pointed out in the following sections, the de-

crease in siting quality caused the decreasing U90 values. 

3.2. National Power Curves 

Figure 5 shows the national power curves for 2010–2021 as functions of Uhhub. The 

goodness-of-fit of the splines is always on a high level. The R2 values varied between 0.94 

for 2010 and 0.98 for 2015. The spline fitting accuracy is slightly worse in the years up to 

2013 than since 2014. Regardless of the year, all of the CF curves have a sigmoidal shape. 

It reveals that even when considering all wind turbines in a country, the power curves 

have similar characteristics as those of individual wind turbines. However, there are rele-

vant variations between years, considering the power curve details. CF variations between 

years appear for all Uhhub classes. The CF values of low Uhhub classes have generally in-

creased, which underlines that modern wind turbines can use weak wind resources better 

[20]. For instance, at a Uhhub of 5.0 m/s, the CF ranged between 0.083 for 2010 and 0.102 for 

2019. As of 2015, the CF values are always higher than 0.09, but before that, they were 

usually lower. A CF increase is also noticeable for medium Uhhub classes. Before 2018, CF 

for Uhhub = 8.0 m/s was about 0.28. Since 2018, CF values are always around 0.30. As for 

Uhhub > 10.0 m/s, the higher CF values occurred in the early years. One reason is the increase 

in the CUE. The national power curve flattens at the upper tail due to increased shutdowns 

of wind turbines during periods of high OWE. Such a plateau of national power curves 

was evident in 2017, 2018, and 2021. 

 

Figure 5. National capacity factor (CF) as a function of wind speed at hub height (Uhhub) in (a) 2010; 

(b) 2011; (c) 2012; (d) 2013; (e) 2014; (f) 2015; (g) 2016; (h) 2017; (i) 2018; (j) 2019; (k) 2020; (l) 2021. 

The coefficients of determination (R2) are displayed for the fitted smoothing splines. 
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Figure 6 summarizes the national power curves for 2010–2021 as functions of the Uhhub 

(Figure 6a) and U90 (Figure 6b). The CF development as a function of Uhhub between 2010–

2021 indicates the influences of technical wind turbine improvement. In contrast, the 

power curves of U90 additionally reflect the hhub increase. Both power curve variants show 

a CF increase during low to medium Uhhub classes and a CF decrease during high Uhhub 

classes. The annual differences between the U90 power curves are more pronounced during 

low and medium U classes than for the Uhhub power curves. At a U90 of 5.0 m/s, the CF lies 

between 0.074 for 2010 and 0.103 for 2019. At a moderate U90 of 8.0 m/s, the CF is 0.251 for 2010 

and 0.305 for 2020. The annual differences between the U90 power curves are less than for the 

Uhhub power curves in the high U range. However, they are still relevant. When U90 is 14.0 m/s, 

the CF exceeds 0.70 before 2015. Afterward, CF is less than 0.70 at the same U90 class. 

 

Figure 6. National capacity factor (CF) in 2010–2021 (a) as a function of wind speed at hub height 

(Uhhub); (b) as a function of wind speed at 90 m (U90). 

3.3. Shares of the Drivers in CF Development 

Singular events may influence the power curves of individual years. Thus, Figure 7 

compares the properties of the mean national power curves in 2010–2012 with 2019–2021. 

It also considers the differences between the U90 (Figure 7a) and Uhhub (Figure 7b) power 

curve variants. This representation is the basis for quantifying the shares of the drivers in 

CF development. In addition, the figures present the U90 and Uhhub probability density 

functions (f(U)) to emphasize the relevant U classes for wind turbine power output. The 

most frequent Uhhub and U90 class (width 0.5 m/s) is 5.5 m/s. The high f(U) values extend 

from ≈4.0 to ≈8.0 m/s. It underlines that the differences in the power curve variants in the 

low and medium value range are critical for the wind turbine power output. The f(U) 

values in the high U range are small. It is consistent with the fact that the number of peri-

ods in which curtailment occurs is small. However, as soon as U90 and Uhhub exceed certain 

limits (about 11.0 m/s), the CUE becomes relevant. 
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Figure 7. (a) National power curves in 2010–2012 and 2019–2019 as a function of wind speed at hub 

height (Uhhub) and probability density of Uhhub (f(Uhhub)); (b) national power curves in 2010–2012 and 2019–

2019 as a function of wind speed at 90 m (U90) and probability density of U90 (f(U90)); (c) difference be-

tween capacity factor (ΔCF) in 2019–2021 and 2010–2012 as a function of wind speed classes (U90, Uhhub); 

(d) difference of the cumulative frequency classes (ΔF(U)) in 2019–2021 and 2010–2012. 

Figure 7c displays the ΔCF between the power curves of 2010–2012 and 2010–2021 

for the Uhhub and U90 variants. The highest positive ΔCF values for both power curve vari-

ants are at about 8.0 m/s. The ΔCF values are 0.020 for the Uhhub power curve variant and 

0.046 for the U90 power curve variant. The total CF increase of 0.046 at about 8.0 m/s con-

sists of technical advancement of wind turbines (0.020) and an hhub increase (0.026). This 

resulted from the ΔCF differences between the power curve variants. Below 4.0 m/s, the 

ΔCF is very low because this value range is only slightly above the wind turbine cut-in 

speed. Above 10.4 m/s for the hhub variant and 11.6 m/s for the U90 variant, the ΔCF be-

comes negative. In this U value range, the importance of curtailed energy is more critical 

than the technical improvement of wind turbines and the hhub increase. 

Figure 7d presents the difference in cumulative wind speed distributions (ΔF(U)) for 

U90 and Uhhub. Positive ΔF(U) values indicate a higher non-exceedance probability of U in 

2019–2021 than in 2010–2012. Thus, this corresponds to poorer wind resource availability 

in the specific U range. The ΔF(U) curve for Uhhub is always below 0 due to the hhub increase 

between 2010–2012 and 2019–2021. At a higher hhub, the U is generally higher. The presen-

tation of ΔF(U) for U90 is a better indicator to estimate the general change in site suitability, 

since it is independent of the hhub. The ΔF(U) development for U90 reveals a slight decrease 

in wind resources in the medium wind speed range. The peak is at U90 = 6.6 m/s, being 

ΔF(U) = 0.030. At low or high U90 values, wind resource availability improved slightly. The 

negative peak occurs for U90 = 10.6 m/s with ΔF(U) = −0.015. 

Figure 8a presents the CF in 2010–2021 with wind turbine fleet properties as they 

were in 2010–2012. This presentation enables interpretations of the wind resource-driven 

trend and inter-annual variability of the CF due to the constant wind turbine fleet condi-

tions. The CF inter-annual variability is large. The CF values ranged between 0.168 for 

2021 and 0.206 in 2015. There is no CF trend, as hypothesized in the Introduction. 
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Figure 8. Annual mean national capacity factor (CF) in 2010–2021 (black circles) assuming conditions 

as in (a) 2010–2012; (b) 2019–2021. The coefficients of determination (R2) are shown for the fitted first 

degree polynomials (red line), which are presented with 90% confidence intervals (dotted red line). 

Figure 8b reveals the same presentation but assumes wind turbine fleet properties as 

they were in 2019–2021. Under these conditions, the CF values lay between 0.186 for 2021 

and 0.222 in 2015. A CF trend was also not present. However, the CF values were clearly 

above the corresponding 2010–2012 values. 

Figure 9a shows the mean CF in 2010–2021 under S19–21 and S1–S4. The mean CF in 

2019–2021 was 0.204. Assuming S3 reduced the CF to 0.185. Thus, the increase in the hhub 

is the most crucial cause of CF development in recent years compared to 2010–2012. 

Changes in wind turbine technology also play a relevant role in the CF increase. Under 

S2, CF was only 0.190. Changed wind turbine siting and curtailment resulted in CF reduc-

tion. The CF value for S1 was 0.208, and for S4, it was 0.212. These results allow calculating the 

percentage CF change between 2010–2012 and 2019–2021 caused by each driver. Improved 

wind turbine technology and a rising hhub led to higher CFs by 7.3% and 10.4%, respectively. 

Less favorable wind turbine sites and curtailment reduced CF by 2.1% and 3.6% compared to 

2010–2012, respectively. Considering all four drivers, the CF increase is 11.9%. This value is 

close to the actual CF increase between the mean of CF in these periods of 11.0%. This result 

suggests that the four investigated drivers mainly cover all influences on the CF. 

Figure 9b shows the annual difference in CF (ΔCF) between S19–21 and S1–S4. It also 

indicates whether the CF changes vary due to annual variations of the wind resource. The 

confidence intervals are small for all scenarios. Thus, there is no hint that certain wind 

resource conditions lead to a principally different driver relevance. 
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Figure 9. (a) Mean capacity factor (CF) in 2010–2021 under different scenarios including S19–21 (con-

ditions as in 2019–2021), S1 (sites as in 2010), S2 (technology as in 2010–2012), S3 (hub height as in 

2010–2012), and S4 (curtailment as in 2010–2012); (b) differences in CF (ΔCF) between S19–21 and 

the other scenarios (circles) with fitted first degree polynomials (line) and 90% confidence intervals 

(dotted line). 

4. Conclusions 

We quantified the shares of the main capacity factor drivers (1) wind turbine siting, 

(2) wind turbine technology, (3) hub height, and (4) curtailed wind energy in perennial 

capacity factor development. We identified hub height increase as the most relevant driver 

leading to a higher capacity factor of 10.4% between 2010–2012 and 2019–2021. The second 

most important capacity factor driver was wind turbine technology causing 7.3% higher 

capacity factor values. In contrast, wind turbine siting and curtailment moderated the ca-

pacity factor increase by 2.1% and 3.6%, respectively. Although we found no multi-year 

wind resource changes, the capacity factor has enormous inter-annual variability caused 

by variations in oceanic/atmospheric oscillations. This study did not confirm the hypoth-

esis that the capacity factor increase from 2010 to 2021 was capped by decreasing wind 

speed due to wind energy expansion. 

Based on the results, we recommend that the wind industry should improve wind 

turbine site quality as much as possible to avoid needless capacity factor reduction. How-

ever, the limited availability of high-quality sites and geographical consideration criteria 

such as distance to urban areas, infrastructure, and access limitations increasingly com-

plicate the finding of suitable sites. Thus, we also recommend a rapid wind turbine fleet 

transformation to control the capacity factor on the basis of wind turbine features. Coun-

tries should continue integrating wind turbines with higher hub heights and improved 

technical properties with further vigor. 

The reinforced wind energy curtailment is a critical blowback of wind energy expan-

sion. The aim must be to minimize the share of curtailed wind energy. Interconnection 

and battery deployment enable the alleviation of wind energy curtailment. Decision mak-

ers should pursue these approaches in tandem with wind energy expansion. 

We investigated Germany’s capacity factor development due to its high installed ca-

pacity and wind turbine density. Internationally, the results may differ from those of this 
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case study. However, we assume that the relevance of the drivers will be similar in other 

countries, since the ten countries with the highest installed capacity all have increasing 

capacity factor values between 2010–2012 and 2018–2020. 

The presented methods provide a basis to further investigate recent research ques-

tions. Adjusting the national power curves to upcoming wind turbine properties allows 

the development of wind energy generation scenarios. Future studies may also investigate 

whether under very high installed wind capacity the large-scale wind resource could de-

cline, leading to reduced capacity factors. A limitation of the presented power curve ap-

proach is that no further breakdown of the technical causes of capacity factor development 

is possible. 
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Abbreviations 

Acronym Description 

ERA5 fifth generation ECMWF atmospheric reanalysis of the global climate 

MaStR Marktstammdatenregister (energy market data) 

S1 wind turbine sites as in 2010 

S19–21 conditions as in 2019–2021 

S2 technology as in 2010–2012 

S3 hub height as in 2010–2012 

S4 curtailment as in 2010–2012 

UERRA Uncertainties in Ensembles of Regional Re-Analyses 

WiCoMo Wind speed Complementarity Model 

Symbols Description 

CF capacity factor 

CUE annually curtailed wind energy (GWh) 

f(U90) probability density function of U90 

f(Uhhub) probability density function of Uhhub 

F(UQM,10) cumulative probabilities of UQM,10 

hhub hub height (m) 

IC installed capacity (GW) 

k first Kappa shape parameter 

OWE national hourly onshore wind energy generation (GWh) 

PLE hourly power law exponents 

PLEQM power law exponent at the UERRA grid 

Pr rated power (kW) 

R2 coefficient of determination 

RD rotor diameter (m) 

U wind speed (m/s) 

U10,HR hourly wind speed in 10 m at 25 m × 25 m resolution (m/s) 

U90 national hourly wind speed at 90 m (m/s) 

U90,HR hourly wind speed at 90 m at 25 m × 25 m resolution (m/s) 

uERA5,10 hourly zonal ERA5 wind vector component in 10 m (m/s) 

UERA5,10 hourly ERA5 wind speed in 10 m (m/s) 

uERA5,100 hourly zonal ERA5 wind vector component in 100 m (m/s) 
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UERA5,100 hourly ERA5 wind speed in 100 m (m/s) 

Uhhub national hourly wind speed at hub height (m/s) 

Uhhub,HR hourly wind speed at hub height at 25 m × 25 m resolution (m/s) 

UQM,10 hourly quantile-mapped wind speed in 10 m (m/s) 

UQM,100 hourly quantile-mapped wind speed in 100 m (m/s) 

UQM,2000 hypothetical wind speed at 2000 m 

UUERRA,10 6-hourly UERRA wind speed in 10 m (m/s) 

UUERRA,100 6-hourly UERRA wind speed in 100 m (m/s) 

UWiCoMo,10(F) quantile function of WiCoMo wind speed in 10 m (m/s) 

vERA5,10 hourly meridional ERA5 wind vector component in 10 m (m/s) 

vERA5,100 hourly meridional ERA5 wind vector component in 100 m (m/s) 

ΔCF difference in CF 

ΔF(U) difference of cumulative wind speed distributions 

о second Kappa shape parameter 

𝛼 Kappa scale parameter 

𝜇 Kappa location parameter 

Appendix A 

Figure A1 presents CF for each year between 2010 and 2021. The hourly resolution of 

CF enables the reproduction of the enormous influence of short-lived weather systems on 

CF. Until 2014, the peak CF values of a year usually reached above 0.80; they have been 

below 0.80 since 2015. A smoothing spline fitted to the CF time series makes the CF sea-

sonality discernible. Typically, the CF minimum occurs in summer when the general CF 

level is as low as approximately 0.10. The CF maximum happens in the winter months, 

with up to more than 0.40 for a sustained period. However, such periods do not occur 

every winter. In 2016 and 2021, periods with CF > 0.30 were absent. The CF annual cycle 

is always apparent, but the variability is considerable. Each year has a unique CF shape 

due to its inter-annual variability. For instance, in 2010, there were two winter CF peaks 

and a distinct minimum in the summer. In contrast, in 2011, there was a remarkable CF 

peak in the winter but small variability for the rest of the year. 

 

Figure A1. Hourly national capacity factors (CFs) and fitted smoothing splines (red) in (a) 2010; (b) 

2011; (c) 2012; (d) 2013; (e) 2014; (f) 2015; (g) 2016; (h) 2017; (i) 2018; (j) 2019; (k) 2020; (l) 2021. 
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