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Abstract: The forthcoming surge in electric vehicle (EV) adoption demands the comprehensive
advancement of associated charging infrastructure. In this study, an exploration of EV charging’s
impact on the power distribution system is conducted via the simulation of a parking lot equipped
with six distinct types of EVs, each showcasing unique charging curves, charging power, and battery
capacities. A charging profile is synthesized and compared with laboratory-obtained data to ascertain
the implications on the grid. To further understand the effects of smart parking on the power
distribution system, a mathematical algorithm was created and applied to a segment of an urban
electrical grid that includes 70 private residences. Basic electrical parameters were computed using
the node voltage method. Four scenarios were simulated: (1) the existing distribution system, (2) the
current system plus smart parking, (3) the current system plus 50% of houses equipped with 3.5 kW
photovoltaic installations, and (4) the current system plus photovoltaics and smart parking. This
paper examines the core distribution system parameters, namely voltage and current, across these
four scenarios, and the simulation results are extensively detailed herein.

Keywords: intelligent power grid; localized power network; renewable energy sources; electric vehicles

1. Introduction

The incorporation of renewable energy sources and new elements into the energy
distribution network signifies a significant challenge within the energy sector. Nevertheless,
the introduction of smart grid technology has been identified as a promising resolution
to many of these challenges. Smart grids integrate numerous intelligent devices allowing
for dynamic load management, real-time monitoring of energy consumption, and energy
storage system implementation. Through these functionalities, smart grid technology
streamlines energy supply, thereby reducing transmission losses common in conventional
one-way power supply systems. Furthermore, smart grid technology decentralizes power
supply systems, potentially mitigating power outages during emergencies. Microgrids offer
an efficient solution for integrating renewable energy and EVs; however, the amalgamation
of these elements presents substantial challenges due to their unpredictable production
and consumption patterns. As a result, it is crucial to develop coordinated EV charging
strategies to minimize these uncertainties and optimize the usage of renewable energy
sources [1,2].

1.1. Related Works

Employing renewable energy sources for EV charging has emerged as the most eco-
nomically and environmentally sustainable approach [3,4]. Moreover, EVs can act as a
reserve for renewable energy sources by storing excess energy, thereby enhancing their
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value within the power supply network (V2G) [5–10]. This capability makes them a crucial
addition to the power supply network and a rapidly expanding area within the mechanical
engineering industry. Research [11] has scrutinized the conceptual design of charging sys-
tems that incorporate various cars into a single robust system, with an energy distribution
algorithm guiding the energy capacity reservation for multiple cars. A similar approach is
explored in [12], where the authors focus on different charging modes based on the state
of charge (SoC) of the battery and the current grid capacity, including the potential for
bidirectional power flow between the grid and EVs. An alternative approach presented
in [13] investigates the proportionate distribution between renewable energy sources, EV
charging stations, energy storage systems, and the sizing and localization of the entire
system. In [14], the primary objective was the coordination and management of EVs in
conjunction with renewable energy sources and the distribution system.

Despite the rapid growth of EVs, their widespread adoption is hindered by lim-
itations such as restricted travel distance, lengthy charging times, and infrastructure
constraints [15–19]. Increasing their market share requires a heightened public awareness
of environmentally friendly transport alternatives, coupled with the reduction of social and
territorial inequalities and controlled pricing [20].

In conclusion, smart grid technology and microgrids are imperative for the effective
integration of renewable energy and electric vehicles into the power supply network [21].
While utilizing renewable energy sources for EV charging is an economical and environ-
mentally friendly strategy, the energy storage capability of electric vehicles makes them an
invaluable addition to the power supply network [22]. However, challenges such as limited
range, prolonged charging times, and infrastructure limitations must be surmounted to
increase their market share [23,24].

1.2. Paper Contributions

This investigation seeks to delineate the impact of smart parking infrastructure on
electrical power systems by examining the integration of electric vehicle (EV) charging
stations. The evaluation of the ramifications of widespread EV charging stations em-
ployed real-world distribution network measurements, applying these data to an array of
modeled scenarios which considered variable proportions of EV presence under specific
conditions. This study’s scientific novelty resides in the rigorous analysis of EV charging
station integration within various operational contexts, providing new insights into power
system management.

The investigation encompassed four distinct scenarios designed to examine differing
operational conditions. Each scenario was differentiated by the EV charging initiation
period. In the first scenario, all EVs commenced charging between the hours of 07:00
and 10:00 and again between 17:00 and 22:00. Subsequent scenarios include: the second
scenario, where EV charging primarily occurs during low-tariff periods; the third scenario,
which allows a broad window for charging initiation; and the fourth scenario, where all
EVs initiate charging concurrently. The scientific novelty of this paper lies in the unique
insights provided by these scenarios, potentially paving the way to optimizing the EV
charging process and enhancing smart parking system efficiency.

Furthermore, the study corroborates that, based on simulation results, smart parking
represents a viable solution for utilities contending with the increasing prevalence of EV
usage. It also highlights that the deployment of such technological solutions does not
exert significant stress on the network, thereby potentially mitigating the need for costly
renovations of low-voltage power lines.

Another scientific novelty of this paper is the proposition that the establishment
of smart parking in areas with a high concentration of renewable energy sources could
potentially yield positive impacts on the electrical grid. This could significantly reduce,
if not eliminate, electrical flows from low- to medium-voltage networks. Moreover, the
implementation of the vehicle-to-grid (V2G) system could provide utility companies with
an additional source of reserve power, aiding in the management of peak loads and
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ensuring power supply during emergencies. This could potentially constitute an efficient
method for harnessing the battery capacity of EVs, offering a cost-effective solution for
power provision.

2. Development of a Simulation Model Using Computational Techniques

A parking facility designed exclusively for a corporation located in eastern Slovakia
also allows public access during non-business hours. The top level of the parking struc-
ture will feature a steel frame supporting the installation of photovoltaic panels with a
cumulative capacity of 140 kW. Figure 1 shows the visualization of the smart parking.
The structural network of the parking garage is shown in Figure 2. This endeavor seeks
to harness solar energy to power the building, thus significantly reducing the facility’s
carbon footprint. The solar panels, acting as a green energy source, will curtail the need for
traditional electricity sources, thereby decreasing operational costs and fostering sustain-
ability within the vicinity. Implementing renewable energy sources is a pivotal move in
minimizing commercial buildings’ carbon footprint, thereby setting a precedent for future
endeavors. Furthermore, this project is expected to bolster the company’s reputation as
a green-conscious entity dedicated to sustainable practices. The photovoltaic installation
serves not only as a power generator but also contributes to the aesthetic appeal of the
building, underscoring the company’s commitment to sustainability. This initiative may
inspire other businesses and individuals to invest in renewable energy sources, thereby
promoting clean energy usage.

2.1. Electric Vehicles

To capture the operational nuances of a parking facility accurately, our research team
incorporated six distinctive electric vehicle models into the simulation. This approach offers
a comprehensive representation of diverse charging profiles, charging potentialities, and
battery capacities. The rationale behind such a diverse selection lies in the unique technical
specifications possessed by each electric vehicle model, significantly impacting charging
durations and energy utilization. Table 1 furnishes the specific technical parameters such
as battery capacity, charging voltage, and charging speed for each EV model. With this
diverse assortment of electric vehicle models, we endeavored to provide a holistic analysis
of the parking facility’s energy demands and charging requisites. This methodology
facilitates accurate prediction of the parking facility’s functionality under different scenarios,
informing decisions regarding charging infrastructure and energy management strategies.
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Table 1. Electric vehicle parameters [25,26].

Parameters Volkswagen
e-Golf

Skoda
CITIGOe IV Nissan Leaf Hyundai Kona

Electric
Hyundai
IONIQ SEAT Mii

Battery, kWh 32 32.3 36 39.2 38.3 36.8

P (3-f, 22 kW), kW 7.2 7.2 6.6 11 7.2 7.2

I (3-f, 22 kW), A 2 × 16 2 × 16 1 × 29 3 × 16 1 × 31 2 × 16

CCS (50 kW DC), kW 39 30 46 35 34 30

In instances where a 3-phase charging system charges an EV, it was observed that spe-
cific models like Volkswagen e-Golf and Škoda CITIGOe IV generate a load for only 2 out of
3 available phases. In contrast, models like Nissan Leaf, Renault Kangoo Maxi ZE, among
others, create a load for a single phase. This variance in load generation can be attributed
to the unique charging behavior of individual EVs. Consideration of this factor is pivotal
during charging infrastructure design and implementation, as it influences the overall effi-
ciency and efficacy of the charging process. Therefore, meticulous attention to the technical
specifications and charging behavior of electric vehicles is recommended when designing
charging systems, to ensure optimal performance and circumvent potential complications.

2.2. Electric Vehicle Charging Stations

In order to replicate the functioning of the parking facility, a variety of electric vehicle
charging equipment was selected for simulation, including AC 22 kW, DC 25 kW, and DC
50 kW chargers, see Figure 3. These chargers were chosen due to their disparate charging
speeds and power capacities. Table 2 presents detailed information about the quantity
and total power of each type of charger utilized. Additionally, Table 3 outlines the crucial
technical specifications of the selected charging equipment. The charger selection was
driven by the objective of providing an inclusive and accurate portrayal of the charging
equipment required for efficient parking facility operation. By simulating the usage of
diverse chargers, we aimed to gain a comprehensive understanding of how these different
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charging systems would influence the overall functionality of the parking facility, including
the availability of charging options for different types of electric vehicles.
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Figure 3. The chargers utilized in the study were of three types: (a) a Terra 54 CJT DC station with
the capacity of 54 kW DC and 22 kW AC, (b) a DC Wallbox with the capacity of 25 kW from Delta,
and (c) an EVLunic Pro M AC wallbox with the capacity of 22 kW. The details and specifications of
these chargers can be found in references [27–29].

Table 2. The quantity and categories of charging stations for electric vehicles.

Charger Power [kW] Number Sum [kW] Power Connector

AC 22 kW wallbox 22 20 440 Type 2

DC 25 kW wallbox 25 9 225 CCS + Chademo

DC 50 kW + 22 AC 50 + 22 1 72 CCS + Chademo + Typ2

Table 3. Electric vehicle charging specifications [27–29].

Charger Voltage, V Current, A Number of
Phases Power, kW

DC wallbox 25 kW, Delta 230/400 90 3 25

DC Terra 54 CJT kW
DC + 22 kW AC 400 112 3 77

AC wallbox 22 kW
EVLunic Pro M 230/400 32 3 22

2.3. Charging Characteristics

For a precise simulation of the electric vehicle charging process, it is crucial to factor
in the variability in EV battery charging power. Addressing this complexity, this study
employed the charging profiles of electric vehicles accessible in public databases like
Fastned [25,26]. These profiles were instrumental in the formulation of the charging algo-
rithms, visually represented in Figure 4. To guarantee algorithmic accuracy, measurements
were also performed on an actual Volkswagen e-Golf electric car. These results were jux-
taposed with the simulated charging profile, as illustrated in Figure 5. The comparative
analysis affirmed the algorithm’s precision in describing the authentic charging process.
This method ensured that the simulation accurately encapsulates the charging behavior of
tangible electric vehicles.

2.4. Parameters of Photovoltaics

To construct the algorithm, a solar panel from Solar Company, specifically the PV Solar
Module MD P60PX 275 W (polycrystalline), was employed. Its technical specifications are
enumerated below. It is anticipated that about 520 of these modules will be deployed in the
parking lot, which amounts to a total power generation of 140 kW. The solar modules are
divided into four groups, each yielding 35 kW of power.
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Technical specifics for the PV Solar Module MD P60PX 275 W (polycrystalline) used
for the algorithm are as follows [30]:

• Maximum power (Pmax): 275 W;
• Voltage at maximum power (Vmpp): 31.4 V;
• Current at maximum power (Impp): 8.76 A;
• Open circuit voltage (Voc): 38.2 V;
• Short circuit current (Isc): 9.25 A.

The photovoltaic modules are strategically placed on the top level of the parking
house within a steel structure. These panels, doubling as roofing, can generate a cumulative
electricity of 140 kW. This setup will empower the parking house to utilize solar power to
cater to its electricity needs.
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3. Establishing Charging Profiles for Electric Vehicles

To simulate a smart parking system, charging patterns of electric vehicles throughout
the day serve as a critical factor. Two prevalent methodologies exist to scrutinize the travel-
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ing and charging behavior of a multitude of electric cars. The first involves thorough testing
of electric vehicles, using the resultant data to predict energy consumption. The second
relies on simulating the EV count and employing the model’s output as an estimate of EV
energy utilization. In this method, two distinct approaches can be delineated: deterministic
and stochastic modeling [31]. Deterministic modeling does not account for random effects,
while stochastic modeling handles probabilistic processes and occurrences by examining
multiple implementations of random processes and estimating their average traits.

As the simulation of charging profiles for EVs entails numerous random variables like
arrival/departure times at the parking lot, daily travel distance, car type, and charging com-
mencement time, the stochastic modeling approach was adopted. This method has proven
to be efficient in prior research [32–34]. To formulate charging profiles for EVs, a random
number generator employing the Monte Carlo method was utilized to simulate random
variables such as travel distance, EV type, charging start time, and type of electric charger.

Input data sourced from various research papers [35–40] served as a basis for this
study. Based on this information, the daily travel distance of an electric car was projected to
be between 20 and 40 km. The most probable charging commencement times were between
7:30 and 10:00 in the morning and between 16:30 and 21:30 in the evening.

Four distinct scenarios were conceived to analyze varying working conditions, with
each differing in the charging start period. The data for these scenarios were gleaned
from real measurements from a similar parking house. In scenario 1, all electric vehicles
initiate charging between 7:00 and 10:00 in the morning and from 17:00 to 22:00 in the
evening. The other scenarios include: scenario 2, where EVs charge predominantly during
low-tariff periods; scenario 3, where EVs have a broad window to start charging; and
scenario 4, where all EVs begin charging simultaneously. Detailed accounts of each scenario
are provided in Table 4. The findings from these scenarios can contribute to optimizing the
charging process and enhancing the efficiency of the smart parking system.

Table 4. Explanation of possible situations.

Scenario Charging Time, Day Charging Time, Evening

1 7:00–10:00 17:00–22:00

2 9:30–18:30 19:30–8:30

3 6:00–14:00 16:00–02:00

4 6:30–7:00 17:30–18:00

Figure 6 presents the algorithmic schematic diagram designed to fabricate load profiles
for electric vehicles.

Figure 7 visualizes the outcome from the implemented algorithm, portraying the range
distribution of an electric vehicle as it relates to the distance traversed.

Figures 8 and 9 depict the distribution of load values across various scenarios. In
scenario 4, where all electric vehicles initiate charging concurrently, the algorithm resulted
in the most substantial load. This outcome is predictable as charging all vehicles simulta-
neously imposes a significant demand on the power grid. In contrast, the other scenarios
displayed analogous load profiles, suggesting that staggering the charging times would
yield a more balanced load distribution. Cumulatively, these analyses underscore the
necessity of judicious scheduling for electric vehicle charging to prevent grid overloads,
ensuring a reliable and stable power supply.

The graph in Figure 10 illustrates the power load of a smart parking system under
scenario 1. The graph’s negative values signify periods where the solar panels generate
surplus energy beyond what is required to charge electric vehicles. To optimize energy
consumption and minimize wastage, the incorporation of sophisticated management
systems that can predict forthcoming weather conditions and calibrate energy generation
and consumption is critical. These systems can manage energy supply to meet expected
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demand, avoiding unnecessary energy generation and thereby reducing environmental
impact while enhancing cost-effectiveness.

To realize this, several advanced management systems, such as weather forecasting
systems, energy storage systems, and energy management systems, can be utilized. These
systems can synergistically forecast future energy demand and supply and optimize the en-
ergy distribution accordingly. By predicting future energy demand, it is feasible to tailor the
energy supply to meet anticipated demand, thereby minimizing waste of surplus energy.

Energy storage systems can be deployed to store excess energy produced by solar
panels during periods of low energy demand. This reserved energy can subsequently be
used to power electric vehicle charging during periods of high energy demand, thereby
reducing reliance on the electrical grid.

Furthermore, energy management systems can aid in optimizing energy consumption
by regulating the charging of electric vehicles based on the availability of renewable energy
sources. For instance, in the absence of solar energy, electric vehicles can be charged using
energy from the grid during periods of low demand when electricity is less costly.
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By integrating advanced management systems, the smart parking system can opti-
mize energy consumption, curtail waste, and minimize environmental impact, all while
improving its cost-effectiveness. This optimization will ultimately contribute to a more
sustainable and efficient smart parking system.

4. Data Analysis and Discussion of Results

To assess the impact of integrating a smart parking system into the city’s electrical
grid, a mathematical algorithm was formulated for a small grid segment comprising
70 private residences. A simplified model of this network segment is presented in Figure 11.
The Python programming language was utilized to develop the mathematical algorithm,
employing the node voltage method to compute fundamental electrical parameters. Four
distinctive scenarios were simulated to evaluate the effects of integrating smart parking
and photovoltaic solar panels:

• The network’s current state without modifications;
• The current state with an integrated smart parking system;
• The current state with 50% of houses equipped with 3.5 kW photovoltaic solar panels;
• The current state with both photovoltaic solar panels and a smart parking system.
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and its components.

In summary, this study aimed to evaluate how the combination of a smart parking
system and solar photovoltaic panels would affect a small city’s electrical grid network.
To conduct this evaluation, a mathematical algorithm was developed using the Python
programming language, and the node voltage method was employed to calculate funda-
mental electrical parameters. The study simulated four distinctive scenarios and evaluated
their impacts.

Figure 12 illustrates the total energy consumption and production throughout a sim-
ulated day, considering both winter and summer seasons. The data reveals that in most
scenarios, the energy produced by the solar panels does not suffice to meet the smart
parking system’s energy demands. This outcome suggests the necessity of exploring addi-
tional energy production and storage strategies to maximize the smart parking system’s
effectiveness. Such strategies might include alternative renewable energy sources or energy
storage systems that enable the preservation of excess energy for future use. To optimize
the smart parking system’s performance and reduce grid dependence, it is essential to
identify and implement consistent, reliable energy solutions to meet system demands. By
doing so, the smart parking system can function more sustainably and efficiently, thereby
minimizing environmental impact and enhancing economic viability.
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Figure 13 demonstrates the power generation graph for the photovoltaic solar panels
on a sunny summer day, with scenario 1 adopted as the electric vehicle charging profile.
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For assessing the smart parking system’s effectiveness, three key parameters were identified:

• The average voltage level within the network;
• The maximum current level within the network;
• The coefficient of voltage imbalance in the network.

These parameters were chosen as they are critical indicators of overall network per-
formance and stability. Analyzing these metrics can provide insight into the potential
impacts of implementing a smart parking system on the electrical grid, thereby enabling
the identification of potential areas of concern.

4.1. Network Voltage Analysis

The network’s average voltage levels were analyzed to evaluate the smart parking
system’s impact. The results, depicted in Figure 14, indicate minimal impact on network
voltage levels due to power generation from PVs and power consumption of EV in the
parking house. However, installing a significant number of solar panels can lead to elevated
voltage levels at specific grid nodes. The voltage increase is attributed to network current
relief due to increased PV production, which reduces voltage drops in individual network
branches. This surge in voltage levels can adversely affect the network’s performance and
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stability. Consequently, careful evaluation of the number and location of solar panels to be
installed is crucial to maintain the network’s voltage levels within acceptable parameters.
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4.2. Network Current Analysis

Figure 15 illustrates the maximum current values within the electrical network. From
this graphical representation, it can be discerned that the introduction of a smart parking
system noticeably escalates the load at specific network nodes. Nevertheless, since the
parking facility is connected via independent lines, it does not induce any overloading
within existing power lines. Consequently, it can be postulated that the integration of a
smart parking system does not exert any detrimental impact on the network. It is, however,
imperative to acknowledge that overloads may still transpire within the medium voltage
network, which operates at 22 kV. This occurrence might necessitate the network operator to
deploy new transformers or additional equipment to balance the load and avert overloads.
It should be noted that the implementation of a real-time smart grid system that can
monitor and manage the load could help mitigate overloads and ensure network stability.
In totality, the analysis presented in Figure 15 underscores the importance of meticulous
planning and management when integrating new technologies that could influence the
electrical network.
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The installation of a significant number of solar panels may potentially exert a negative
impact on the electrical grid due to the frequent generation of power surplus, which often
surpasses the demand and subsequently permeates the medium voltage grid, potentially
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inducing overloads. However, the incorporation of smart parking facilities can attenuate
the volume of excess energy intruding into the medium-voltage grid, thereby exerting a
positive effect on the grid, particularly in regions densely populated with solar panels.

On the contrary, the installation of a multitude of decentralized charging stations could
induce congestion on transmission lines, as illustrated in Figure 16. Such congestion can
occur when these charging stations generate high levels of demand, thereby surpassing the
transmission lines’ load-bearing capacity. This overloading may result in power outages
and other grid disturbances, culminating in service disruptions and potential safety risks.
Therefore, during the planning and implementation of electric vehicle charging infrastruc-
ture and solar panels, the potential impacts on the electrical grid must be considered, and
measures to prevent overloading and other negative effects must be instituted.
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4.3. Network Voltage Imbalance Analysis

Figure 17 presents the voltage imbalance coefficient within the network. The figure
demonstrates that the connection of smart parking exerts a negligible impact on the co-
efficient, largely due to the deployment of a three-phase phase control system designed
to minimize asymmetry in electric charges. However, the installation of numerous decen-
tralized charging stations without a control system significantly influences the coefficient.
Notably, the graph does not account for the impact of PV panels. To alleviate the negative
influence of PV panels, it is proposed to deploy three-phase solutions that would not
adversely affect the grid.
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5. Conclusions

The development of new technologies brings about changes in electrical networks.
The findings presented in this study demonstrate that an increase in the number of electric
vehicles precipitates a substantial escalation in the load on electrical networks. To address
this issue, it is recommended to construct smart parking or equip existing parking with this
technology. The implementation of smart parking solutions exerts a minimal impact on the
network, thus obviating the necessity for reconstructing low-voltage power lines, which are
often extensive. The construction of smart parking facilities in areas densely populated with
renewable energy sources may potentially mitigate or even eliminate electricity flows from
low-voltage to medium-voltage networks. Moreover, the deployment of a vehicle-to-grid
(V2G) system could enable utility companies to utilize electric vehicles as a source of reserve
power, thereby reducing peak loads and ensuring power supply in emergency situations.

The V2G system can afford utility companies an additional source of reserve power to
manage peak loads and maintain power supply in emergency situations. This approach
can effectively leverage the battery capacity of electric vehicles, providing a cost-effective
power supply solution.

In conclusion, the findings of this study suggest that the implementation of smart
parking and the V2G system could be advantageous for both utilities and the electrical grid.
These solutions could assist in managing network load, reducing electricity flows from
low-voltage to medium-voltage networks, and providing an additional source of reserve
power for utilities. These solutions could play a pivotal role in ensuring the reliability and
stability of the electrical grid as new technologies continue to proliferate.
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