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Abstract: In the refining process, a large amount of data are generated in daily production, and
how to make full use of these data to improve the accuracy of simulation is the key to improving
the operation level of refineries. At the same time, with the increasing environmental regulations
and the improvement of gasoline and diesel quality standards, the ratio of diesel to gasoline is
also changing with people’s demand for fuel consumption. Catalytic cracking light cycle oil (LCO)
hydrogenation conversion technology (react LCO into gasoline, RLG) can produce modified diesel
with high-octane gasoline, a high cetane number, and a low sulfur content, which improves the
added value of the product. In this article, based on the production and operation data of a 1 million
tons/year RLG device, a device yield prediction model was established using a deep neural network
(DNN) algorithm, and the model was further optimized using a genetic algorithm (GA) to maximize
the economic benefits of the device. As a result, the gasoline production yield increased by more
than 3%. The experimental results show that the established model has a good reference value for
improving the economic benefits of the RLG device.

Keywords: RLG process; deep neural network; yield prediction model; genetic algorithm; benefit
optimization model

1. Introduction

The hydrocracking unit for catalytic diesel (LCO) in the refining plant converts low-
quality LCO with a high density, high aromatic hydrocarbon content, and low cetane num-
ber into high-octane gasoline, liquefied petroleum gas, and high-cetane diesel. Through this
process, the added value of the product can be increased, with better economic and social
benefits. The reaction process of RLG involves a hydrorefining reaction and hydrocracking
reaction, which include complex chemical reactions in the reaction system. It is difficult to
establish a model to simulate the actual reaction process. In previous studies, researchers
have developed different types of models to simulate and optimize the refining process,
which can be categorized into two main categories.

The first is the mechanism-driven model (MDM), also known as the summation
model, which is based on a number of assumptions and reaction mechanisms to model the
actual reaction process [1]. The three main types of MDMs are wide fraction summation,
narrow fraction summation, and continuous summation. At present, the mainstream
direction of MDM research in hydrocracking reactor modeling still focuses on narrow
fraction integration model research, and the research on the narrow fraction integration
model is primarily based on the Chevron model proposed by Stangeland [2]. The most
significant feature of the Chevron model is that Stangeland considers both the feedstock
and product as compounds with continuous distillation curves. The physical and chemical
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properties displayed by the compounds during cracking largely depend on the difference
in real boiling points [3]. He divided these raw materials and products into various
lumps every 50◦F from the initial boiling point [2]. By performing this, he obtained
multiple components with distinct properties, which were used to construct a narrow
lumped model. Being the first model to apply the total theory of narrow fractionation to
the hydrocracking process, it pioneered the development of the prototype reaction rate
equation and achieved the objective of optimizing the increase in aero coal production
through the model. Subsequently, Mohanty et al. proposed the introduction of a system of
heat equations to calculate the temperature distribution in the catalytic bed of a reactor [4].
Pacheco and others used the Chevron model as the foundation for their endeavors to refine
the chemical reaction equilibrium [5]. However, MDM is based on numerous assumptions
to simplify complex processes in actual production. They are also limited by the coupling
effects between operational conditions, leading to a relatively lower accuracy. Therefore,
their usage is subject to limitations [1,6].

The second category is the data-driven model (DDM), which is also known as a
black box model [1]. The main characteristic of the DDM model is that it is based on
existing operational data to establish the mapping relationship from inputs to outputs. This
helps to avoid strong coupling between process conditions, thereby improving prediction
accuracy [7]. Chen and his colleagues adopted artificial neural networks (ANNs) to learn the
sum of manipulative variables, such as pallet temperature, for optimizing ANN models [8].
Meanwhile, Song and his colleagues used polynomial models to model production and
industrial processes [7].

Therefore, there is an urgent need to develop a reliable DDM to guide actual produc-
tion. In this paper, an RLG device yield prediction model was established based on a DNN
algorithm, and then the RLG device yield model was established by a GA, which provides
a guiding direction for RLG device yield prediction and benefit adjustment.

2. Industrial Hydrocracking Process

A simplified flow diagram of a typical RLG process is shown in Figure 1. The feedstock
for an RLG device is LCO from an FCC device. The new feed is mixed with externally
generated supplementary hydrogen and heated to a specified temperature before entering
the reactor. The RLG device consists of two tandem reactors. The first reactor is primarily
loaded with a hydrofinishing catalyst, which is used to remove a significant portion of the
sulfur, nitrogen, and other heavy metal compounds present in the feedstock. The second
reactor, on the other hand, is equipped with a hydrocracking catalyst, where most of the
cracking reactions occur. After the second reactor, a high-pressure separator (HPS) recovers
unreacted hydrogen from the reactor effluent and then a low-pressure separator (LPS)
separates some of the lighter gases from the HPS effluent. Finally, the different products
are separated in the fractionation section.
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3. Experimental Methods
3.1. Overall Framework

The first step in the proposed model is to collect plant data from the refinery, including
feedstock characteristics, operating conditions, and product yields [8]. The data are then
preprocessed, including outlier removal, data transformation, and normalization. After
that, the dataset is divided into training samples and testing samples. Next, a suitable
DNN model structure is designed. Based on this, the input variables are mapped into a
two-dimensional representation to extract process features. The model is then constructed
and trained. Finally, based on the established DNN model, a data-driven model of RLG
device revenue optimization is constructed, and the model is solved using an intelligent
optimization algorithm to obtain the optimal combination of process parameters. This can
guide the actual production process of the factory.

3.2. Deep Nerual Network

DNNs are the foundation of machine learning, also known as multi-layer perceptron
(MLP) [9], derived from the early shallow ANN model. The layered network structure
formed by artificial neurons constitutes the basic model structure of DNNs. A standard
DNN model consists of an input layer, several hidden layers, and an output layer, with the
structure between the input layer and the output layer collectively referred to as the hidden
layers. Compared with the shallow ANN model, the DNN model has a larger number of
hidden layers, and the large number of hidden layers means DNN’s “depth”, so the DNN
has stronger modeling capabilities for complex nonlinear systems [10].

3.3. Data Collection and Preprocessing

In this paper, the DCS system using the RLG device collected data from the operation
of the device from June 2018 to July 2021. During the data collection process, there can be
various flaws in the collected data due to device maintenance, faults in the data collection
system, or human errors. These flaws can include data duplication, incompleteness, inaccu-
racies, and other defects. Data preprocessing is an integral part of data mining, ensuring
the accuracy and effectiveness of the data, thereby enhancing the efficiency of data mining.
If the error in the data is not preprocessed and eliminated before modeling, the selection
of subsequent related variables and the calculation of time delay will be affected, and the
final model may not achieve the prediction function or the prediction effect may be poor,
thus losing the guiding significance for actual production.

The input variables considered in the dataset include 8 operational variables and
9 physical variables, and the output variables include 4 product yields. The statistics of the
dataset are summarized in Table 1 below.

Table 1. Statistics of dataset.

Category Number Definition

inputs 17

(1) Fresh diesel feed, new hydrogen, the earliest distilled light
oil fraction volume, amount of pre-hydrogenated
sulfur-containing light hydrocarbons in the take-up reformer,
feedstock density (20 ◦C), feedstock total sulfur content,
feedstock total nitrogen content, and
95% distillation temperature of feedstock.
(2) R101 average temperature, R101 inlet hydrogen partial
pressure, R101 inlet circulating hydrogen volume, R101 inlet
hydrogen–oil ratio, R102 average temperature, R102 inlet
hydrogen partial pressure, R102 inlet circulating hydrogen
volume, R102 inlet hydrogen–oil ratio, R102 inlet hydrogen–oil
ratio, actual circulating hydrogen purity,

outputs 5 gasoline yield, diesel yield, LPG yield, dry gas yield.
R102 temperature rise
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In order to eliminate dimensional differences between different variables and the
masking effect of large numbers on small numbers, based on the data collected by the
RLG device, it is necessary to standardize the data before further analysis and modeling.
Since the z-score standardization method maps the data to a standard normal distribution,
It is beneficial for the subsequent training and convergence of neural network models.
After saving the mean and variance of the current data, future new data can be directly
standardized. Therefore, the z-score normalization method was selected to transform the
sample data, and the calculation is as shown in Equation (1).

XNorm =
X − µ

σ
(1)

Before establishing the prediction model of the DNN, the sample data need to be
divided into a training set and testing set, where the training set is used for model training,
and the testing set is used for model generalization ability evaluation. This paper divided
974 sets of samples into 779 groups of training sets and 195 groups of testing sets according
to the ratio of training set: testing set = 8:2.

3.4. Analysis and Selection of Modeling Variables

By calculating the correlation between each input variable of the model and the pre-
diction target, we can measure the contribution of different input variables to the predicted
target. This allows us to quantify the influence of physical property variables and process
parameters on product distribution in actual production. Mutual information is a measure
that quantifies the linear or nonlinear correlation between two variables [11,12]. It is also
used to characterize the amount of information that one random variable contains about
another random variable. This is because knowing the value of one variable can reduce the
uncertainty or increase the predictability of the other variable. Mutual information can be
calculated using Equation (2). This section calculates the mutual information between the
input variables and the five prediction targets of gasoline yield, diesel yield, liquefied gas
yield, dry gas yield, and R102 temperature rise. The greater the mutual information, the
greater the contribution of the input variables to the prediction target. Take gasoline yield
as an example, as shown in Figure 2.

I(X, Y) = ∑
X,Y

p(X, Y) · log[
p(X, Y)

p(X) · p(Y)
] (2)

where p(X, Y) is the joint probability of variables X and Y, and p(X) and p(Y) are the
marginal probabilities of variables X and Y, respectively.
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Figure 2 shows the mutual information between the model input variables and gasoline
yield. It reveals that fresh diesel feed has the greatest impact on gasoline yield, followed by
the inlet hydrogen-to-oil ratio (R102) and average temperature, which also have substantial
effects on gasoline yield. These impacts are higher than those of the inlet hydrogen-to-oil
ratio and average temperature of R101. This can be attributed to the underlying principle
of the RLG process, where different types of reactions occur in the two reactors. R101 is a
refining reactor primarily involved in desulfurization and denitrification reactions, while
R102 is a cracking reactor involved in opening and cracking reactions. The latter has a more
direct impact on gasoline yield. Therefore, the results of the mutual information analysis
align with the actual process. In addition, the D-501 new hydrogen gas flow rate, R101
inlet hydrogen partial pressure, and R102 inlet hydrogen partial pressure also significantly
influence gasoline yield. These three variables primarily affect the hydrogen mixing
flow rate, which, in turn, affects the depth of hydrogenation reactions in R101 and R102,
ultimately impacting gasoline production. The remaining variables exhibit similar mutual
information to the gasoline yield, but to a lesser extent than the aforementioned variables.

3.5. Genetic Algorithm

The GA is an algorithm that draws on the natural law of superiority and inferiority
in reproduction [13]. It was developed primarily by mimicking biological evolutionary
mechanisms in nature, a phenomenon that we call genetics. The core operation of the GA
is a random search algorithm using genetic models: the optimization problem is mapped
to a genetic space, where various potential solutions are encoded as chromosomes. Each
chromosome represents a solution, and each bit on the chromosome is called a gene, which
is represented by a binary string [14]. The mathematical model of RLG device revenue
optimization is a non-linear optimization problem with constraints, which can be solved
using intelligent optimization algorithms. Commonly used intelligent optimization algo-
rithms include particle swarm algorithms (PSOs) [15], GAs, simulated annealing algorithms
(SAs) [16], and ant colony algorithms (ACOs) [17], among which genetic algorithms are
more widely used in the petrochemical industry and have good applicability to different
tasks, so they were chosen as the optimization algorithm in this study.

4. Results and Discussion
4.1. RLG Device Yield Prediction Model
4.1.1. Selection of DNN Model Parameters

(1) Establishment of input and output neuron layers

The analysis established that there were 17 input variables in the input layer, divided
into 2 categories, as shown in Table 2; and that there were 5 output variables in the output
layer, which were the 4 main product yields of the RLG device and a di-inverse temperature
rise: gasoline yield, diesel yield, LPG yield, dry gas yield, and R102 temperature rise. The
selection of the number of hidden layers and neurons typically requires empirical judgment.
Thus, the optimal number of hidden layers and neuron nodes needs to be determined by
analyzing and comparing the prediction results of testing sets corresponding to different
numbers of hidden layers.

(2) Batch_Size

Batch_Size refers to the number of samples used for training in each batch when the
model is trained on the data in batches [18]. Setting Batch_Size appropriately can avoid
large prediction fluctuations and achieve better convergence. When setting Batch_Size to
match the maximum number of samples, a complete round of training cannot be completed
due to hardware limitations, while the accuracy of the model training results is poor
when Batch_Size = 64. After performance tests, 256 was chosen as the Batch_Size value of
the model.
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Table 2. Variables of DNN model.

Program Number of
Variables Variable Name

Input variables 17

(1) Fresh diesel feed volume, D-501 fresh hydrogen inlet
flow rate, the earliest distilled light oil fraction volume,
amount of sulfur-containing light hydrocarbons in the
pre-hydrogenation of the collected reformer, feedstock
density (20 ◦C), feedstock total sulfur content, feedstock
total nitrogen content, and
95% distillation temperature of the feedstock;
(2) R101 average temperature, R101 inlet hydrogen partial
pressure, R101 inlet circulating hydrogen volume, R101
inlet hydrogen–oil ratio, R102 average temperature, R102
inlet hydrogen partial pressure, R102 inlet circulating
hydrogen volume, R102 inlet hydrogen–oil ratio, R102
inlet hydrogen–oil ratio
Actual circulating hydrogen purity

Output variables 5 Gasoline yield, diesel yield, LPG yield, dry gas yield;
R102 temperature rise

(3) Batch Normalization

The BN (batch normalization) layer is used to keep the input of the neural network as
equally distributed as possible each time, thus accelerating the convergence of the model
and improving the generalization ability [19]. In many research works, scholars have
incorporated the BN layer into their network structures [20]. This addition has led to more
stable and smooth training, an improved generalization performance, and better overall
results. Therefore, the BN layer was also included in the model structure for this study.

BN(x) =
γ(x − µ)

δ
+ β (3)

(4) Determination of the number of neurons in the hidden layer

The greater the number of hidden layers and the number of neurons in the layer, the
more complex the model and the easier it is to overfit [21,22]. Conversely, if the number
of hidden layers and the number of neurons in the layer are too small, the learning ability
of the model will be reduced and it will be easy to overfit. Therefore, setting the number
of hidden layers and the number of neurons in the layer to match the complexity of
the modeling data is essential to ensure the learning ability and generalization ability of
the model.

As the amount of data in this paper is up to 974 groups, two hidden layers were
chosen to enhance the learning ability of the model. For the number of neurons in the
hidden layers, this study first determined three different combinations of the number of
neurons in the hidden layers 64-32, 128-64, and 256-128 (the two numbers represent the
number of neurons in the first and second hidden layers, respectively), with different
combinations representing different models. The different combinations represent different
model complexities, and then the optimal combination was determined by comparing
the prediction results of the testing set under different combinations. Figure 3 shows
the comparison of the prediction results of the model with different combinations of the
number of hidden layer neurons. From Figure 3, it is evident that, for the five prediction
targets of gasoline yield, diesel yield, LPG yield, dry gas yield, and R102 temperature rise,
the combination of the number of hidden layer neurons (128-64) achieved the lowest MAE
and the best prediction effect. Therefore, the number of neurons in the first and second
hidden layers was determined to be 128 and 64, respectively.
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(5) Choice of activation function

The activation function in the DNN is mainly used to perform non-linear mapping,
thus enhancing the fitting ability of the model [23]. Commonly used activation functions
include Sigmoid, Tanh, ReLU, etc., which are calculated as in Equations (4) to (6), respec-
tively [24]. The sigmoid function has continuous and bounded outputs, making it beneficial
for network propagation as it prevents data from diverging. Additionally, the sigmoid
function can perform self-regulation, which aids in updating network parameters during
backpropagation. Furthermore, the Tanh function has outputs centered around zero, while
the ReLU function is simple and efficient. However, the ReLU function may lead to some
neurons not being activated due to its one-sided inhibition.

Different activation functions have varying adaptability for different tasks. Therefore,
it is essential to compare the performance of each of the three activation functions (sigmoid,
Tanh, and ReLU) in the prediction of the RLG device. This comparison will help to
determine the optimal activation function for the task.

ReLU(x) = max(0, x) (4)

tanh(x) =
ex − e−x

ex + e−x (5)

sigmoid(x) =
1

1 + e−x (6)

Figure 4 shows the curve of the loss of the testing set with the number of training
sessions when the model uses different activation functions. The Tanh and ReLU functions
converge faster than the sigmoid function at the initial stage, but the final errors are both
higher than the sigmoid function, and the fluctuations during the training process are
larger, which is not conducive to the smooth learning of the model. Therefore, the optimal
activation function was determined to be the sigmoid function.
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4.1.2. DNN Model Training

After determining the model parameters, the network structure is as depicted in
Figure 5. The input layer consists of 17 input variables, such as fresh diesel feed. The
2 hidden layers have 128 and 64 neurons, respectively. The activation function used
is sigmoid, and a BN layer is incorporated. The output layer comprises five variables,
including gasoline yield.
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The mean squared error (MSE) was used as the loss function for the DNN model to
measure the deviation between the predicted values and the actual values. As shown in
Equation (7), the loss function is the mean squared error of the four product yields and
the temperature rise R102 of the RLG device. The model was trained using the Adam
algorithm [25], and the loss curves for the training and testing sets during the training
process are shown in Figure 6. After 350 iterations, the loss for both the training and testing
sets remains relatively unchanged, indicating that the model has converged at this point
and that further training will not improve the prediction accuracy of the model. The model
achieves a low loss value for both the training and testing sets, indicating that training
can be stopped and evaluation metrics can be used to assess the predictive performance of
the model.

loss(x) = 1
n

n
∑

i=1
[( f1(x)− y1)

2 + ( f2(x)− y2)
2 + ( f3(x)− y3)

2+

( f4(x)− y4)
2 + ( f5(x)− y5)

2]
(7)

where f1(x)~ f5(x) are the predicted values of the DNN model for gasoline yield, diesel
yield, LPG yield, dry gas yield, and R102 temperature rise, respectively; and y1~y5 represent
the actual values of each, respectively.
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4.1.3. Model Prediction Results and Evaluation

Tables 3 and 4 display the evaluation metrics of the DNN prediction model on
779 training samples and 195 testing samples, respectively. In the training set, the model
performs well in predicting the production of the four main products in the RLG device.
In the training set, the MAE for gasoline and diesel yield is approximately 1%, while the
MAE for LPG yield is around 0.2%, and the MAE for dry gas yield is only 0.1%. This
indicates that the model is able to learn hidden patterns in the factory data and make highly
accurate predictions for each product’s yield. In the testing set, the model still achieves
good prediction results, with a slightly higher MAE compared to the training set. The
MAE for gasoline and diesel yield is below 2%, while the MAE for LPG and dry gas yield
is below 0.4%. These results meet the requirements for estimating accuracy in practical
industrial applications. The model not only demonstrates a good predictive performance
on the training set but also exhibits a high prediction accuracy on the testing set, indicating
its strong generalization ability for practical industrial predictions. In addition to the
production of these four products, the model can also make more accurate predictions
for the temperature rise of R102. The MAE for the temperature rise of R102 in the testing
set is 1.5575 ◦C, which indicates a small deviation and provides important reference for
temperature monitoring in practical industrial applications.

Table 3. Evaluation indexes for training set of DNN model.

Program Gasoline
Yield Diesel Yield LPG Yield Dry Gas

Yield
R102 Temperature

Rise

MAE 0.9122 1.0565 0.2382 0.0987 0.9671
MSE 1.4305 2.0185 0.1030 0.0171 1.7750
R2 0.9370 0.9333 0.9469 0.9266 0.9603

MAPE 0.0188 0.0262 0.1040 0.0467 0.0202

Table 4. Evaluation indexes for testing set of DNN model.

Program Gasoline
Yield Diesel Yield LPG Yield Dry Gas

Yield
R102 Temperature

Rise

MAE 1.5810 1.9810 0.3519 0.1290 1.5575
MSE 6.8294 10.6909 0.4005 0.0283 7.7243
R2 0.7252 0.6929 0.7843 0.8811 0.7891

MAPE 0.0370 0.0469 31.2087 0.0615 0.0300

The scatter distribution of the actual and predicted gasoline yields and the comparison
is shown in Figure 7. The accuracy and precision of the predictions for each product yield
training and testing set can be visualized from the scatter plots.

Figure 7a,b show the deviation between the actual gasoline production values and the
predicted gasoline production values in both the training set and the testing set. Figure 7b
shows that the actual and predicted gasoline yield values in the testing set are still well
concentrated around the diagonal line, indicating that the prediction performance of the
testing set is still good. The good predictive results on the training set indicate that the
model has successfully learned the underlying patterns in the data. Even though the testing
set data were not part of the model’s training, the small deviation between the actual values
and predicted values on the testing set demonstrates that the model performs well and has
a good predictive accuracy and generalization ability on new samples.

Figure 7c,d show the comparison between the actual and predicted gasoline yield
values on the training and testing sets, respectively. The model’s good performance on
the testing set, where the actual and predicted values are close to each other, indicates
that the model has a strong generalization ability and can make reliable predictions for
new samples.
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Figure 7. Comparison of the difference between actual and predicted gasoline yields. (a) Dispersion
between actual and predicted petrol yields on the training sets; (b) Dispersion between actual and
predicted gasoline yields on the testing sets; (c) Distribution of actual gasoline yield and predicted
gasoline yield values on the training sets; (d) Distribution of actual gasoline yield and predicted
gasoline yield values on the testing sets.

4.2. Mathematical Model for Revenue Optimization of RLG Device

Plant revenue consists of two levels of problems, namely the development of mathe-
matical models and the use of optimization algorithms to solve them. A predictive model
for the main indicators of the RLG device was developed. In accordance with the actual
production requirements of the plant and the targets proposed in the direction of efficiency
optimization, the optimization objective of this study was to maximize the output of the
plant and, at the same time, increase the gasoline output by 3%.

4.2.1. The Objective Function of the Optimization Problem

Optimization problems can be categorized into two different types based on the
form of the objective function: single-objective and multi-objective. In multi-objective
optimization, the problem is decomposed into multiple single-objective functions, which
are then combined as a weighted sum. The weights assigned to individual objective
functions can be adjusted based on their relative importance, as shown in Equation (8).

F(x) = α1 · f1(x) + α2 · f2(x) + . . . + αk · fk(x) f1(x), f2(x), . . . , fk(x) (8)

where F(x) is the weighted objective function; αk is the weighting factor; fk(x) is a multiple
objective function before weighting.

The objective of this paper was to maximize the return on the plant, which is the
combined benefit of each product. The objective function of the optimization problem can
be obtained by a weighted combination of the yield of each product and its unit price. As
the price of oil products fluctuates with the market environment and is not a stable value,
the unit price of each product in the objective function can be set dynamically with the
market environment. In this paper, the current unit price of oil products in the refinery
was used as a reference, where the unit price of gasoline is 7000 CNY/ton, the unit price of
diesel is 5800 CNY/ton, the unit price of liquefied gas is 5848 CNY/ton, and the unit price
of dry gas is 3000 CNY/ton; thus, the objective function is obtained as in Equation (9).

max : F(X) = 7000· f1(X; W) + 5800· f2(X; W) + 5848· f3(X; W) + 3000· f4(X; W) (9)

where X is an input variable to the predictive model for the main indicators of the RLG
installation; f1(X; W) is a neural network prediction model for blended gasoline yields;
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f2(X; W) is a neural network prediction model for diesel yields; f3(X; W) is a neural
network prediction model for liquefied gas yields; f4(X; W) is a neural network prediction
model for dry gas yields; W is the neural network parameter.

4.2.2. Binding Conditions

The eight process parameters in the model, such as the average temperature of R101
and the partial pressure of inlet hydrogen selected here, were optimized by the optimization
algorithm to maximize the objective function in Equation (8). Physical variables such as
fresh diesel feed in the model input variables should remain unchanged during optimiza-
tion at the time of optimization. The process parameters should be optimally adjusted
based on the specific feed conditions (physical variables) to maximize the factory output.

In the optimization process, the search interval of the process parameters should meet
the stability requirements of the device and the safe operating range, and the adjusted
process parameters cannot make the temperature rise of the R102 reactor exceed 63 ◦C,
otherwise it will bring safety hazards to the production of the device. Furthermore, in
order to meet the company’s product distribution requirements, it is necessary to increase
gasoline production by at least 3% while maximizing plant efficiency.

The above constraints form the constraints for optimizing the output of the RLG device,
expressed in mathematical Equations (10) to (13), and are complicated by the presence of a
series of non-linear constraints in the constraints.

s.t. x1, x2, x3, x4, x5, x6, x7, x8, x9 = x1, x2, x3, x4, x5, x6, x7, x8, x9 (10)

lbi ≤ xi ≤ ubi ; i = 10, 11, 12, 13, 14, 15, 16, 17 (11)

binding conditions f1(X; W)− f1(X; W) ≥ 3% (12)

f5(X; W) ≤ 63 (13)

where x1~x9 are the values of the nine physical variables before optimization, which remain
constant during the optimization process; x10~x17 are the upper and lower limits of the
eight process parameters to be optimized, and lb is the lower limit of the variable constraint;
ub is the upper limit of the variable constraint; f1(X, W) is the neural network prediction
model for gasoline yield, where the optimized gasoline yield needs to be increased by
3%; f5(X, W) is the neural network prediction model for the temperature rise of R102,
optimized to not exceed 63 ◦C.

4.2.3. Genetic Algorithm to Optimize RLG Device Yield

(1) Parameter setting of the genetic algorithm

For the mathematical model constructed for the optimization of the RLG device
revenue, the GA can be used to optimize the search for process parameters and maximize
the plant revenue while satisfying the constraints. The GA in this section is coded with
real numbers and each individual is a string of real numbers [13,26,27]. The results of the
device gain prediction in the process of calculating the extremes are used as individual
fitness values and are calculated as follows:

Fi = ypro f it (14)

where Fi is the individual’s fitness value and yprofit is the predicted return on the installation
for individual i.

The roulette wheel method was used to select individuals with a large proportion of
adaptation into the next generation, calculated as follows:

fi = k ∗ Fi (15)
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pi =
fi

N
∑

j=1
fi

(16)

where Fi and fi are the fitness value of the individual, pi is percentage of adaptation, k is the
coefficientand N is the population size,

(2) RLG device yield optimization results

Based on a mathematical model for optimizing the profits of the RLG unit, a genetic
algorithm can be used to search for the optimal process parameters based on different feed
characteristics and the purity of recycled hydrogen gas in order to maximize the profits of
the unit while satisfying the constraints. To study the applicability of the yield optimization
model under different feed conditions, the yields of 974 samples were optimized, with
9 process parameters to be optimized for each sample, as shown in Table 5. To examine
the applicability of the yield optimization model under different feed conditions, the plant
yields for each sample out of the 974 were optimized, and the yields, gasoline production,
and R102 temperature increase before and after optimization were compared.

Table 5. Process condition optimization space.

Process Conditions Space for Excellence

R101 average temperature (◦C) 360~395
R101 Inlet hydrogen partial pressure (MPa) 6.5~9.1

R101 inlet circulating hydrogen flow rate (kN3/h) 120~140
R101 inlet hydrogen-to-oil ratio 800~1200
R102 average temperature (◦C) 370~415

R102 inlet hydrogen partial pressure (MPa) 6.5~9.1
R102 inlet circulating hydrogen flow rate (kN3/h) 130~150

R102 inlet hydrogen-to-oil ratio 900~1400

Figure 8 shows the plant revenue before and after optimization for the 974 groups
of samples. The plant revenue of the samples after optimization was higher than that
before optimization, indicating the effectiveness of the revenue optimization model. The
average plant yield before optimization was CNY 6000.70 per ton and, after optimization,
the average plant yield was CNY 6290.75 per ton, an increase of CNY 290.05 per ton of
product, which is a significant improvement in yield.
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Figure 8. Comparison chart before and after optimization for plant revenue.

Figure 9 shows the gasoline yields before and after optimization for group 974 sam-
ples, all of which were improved to varying degrees after the model optimization. The
average gasoline yield before optimization was 49.31% and the average gasoline yield after
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optimization was 52.96%, an average increase of 3.65% in gasoline yield, which is in line
with the plant’s requirement for a 3% increase in gasoline yield in the product.
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Figure 9. Comparison chart before and after optimization for gasoline yield.

Figure 10 shows the temperature rise of R102 before and after the optimization of
974 samples. In practical production, when the temperature increase of R102 exceeds
63 ◦C, it poses a safety risk to the operation of the unit. Before optimization, there were
a few samples with R102 temperature increases exceeding 63 ◦C. After optimization, the
temperature increase of R102 is below 63 ◦C, ensuring the stable operation of the plant.
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A total of 4 groups of samples were randomly selected from the 974 groups and their
process parameters before and after optimization are shown in Table 6. It can be seen that
the increase in plant yield is in the same direction as the increase in gasoline yield. When the
average temperature of R101 and R102 is increased, the gasoline yield is increased by more
than 3% and the plant economy is improved; however, the actual increase in temperature of
the two reactors cannot exceed 10 ◦C. If the temperature is increased too high, even though
the theoretical gasoline yield will be improved, the subsequent sacrifice is the catalyst life
and the destruction of the plant. The industrial reference significance is lost as the product
distribution structure is destroyed. At the same time, the temperature rise limit for R102
must not exceed 63 ◦C. The optimization model does not exceed the temperature of R102,
which means that the temperature optimization is reasonable. The actual factor of the
reaction pressure is the hydrogen partial pressure. In general, the hydrogen partial pressure
increases and the gasoline yield increases, but the premise needs to be that the hydrogen
partial pressure can be increased slowly to increase the gasoline yield if the gasoline RON
meets the requirements [28]; at the same time, the hydrogen partial pressure increases as
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the circulating hydrogen flow rate and hydrogen–oil ratio increase. The hydrogen-to-oil
ratio is controlled and regulated by the circulating hydrogen flow rate. An increase in the
hydrogen-to-oil ratio reduces the residence time of the reactants in the catalyst bed, which is
not conducive to the hydrogenation reaction [29]. Referring to Table 6, it can be seen that the
optimization space for the hydrogen–oil ratio and the inlet circulating hydrogen flow rate
for both reactors is adjusted downwards compared to the actual operating conditions, which
corresponds to a slight decrease in the optimized hydrogen partial pressure, indicating that
the optimization direction is in line with the industrial operation. Therefore, the results of
this paper using genetic algorithms to optimize the process conditions are consistent with
the actual hydrocracking process principles, and the results are of some significance for
industrial operation.

Table 6. GA optimizing process conditions results.

Process Conditions
Group 1 Group 2 Group 3 Group 4

Original
Value

Optimization
Value

Original
Value

Optimization
Value

Original
Value

Optimization
Value

Original
Value

Optimization
Value

R101 average temperature (◦C) 370.3 377.2 381.3 390.5 367.2 376.7 371.2 378.5
R101 inlet hydrogen partial

pressure (MPa) 6.9 6.8 8.5 9.10 6.7 6.7 7.9 7.1

R101 inlet circulating hydrogen
flow rate (kN3/h) 148 132 132 140 153 124 153 140

R101 inlet hydrogen-to-oil ratio 1435 1200 1232 800 1518 1200 11,451 1200
R102 average temperature (◦C) 375.8 377.7 381.9 391.0 381.8 383.4 388.6 398.5

R102 inlet hydrogen partial
pressure (MPa) 6.85 6.80 8.48 9.01 6.63 6.58 7.78 6.94

R102 inlet circulating hydrogen
flow rate (kN3/h) 155 146 145 145 160 145 160 142

R102 inlet hydrogen-to-oil ratio 1506 1400 1357 900 1591 1400 1516 1400
R102 temperature rise (◦C) 58.8 60.4 59.96 60.5 57.9 60.0 61.0 63.0

Gasoline yield% 53.86 57.01 52.10 55.31 49.10 52.11 49.71 53.62
Plant revenue (CNY/ton) 6240 6382 6030 6381 6269 6331 6083 6302

5. Conclusions

Through collecting and mining the raw material and product composition analysis
data of the RLG device, this study used a DNN to establish a prediction and optimization
model for product distribution.

1. First, by combining the reaction mechanism and characteristics of the RLG process,
data such as the properties of the crude oil and process operation variables were
separated and preprocessed. A three-layer DNN model with (17, 128, 64) nodes was
then established. This model predicts the gasoline yield with an average absolute
error of 1.58%, showing a better prediction performance.

2. Then, on the basis of this predictive model, plant tuning operations were carried out
with the goal of maximizing plant efficiency.

3. Next, the results show that optimizing the operating conditions using the GA algo-
rithm to meet the 3% increase in gasoline production can maximize the economic
benefits of the plant.

4. Finally, it was verified that the optimization value of the operating conditions is con-
sistent with the actual situation of the RLG process, which proves that the established
model has good applicability.
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Abbreviations
LCO Light Cycle Oil
RLG React LCO into Gasoline
DNN Deep Neural Network
GA Genetic Algorithm
MDM Mechanism-driven Model
DDM Data-driven Model
FNN Forward Neural Network
FCC Fluid Catalytic Cracking
HPS High-Pressure Separator
LPS Low-Pressure Separator
MLP Multi-Layer Perceptron
ANN Artificial Neural Network
DCS Distributed Control System
PSO Particle Swarm Algorithm
SA Simulated Annealing Algorithm
ACO Ant Colony Algorithms
BN Batch Normalization
MAE Mean Absolute Error
MSE Mean Square Error
LPG Liquefied Gas
R2 R Square
MAPE Mean Absolute Percentage Error
RON Research Octane Number
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