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Abstract: Accurate and efficient short-term power load forecasting is crucial for ensuring the stable
operation of power systems and rational planning of electricity resources. However, power load
data are often characterized by nonlinearity and instability due to external factors such as mete-
orological conditions and day types, making accurate load forecasting challenging. While some
hybrid models can effectively capture the spatiotemporal features of power load data, they often
overlook the multi-periodicity of load data, leading to suboptimal feature extraction and efficiency.
In this paper, a novel hybrid framework for short-term load forecasting based on TimesNet and
temporal convolutional network (TCN) is proposed. Firstly, the original load data are preprocessed
to reconstruct a feature matrix. Secondly, the TimesNet transforms the one-dimensional time series
into a set of two-dimensional tensors based on multiple periods, capturing dependencies within
different time scales and the relationships between different time scales in power load data. Then,
the temporal convolutional network is employed to further extract the temporal features and long-
term dependencies of the load data, enabling a more global pattern to be obtained for temporal
information. Finally, the results of load forecasting can be achieved from the fully connected layer
based on the extracted features. To verify the effectiveness and generalization of the proposed model,
experiments have been conducted based on the ISO-NE and Southern China datasets. Experimental
results show that the proposed model greatly outperforms the long short-term memory (LSTM),
TCN, TimesNet, TCN-LSTM, and TimesNet-LSTM models. The proposed model reduces the mean
absolute percentage error by 20% to 43% for the ISO-NE dataset and by 10% to 31% for the Southern
China dataset, respectively.

Keywords: short-term power load forecasting; multi-periodicity; TimesNet; temporal convolutional
network

1. Introduction

The forecasting of the power load is of crucial importance for the management, schedul-
ing and dispatching operations in modern power systems [1–4]. It has been demonstrated
that the UK power industry had an increased operation cost of 10 million GBP as the
load forecasting error increased by 1% [5,6]. As a result, improving the accuracy of power
load forecasting holds significant importance for the power systems. Accurate power
load forecasting enables power plants to make precise resource planning and investment
decisions, thereby avoiding supply–demand imbalances, optimizing power dispatch and
supply capabilities, and ensuring grid reliability and stability. Moreover, precise load
forecasting can enhance the operational efficiency of the electricity market, leading to the
maximization of economic and social benefits. Based on the forecasting horizons, the time
scales of load forecasting can be categorized into short-term (a few hours to a few days),
medium-term (several weeks to several months), and long-term (several years) [7]. The
long-term load forecasting aims to provide guidance for long-term decision making and
planning of power systems, while the short-term load forecasting (STLF) can supply prior
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load information to help energy companies plan energy production units and decide the
amount of energy resources needed to deliver. Therefore, a reliable STLF is essential for the
day-to-day operation and maintenance of an increasingly complex power systems [8].

However, as a typical time series data, power load data are influenced by various
external factors such as temperature, season, and day types. It may exhibit complex pat-
terns and trends in different time periods, and its statistical properties may vary over
time [9,10]. The nonlinear and non-stationary characteristics of power load data present
challenges in improving prediction accuracy [11]. Over the past few decades, a significant
amount of work has been conducted by researchers in the field of STLF with the aim of
improving prediction accuracy. Initially, traditional statistical models such as linear regres-
sion model [12], autoregressive integrated moving average model [13], and exponential
smoothing model [14] were the predominant methods used for the field of time series.
These approaches rely on historical load data and seasonal patterns to forecast future load
demand by using linear theories. However, due to the nonlinear and nonstationary charac-
teristics of load data, it is difficult to achieve an ideal training effect and then an accurate
prediction by using the statistical models. To overcome this issue, machine-learning-based
methods for STLF have evolved and are widely used to accurately predict the load demand.
These methods include artificial neural networks (ANN) [15], support vector machines
(SVM) [16], random forests regression [17], etc. Although machine learning models can
capture the nonlinear relationships and complex patterns in load data, they struggle to
address the time series characteristics of load data and manually adjust hyperparameters
to achieve a good prediction effect [18,19].

With the development of computer technology, deep learning methods with outstand-
ing learning abilities and adaptive functions were investigated in many areas including
computer vision, natural language processing, speech recognition, and load forecasting [20].
Convolutional neural network (CNN) is a typical deep learning method that possesses high
flexibility in capturing local features and spatial relationships of time series [21,22]. How-
ever, CNN still has difficulty extracting the long-term temporal features of time series data
and is not suitable for the STLF problem. To address this problem, temporal convolutional
network (TCN) was proposed and used to predict short-term load demand [23]. The TCN
is a variant of CNN that combines the advantages of CNNs and recurrent neural networks.
Therefore, TCN-based models have been widely used for extracting the spatial and tempo-
ral features of time series because of its dilated casual convolutions and expanded receptive
field. Lara et al. proposed a TCN-based model to improve the prediction accuracy of the
energy demand. The experimental results showed that the proposed model outperformed
the recurrent network-based model in prediction accuracy [24].

In addition, recurrent neural network (RNN) has also been conducted to forecast the
load demand due to its capability to retain information and recognize temporal dependen-
cies [25]. However, the RNN-based models suffer from the issues of gradient vanishing
and exploding, which makes it challenge to capture and learn long-term dependencies,
resulting in inferior performance. Thus, long short-term memory (LSTM) networks have
been developed to handle the extraction of temporal dependencies of load data. It has been
extensively demonstrated that the LSTM achieved superior performance in STLF owing
to its unique architecture with memory cells and gate mechanisms [26]. However, the
LSTM model exhibits limitations in computational efficiency and parallelism, which leads
to time-consuming training and then prevents scaling to massive load data. To address
these issues, Transformer was developed to handle the contextual features by taking full
advantage of multi-headed attention modules and its capability to be parallelized [27]. The
multi-headed attention mechanism learns the dependencies among time points in the input
sequence without explicitly relying on the sequential order of time steps. Additionally,
Transformer can better capture long-term dependencies and exhibits great performance
for handling long sequence data. However, Transformer can only capture long-range
correlations, but cannot recognize the local features hidden within complex time series,
as well as the inherent correlations between different time periods [28]. To solve complex
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temporal variations, a method called TimesNet has been introduced to model temporal
two-dimensional (2D) variations for general time series analysis [29]. Compared with these
methods mentioned above, the TimesNet model considers the presence of multiple periods
in time series data. It proposes a modularized architecture for modeling time variations by
transforming one-dimensional (1D) time series into 2D space, allowing the data to simulta-
neously exhibit features of intraperiod and interperiod variations. Therefore, the TimesNet
effectively extracts the multi-periodic characteristics of the time series by capturing the
temporal 2D variations efficiently, presenting great generality and performance.

It should stress that hybrid models have been adopted by many researchers in the field
of load forecasting, they combine the advantages of various modules to obtain superior
performance. For example, Kim et al. proposed a CNN-LSTM hybrid model that extracts
spatial and temporal features to predict household energy consumption [30]. Raf et al.
utilized a CNN-LSTM model to process long-time series load data and forecast future
demand over a significant time span [31]. Jonas et al. introduced a hybrid model called
TCN-LSTM and demonstrated its superior performance on multiple sequence learning
tasks [32]. It should be noted that as the number of hidden layers of deep neural networks
is increased, these models can easily learn full features of the input data. However, with
the increase in hidden layers, it often leads to the gradient vanishing or the occurrence of
degradation. To overcome this problem, the residual neural network (ResNet) architecture
was proposed [33]. The core idea of ResNet is to construct skip connections by introducing
residual connections, where the output of the previous layer is directly added to the input
of subsequent layers. This skip connection allows gradients to propagate faster through the
network, enabling deeper learning and facilitating easier optimization and training.

Although the hybrid models have leveraged the advantages of various deep learning
modules and improved the forecasting accuracy, certain in-depth features of time series
are often overlooked, leaving some areas for further being improved. In order to achieve
higher prediction accuracy in the field of STLF, according to the above discussions, this
paper proposes a novel hybrid model for STLF based on TimesNet and TCN. It incorporates
residual connection modules and multiple feed-forward layers to optimize the network
structure and enhance the nonlinear representations of load data. The proposed model
consists of the following steps. Firstly, the raw data are preprocessed, including the normal-
ization of the temperature and load data using min-max normalization, as well as one-hot
encoding of season, holiday, and weekend. Then, an input matrix can be reconstructed.
Secondly, the input data are fed into the TimesNet module through the feed-forward
layer. The TimesNet module transforms the 1D time series into a 2D space, capturing both
intra-period and inter-period variations. The temporal 2D variations can be effectively
extracted from the transformed tensor using a parameter-efficient inception block, enabling
the extraction of dependencies within different time scales and the relationships between
different time scales from the power load data. Thirdly, the data are further processed by
the TCN module through another set of feedforward layers to capture the temporal features
and long-term dependencies of the power load data. Finally, the linear layer is applied to
perform the prediction of the power load data, yielding the prediction results. Experimental
results demonstrate that the proposed model outperforms other existing models in terms
of performance and robustness. The main contributions of this paper can be summarized
as follows:

(1) A novel hybrid framework combining TimesNet and TCN is proposed for short-term
load forecasting. The deep learning framework employs a shallow structure, ensuring
efficient training. The proposed model can effectively exploit the intricate temporal
variations of load data and obtain a more reliable load forecasting.

(2) The load data have inherent multi-periodicities, such as daily, weekly, monthly, sea-
sonal periods, etc. The TimesNet utilizes a transformation of 1D time series into a
2D space, enabling the capture of temporal patterns from different periods of the
load data.
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(3) The TCN is integrated into the TimesNet-based framework to enhance the ability
to capture the temporal features and long-range dependencies among time points
of the load series. The dilated causal convolution employed by TCN contributes to
capturing the global correlation of the whole load series.

(4) In order to enhance the nonlinear representations of the input matrix before the
TimesNet and TCN modules, a feed-forward layer added over a residual con-
nection is introduced to optimize the network structure, resulting in improved
prediction accuracy.

(5) The proposed model is performed experiments on two real-world power load datasets.
The experimental results demonstrate that the proposed model achieves superior
performance in the field of STLF compared to other benchmarking models.

The rest of this paper is organized as follows. Section 2 describes the structure of
each module in the proposed model. Section 3 describes the experimental results and
analysis. Finally, Section 4 provides a brief overview of the research conclusions and
future prospects.

2. Methodology

This paper proposes a hybrid framework for STLF based on the TimesNet and TCN
models. Additionally, residual modules and feed-forward layers are introduced to optimize
the overall network architecture, thereby enhancing the nonlinear representations and
improving its performance. After preprocessing the raw load data, it is sequentially
processed through the aforementioned modules to accomplish short-term load prediction.
The detailed descriptions of each module and the overall network framework are as follows.

2.1. Forecasting Architecture

This section introduces the two model architectures used in this paper: TimesNet
and TCN models. The TimesNet focuses on the multi-periodic characteristics presented
in the electricity load data. It innovatively extends the 1D time series data to a 2D space
analysis, capturing the 2D temporal variations based on multiple periods in the electricity
load data [29]. It employs a parameter-efficient inception block to extract these features
efficiently. The TCN is a neural network structure designed for time series modeling and
prediction. It utilizes a series of convolutional layers to learn temporal patterns in the time
series data. The convolutional layers can capture local dependencies within the time series
and process the input sequence in parallel. Therefore, TCN is more efficient in handling
long-term dependencies. The following sections provide detailed descriptions of these
two architectures.

2.1.1. TimesNet

In the real world, time series often exhibit multiple periodicities and are influenced by
the mutual interactions among these periods, resulting in highly complex variations. This
complexity poses challenges for modeling time series data in short-term load forecasting.
Conventional approaches in time series analysis primarily focus on the continuity and
recursion of time series while overlooking the underlying multi-periodicity. In contrast,
TimesNet treats individual time points in a time series as relatively independent. On one
hand, it considers overlapping time segments, capturing the interplay between different
segments and emphasizing the inter-period variation. On the other hand, it examines
the relationships between individual time points within each segment, focusing on the
variations between adjacent moments within the same period, which are referred to as
intra-period variations [29]. However, traditional methods for modeling time series in 1D
space fail to aggregate time points of different periods into the same phase, instead, they
are scattered throughout the entire time series, making it challenging to achieve mutual
attention. Additionally, these methods are unable to identify the impact relationships
between different time segments, making it difficult to capture both types of changes
simultaneously in 1D space modeling. To address this issue, TimesNet extends the analysis
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of temporal variations into a 2D space, as shown in Figure 1. The 1D time series is reshaped
into a 2D tensor, where each column contains time points within a period, and each row
contains time points corresponding to the same phase across different periods.
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In TimesNet, the TimesBlock is designed to integrate the aforementioned process and
effectively model the two types of variations with the parameter-efficient inception block.
The configurations of TimesNet will be described in detail below.

The Theory of Transformation from 1D Variation into 2D Variation

In order to capture and represent the temporal variations within and between periods
consistently, it is essential to investigate the periodicities of the time series. This can be
achieved by applying the Fast Fourier Transform (FFT) along the time dimension of the
1D time series, denoted as X1D ∈ RT×dmodel , where T represents the time length and dmodel
denotes the input feature dimension. The FFT computation on the time dimension allows
us to identify the periodic patterns presented in the time series as follows:

A = Avg(Amp(FFT(X1D))) (1)

{ f1, · · · , fk} = arg
f∗∈{1,··· ,[ T

2 ]}
Topk(A) (2)

{p1, · · · , pk} =
⌈

T
f1

⌉
, · · · ,

⌈
T
fk

⌉
(3)

where A ∈ RT represents the strength of each frequency component in X1D. The k largest of
frequencies { f1, · · · , fk} correspond to the k most significant periodic lengths {p1, · · · , pk}
in the time series. This process can be succinctly described as follows:

A, { f1, · · · , fk}, {p1, · · · , pk} = Period(X1D) (4)

As illustrated in Figure 2, the original 1D time series X1D is folded based on the
selected periods. This process can be formalized as follows:

Xi
2D = Reshapepi , fi

(Padding(X1D)) i ∈ {1, · · · , k} (5)

where Padding(·) refers to the process of appending zeros at the end of the sequence to
ensure that the sequence length is divisible by pi. By performing the aforementioned opera-
tions, we obtain a set of 2D tensors

{
X1

2D, X2
2D, · · · , XK

2D
}

, where each Xi
2D corresponds to

the 2D temporal variations dominated by the period pi.
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TimesBlock

The architecture of TimesNet is shown in Figure 3. For the l-th layer of the TimesBlock,
the input is Xl−1

1D ∈ RT×dmodel , and can be extracted 2D temporal variations by using 2D
convolutional processing. The process can be formalized as:

Xl
1D = TimesBlock

(
Xl−1

1D

)
+ Xl−1

1D (6)
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The whole process of TimesBlock for capturing temporal 2D variations of time series
will be elaborated in detail, which consists of the following four sub-processes:

(1) Transforming 1D time series to 2D tensor.

First, the 1D temporal features Xl−1
1D of the input are extracted for periods and trans-

formed into a 2D tensor to represent the 2D temporal changes. Following the process
described in the previous discuss, the formulas can be rewritten as:

Al−1, { f1, · · · , fk}, {p1, · · · , pk} = Period
(

Xl−1
1D

)
(7)

Xl,i
2D = Reshapepi , fi

(
Padding

(
Xl−1

1D

))
i ∈ {1, · · · , k} (8)

(2) Capturing 2D temporal variations representation.
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For the 2D tensors
{

Xl,1
2D, Xl,2

2D, · · · , Xl,K
2D

}
, which possess 2D locality, we can utilize 2D

convolutions to extract information. Here, we adopt the classical Inception model.

X̂l,i
2D = Inception

(
Xl,i

2D

)
(9)

(3) Transforming 2D tensor to 1D Space.

After capturing the temporal features, we convert them back to 1D space for informa-
tion aggregation.

X̂l,i
1D = Trunc

(
Reshape1,(pi× fi)

(
X̂l,i

2D

))
i ∈ {1, · · · , k} (10)

where X̂l,i
1D ∈ RT×dmodel , Trunc(·) represents the removal of the zeros added during the

Padding(·) operation in step (1).

(4) Adaptive aggregation.

Similar to the design in Autoformer [28], the adaptive fusion is performed by tak-
ing the weighted sum of the obtained 1D representations

{
X̂l,1, · · · , X̂l,k

}
based on their

corresponding frequency values, resulting in the final output.

Âl−1
f1

, · · · , Âl−1
fk

= Softmax
(

Al−1
f1

, · · · Al−1
fk

)
(11)

Xl
1D =

k

∑
i=1

Âl−1
fi
× X̂l,i

1D (12)

TimesBlock is capable of simultaneously capturing fine-grained and multi-scale tem-
poral 2D patterns [29]. As a result, compared to directly extracting features from 1D time
series, TimesNet achieves more efficient representation learning.

2.1.2. Temporal Convolutional Network

The TCN captures the temporal features and long-term dependencies of load data
by using a unique architecture with causal convolution, dilated convolution, and residual
connections. Each module in TCN has the following detailed descriptions:

(1) Causal convolution

TCN adopts a unique causal convolution that ensures the causal relationship of
the input sequence, meaning the network’s output is only dependent on past inputs.
Taking Figure 4a as an example, the output yt at time t is only related to previous inputs
(xt−3, xt−2, xt−1, xt), and it is independent of future inputs (xt+1, xt+2, · · · , xT). As a result,
it can avoid the leakage of future data, making causal convolution more suitable for
capturing the intrinsic patterns in power load data.
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(2) Dilated convolution

Although the stacking of causal convolutional layers can increase the receptive field
of the network, the number layers of causal convolution will be increased for a long
sequence and then lead to the gradient vanishing and exploding. The TCN introduces
dilated convolutions to exponentially increase the receptive field of the network. Dilated
convolution involves sampling the input of the upper layer with a certain interval, and
the dilation rate grows exponentially with a base of 2 [34]. In this way, it can achieve a
large receptive field with fewer layers of the network. The computation formula for dilated
convolution is as follows:

F(s) = (x ∗ d f )(s) =
k−1

∑
i=0

f (i)·xs−d·i (13)

where d is the dilation rate, k is the filter size, and xs−d·i represents the convolution of the
past state. Thus, the dilated convolution significantly reduces the network complexity and
improves computational efficiency.

(3) Residual block

To ensure the stability of TCN with a large number of layers, residual connections were
introduced between two dilated convolutional layers [35]. The advantage is that it avoids
the loss of too much information during the feature extraction process of TCN. The residual
module is mainly composed of two dilated causal convolutions, batch normalization,
dropout, ReLU activation function, and other modules, as shown in Figure 5a. Additionally,
the residual block adopts a 1× 1 convolution to ensure the same dimensions of the input
and output. Figure 5b illustrates a deep TCN model stacked by multiple residual blocks.
Therefore, a deep TCN enables the network to look back into the past for feature extraction
to obtain long-range dependencies.
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2.2. Ensemble Framework

In order to achieve higher prediction accuracy, this paper proposes a novel hybrid
framework for STLF based on TimesNet and TCN. Figure 6 shows the flow chart of the
ensemble framework. The overall process of the load forecasting can be roughly divided
into four steps. According to the flow chart of the proposed model, the detailed descriptions
of each step are as follows:



Energies 2023, 16, 5330 9 of 17

Energies 2023, 16, x FOR PEER REVIEW 9 of 18 
 

 

2.2. Ensemble Framework 
In order to achieve higher prediction accuracy, this paper proposes a novel hybrid 

framework for STLF based on TimesNet and TCN. Figure 6 shows the flow chart of the 
ensemble framework. The overall process of the load forecasting can be roughly divided 
into four steps. According to the flow chart of the proposed model, the detailed descrip-
tions of each step are as follows: 

 
Figure 6. Flow chart of the ensemble framework. 

Step 1: Data processing. Real-world load data are usually corrupted with missing val-
ues or outliers due to malfunction of sensors or human error [35]. This will inevitably 
affect the prediction accuracy of the model. To overcome this issue, the following methods 
can be used to handle missing values or outliers. For example, missing data can be re-
placed with the average of the previous and next time points, or with the data from the 
same time point of the previous day. Afterward, the load demand and temperature will 
be normalized by min-max normalization and day types will be processed by one-hot 
encoding. Finally, the load demand and external factors are reconstructed in an input ma-
trix. 

Step 2: Feature extraction. Feature extraction is very important for achieving high ac-
curacy of STLF. Firstly, the input matrix is fed into the feed-forward layer with residual 
connection to enhance its nonlinear representations. Secondly, the output will be passed 
through the TimesNet module to extract the dependencies within different time scales 
and the relationships between different time scales of the power load data. Finally, the 
feature matrix is processed through the feed-forward layer with a residual connection and 
then fed into the TCN module, leveraging its excellent time series processing capabilities 
to extract temporal features and long-term dependencies of the power load data. It is 
worth mentioning that in this study, residual connections were introduced in the feedfor-
ward process to optimize the network performance. 

Step 3: Load Forecasting and Parameter Optimization. After completing the feature ex-
traction of the power load data through the aforementioned steps, the load forecasting is 
achieved from the fully connected layer. Then, the model parameters are validated using 
the validation set. If the model shows an improvement in accuracy on the validation set, 
the current model parameters will be saved and the model is updated for further training. 
Otherwise, the model training continues until the optimal model is obtained. 

Figure 6. Flow chart of the ensemble framework.

Step 1: Data processing. Real-world load data are usually corrupted with missing
values or outliers due to malfunction of sensors or human error [35]. This will inevitably
affect the prediction accuracy of the model. To overcome this issue, the following methods
can be used to handle missing values or outliers. For example, missing data can be replaced
with the average of the previous and next time points, or with the data from the same time
point of the previous day. Afterward, the load demand and temperature will be normalized
by min-max normalization and day types will be processed by one-hot encoding. Finally,
the load demand and external factors are reconstructed in an input matrix.

Step 2: Feature extraction. Feature extraction is very important for achieving high
accuracy of STLF. Firstly, the input matrix is fed into the feed-forward layer with residual
connection to enhance its nonlinear representations. Secondly, the output will be passed
through the TimesNet module to extract the dependencies within different time scales and
the relationships between different time scales of the power load data. Finally, the feature
matrix is processed through the feed-forward layer with a residual connection and then
fed into the TCN module, leveraging its excellent time series processing capabilities to
extract temporal features and long-term dependencies of the power load data. It is worth
mentioning that in this study, residual connections were introduced in the feedforward
process to optimize the network performance.

Step 3: Load Forecasting and Parameter Optimization. After completing the feature
extraction of the power load data through the aforementioned steps, the load forecasting is
achieved from the fully connected layer. Then, the model parameters are validated using
the validation set. If the model shows an improvement in accuracy on the validation set,
the current model parameters will be saved and the model is updated for further training.
Otherwise, the model training continues until the optimal model is obtained.

Step 4: Model Evaluation. After obtaining the optimal model through Step 3, the
performance of the model is verified by using the testing set. The mean absolute percentage
error (MAPE) and root mean square error (RMSE) are used as evaluation indices to evaluate
the performance of the proposed model.

3. Experiments Results and Analysis

To evaluate the effectiveness of the proposed model in this paper, a series of exper-
iments will be conducted on a public dataset. Additionally, in order to highlight the
advantages of the proposed model, it will be compared with other TCN-based models. The



Energies 2023, 16, 5330 10 of 17

hyper-parameters of these models will be adjusted based on previous experience to achieve
optimal performance. All models will be run on a PC with Inter core i7-11800H CPU and
NVIDIA Tesla V100S-PCIE-32 GB GPU. In this study, the programming environment is
PyTorch 1.10 and CUDA 10.2. The PyTorch is a widely used deep learning framework that
offers a variety of pre-trained models, tools, and extension libraries, facilitating the devel-
opment and training of deep neural network models. Additionally, the PyTorch supports
efficient computations on GPUs, accelerating training processes. In the following, we will
provide a detailed description of experimental settings, feature selection and preprocessing,
as well as comparative analysis of experimental results.

3.1. Experimental Design
3.1.1. Data Preparation

In order to evaluate the effectiveness and generalization of the proposed model,
two datasets were utilized to perform experiments. The first dataset was collected from
a public dataset of ISO-NE (New England) [36], which consists of power load from 1
March 2003 to 31 December 2014 in New England of the United States. The dataset
includes load demand, temperature, and day types with one-hour resolution. A total of
43,920 sets of data are selected for experiments. According to the ratio of 8:1:1, the training
set consists of 35,136 data points, while the validation and testing sets contain 4392 data
points. The second dataset was collected from the state grid of a region in Southern
China. The time range was from 1 January 2012 to 10 February 2014 with sampling every
15 min [37]. The total dataset with 106,176 sets will divided into a training set, a validation
set, and a testing set with the proportion of 8:1:1. The ISO-NE public dataset was used
to analyze the feature selection and processing and compare with other benchmarking
models to verify the superior performance of the proposed model, while the Southern
China dataset was adopted to further exhibit the generalization of the proposed model.

3.1.2. Sliding Window Settings

The setting of the sliding window is crucial for accurate and effective data processing.
The length and step size of the sliding window needs to be carefully determined to meet
two aspects: capturing sufficient historical information and maintaining reasonable compu-
tational complexity [38]. Thus, after extensive optimization experiments, the length of a
sliding window is 24 steps with a step size of 1. It means that each sliding window contains
24 rows of data and then all models predict the load demand of the next step through the
features of the previous 24 steps.

3.1.3. Comparative Models

To validate the superior performance of the proposed model, the following models
are used for comparison in this study: CNN, LSTM, TCN, TimesNet, TCN-LSTM, and
TimesNet-LSTM. The hyper-parameters of all these models are adjusted appropriately
based on previous experience to optimize their performances.

3.1.4. Model Evaluation Criteria

In order to evaluate the performance of the proposed model, it is convenient to use
the MAPE and RMSE as evaluation indices. The smaller the values of MAPE and RMSE,
the higher the prediction accuracy of the model. The formulas for MAPE and RMSE are
defined as follows:

MAPE =
1
n

n

∑
t=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (14)

RMSE =

√
1
n

n

∑
t=1

(yi − ŷi)
2 (15)

where n represents the total number of prediction points, yi represents the true value, and
ŷi represents the predicted value.
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3.2. Feature Selection and Processing

Due to various external factors, power load data often exhibit fluctuations and ran-
domness, making accurate load prediction challenging. Therefore, selecting appropriate
features is crucial to improve the prediction accuracy of the model. To select suitable
features as inputs for the model, an analysis of the original dataset is required. Figure 7
shows the change of load demand for 30 days in the New England region of the United
States. It is evident that the changing trend of power load data exhibits a weekly pattern,
with smaller fluctuations during weekdays and significantly higher load during weekends.
This observation suggests that the reduced overall electricity load on weekends may be
due to the shutdown of institutions such as companies and factories with high electricity
consumption. Similarly, some national holidays are also likely to have a significant impact
on the power load. Figure 8 depicts the profiles of power load and temperature over
6 years based on the ISO-NE dataset. It can be observed that the power load has 12 peaks
and valleys, because the power demand usually reaches peaks when the temperature is
very high or low. Therefore, temperature and day types have a significant impact on STLF.
Considering the periodicity, randomness, trend, and external factors affecting electricity
load, the experiments select five features, i.e., power load, temperature, holidays, seasons,
and weekends, for load forecasting.
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To improve the stability and accelerate the convergence speed of the model, we
performed min-max normalization on the electricity load and temperature data. The min-
max normalization scales the data to a specific range, ensuring that the feature data has a
consistent scale and eliminating differences between various features, thereby enhancing
the performance and stability of the model. The formula for min-max normalization is
defined as follows:

x̂ =
x−min(X)

max(X)−min(X)
(16)

where X represents the entire time series, x̂ represents the normalized feature value, x
is the original feature value, and min(X) and max(X) are the minimum and maximum
values of the feature x in the dataset. Additionally, the one-hot encoding is used for
holiday, weekday, weekend, and quarter. The specific processing method is shown in
Table 1. After the feature selection and processing of the original load data, a feature matrix
is reconstructed and then input into the ensemble framework for training the model to
obtain experimental results.

Table 1. One-hot encoding.

Feature One-Hot Encoder

Holiday Yes [1, 0]
No [0, 1]

Weekday Yes [1, 0]
No [0, 1]

Quarter

First quarter [1, 0, 0, 0]
Second quarter [0, 1, 0, 0]
Third quarter [0, 0, 1, 0]

Fourth quarter [0, 0, 0, 1]

3.3. Comparative Analysis of Experimental Results

To validate the superiority of the proposed model, the following prediction models
were selected for comparative experiments: CNN, LSTM, TCN, TimesNet, TCN-LSTM,
and TimesNet-LSTM. To ensure the credibility of the results, efforts were made to keep
other unrelated factors consistent, such as the selection and partitioning of training, valida-
tion, and testing sets. Additionally, based on previous experience, the hyperparameters
of each model were adjusted appropriately to achieve optimal performance. Further-
more, each model was trained and tested at least five times, and the experimental results
were averaged.

3.3.1. ISO-NE Dataset

Table 2 presents the experimental results of all these models based on ISO-NE dataset.
For the single models, compared to CNN, the MAPE and RMSE of the LSTM and TCN
are decreased by 8.8%, 11% and 10.9%, 13%, respectively. This is because power load
data primarily consists of time series with strong trends, periodicities, and uncertainties.
However, CNN is limited to capturing local spatial features, resulting in poor performance
in time series analysis. Additionally, as widely applied models in time series processing,
TCN and LSTM showed superior performances in the extraction of temporal features,
and TCN achieves a 2.4% decrease in terms of MAPE compared to LSTM. This can be
attributed to the ability of TCN’s convolutional operations to directly capture patterns
across different time intervals, addressing the issues of gradient vanishing and exploding
gradients commonly encountered in LSTM when modeling long-term dependencies in
time series. Furthermore, as a newly proposed model, TimesNet exhibits exceptional
performance with a significant reduction of 23.4% and 14.6% in terms of MAPE and RMSE
compared to TCN. This is because TimesNet models the transformation of 1D time series
into 2D variations, enabling an in-depth mining of the dependencies within different
time scales and relationships between different times scales. By employing the renowned
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Inception block for extracting complex temporal changes of the transformed 2D tensors
through 2D convolutions, TimesNet achieves a higher prediction accuracy compared to
traditional RNN-based models.

Table 2. The evaluation metrics for load forecasting of each model for ISO-NE dataset.

Model MAPE (%) RMSE (MW) Time (s)

CNN 0.91 267.70 2815
LSTM 0.83 238.54 3559
TCN 0.81 232.45 2496

TimesNet 0.62 198.34 5870
TCN-LSTM 0.70 213.72 2885

TimesNet-LSTM 0.59 191.63 6021
Proposed model 0.47 179.91 5942

For hybrid models, compared to their constituent single models, the MAPE and RMSE
values of the hybrid models show varying degrees of improvement. For example, compared
to TCN and LSTM, the TCN-LSTM hybrid model achieves a decrease of 13.6%, 15.6% and
8.1%, 10.4% in terms of MAPE and RMSE, respectively. Furthermore, compared to LSTM
and TimesNet, the TimesNet-LSTM hybrid model achieves a decrease of 28.9%, 4.8% and
19.7%, 3.4% in terms of MAPE and RMSE, respectively. These results demonstrate the
advantages of hybrid models used in the field of power load forecasting. Hybrid models
leverage the strengths of their individual modules, allowing for the utilization of their
individual characteristics. It is obvious that, combing the powerful capabilities of TimesNet
and TCN, the TimesNet-TCN hybrid model achieves the best performance in this study.
Compared to other hybrid models, the proposed model achieves significant decreases in
terms of MAPE and RMSE. For example, compared to the TCN-LSTM model, the proposed
model achieves a decrease of 32.9% in MAPE and 15.8% in RMSE. Furthermore, compared
to TimesNet-LSTM model, the proposed model achieves a decrease of 20.3% in MAPE and
6.1% in RMSE. These results can be attributed to the powerful capabilities of TimesNet
and TCN, utilizing causal convolutions and dilated convolutions, to capture the temporal
features and long-term dependencies of time series data in a more global manner. It
should point out that the proposed model requires more running time due to the multiple
convolutional layers in the Inception block of TimesNet. However, the running time of
the proposed model only increases by 1.2% compared to that of the TimesNet model. In
the real application for massive data, the costing time of the proposed model is acceptable
when considering the improvement of the prediction accuracy.

In order to visually demonstrate the superiority of the proposed model, Figure 9
presents the load prediction curves of all the models and the actual load data for 24 h. One
can find that the predicted load values of all the models can roughly fit the changing trend
of the actual load data. However, the proposed model shows a stronger fitting capability to
the actual load data compared to other comparative models, especially during the peak or
valley region.

3.3.2. Southern China Dataset

Table 3 shows the experimental results of all these models based on the Southern
China dataset. Compared with Table 2, the values of MAPE of these models are larger than
those of the ISO-NE dataset while the values of RMSE are smaller than those of the ISO-NE
dataset. It is because the time resolution of the Southern China dataset is only 15 min and
the length of the sliding window with 24 steps only covers a time span of 6 h. In this case,
the multi-periodicity of load data cannot be reflected obviously compared to the ISO-NE
dataset and the overall deviation of the predicted load values will also be significantly
increased accordingly. Compared to the single models, such as CNN, LSTM, TCN, and
TimesNet, the MAPE of the proposed model is decreased by 40.2%, 30.7%, 29.9%, and
17.6%, respectively. At the same time, the RMSE of the proposed model is also decreased by
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54.6%, 50%, 49.2%, and 35.5%, respectively. For hybrid models, the MAPE and RMSE of the
proposed model are decreased by 21.8% and 37.8% compared to those of the TCN-LSTM
hybrid model. Moreover, compared to the TimesNet-LSTM hybrid model, the proposed
model achieves a decrease of 10.3% in MAPE and 11% in RMSE. In addition, Figure 10
shows the load prediction curves of all the models for 6 h based on the Southern China
dataset. One can see that although the predicted load values of all these models roughly
fit the changing profile of actual load, the predicted load of the proposed model is the
most consistent with the actual load. These results further demonstrate that the TimesNet
network can capture the temporal patterns from the load data with multi-periodicities
compared to other single models. Furthermore, it is necessary to integrate the TCN into
the TimesNet-based framework to enhance the ability to capture the temporal features and
long-range dependencies among the time points of the load series. Therefore, the proposed
model has superior performance and a strong generalization capability in STLF.
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3.3.3. Comparison of the Proposed Model with Other Reported Models

With the development of smart grid, it is increasingly easy to collect power load data
and other external factors. More and more works have been devoted to investigating STLF
in recent years. The predicted results of some papers reported recently were selected to
compare with that of the proposed model for the same ISO-NE dataset, as shown in Table 4.
One can see that the proposed model outperforms other reported models in terms of MAPE.
For example, Ref. [32] used multiple ResNets to improve the prediction accuracy of STLF.
However, the ResNet is a variant of CNN and cannot effectively capture temporal features
and long-range dependences of the load data. Ref. [33] proposed a multivariate TCN model
to parallelly process input variables to improve the prediction accuracy. Although the
proposed model can capture the temporal features and long-range dependencies of load
data, it cannot extract the intraperiod- and interperiod-variations of multi-periodicities.
Refs. [29,31] were developed to fully capture the temporal and spatial features of load data.
Although they have achieved higher accuracy of STLF, these works did not exploit the
intricate temporal variations of load series. Therefore, we can conclude that the proposed
model in this study can not only extract the local correlations and long-range dependencies
of the load data, but also capture the temporal patterns from the different periods of the
load data.

Table 4. Performance comparison of some reported models based on ISO-NE dataset.

Study Year MAPE

Kondaiah et al. [39] 2022 1.23
Wan et al. [40] 2019 0.97
Hua et al. [35] 2023 0.78
Liu et al. [38] 2022 0.75

Proposed model 2023 0.47

4. Conclusions

This paper proposed a novel hybrid model for STLF based on TimesNet, TCN and
feed-forward layer with a residual connection. Firstly, TimesNet transformed the 1D time
series into a set of 2D tensors based on multiple periods, presenting a 2D temporal varia-
tion. Then, through the parameter-efficient inception block, complex time variations were
extracted, including the dependencies within different time scales and the relationships
between different time scales. Secondly, TCN introduced causal convolutions, dilated con-
volutions, and residual connections to further extract the temporal features and long-term
dependencies of the time series in a global manner. Thirdly, the feed-forward layer with
residual connection was located before the TimesNet and TCN modules to enhance the
nonlinear representations of the input matrix. Finally, the task of STLF is accomplished
through fully connected layers.

The proposed model was evaluated by ISO-NE and Southern China datasets. Com-
pared to other models, the experimental results demonstrated that the proposed model
reduced the MPAE by 20% to 43% and the RMSE by 6% to 32.8% for the ISO-NE dataset,
and the MAPE by 10% to 40% and the RMSE by 11% to 54.6% for the Southern China
dataset. Overall, the novel framework developed in this study greatly improved the pre-
diction accuracy and had strong generalization in STLF. Thus, the proposed model can
contribute to the stable operation of the power systems, thereby improving economic and
social benefits.

There is still an amount of work to be performed as future work. The TimesNet costs
a large amount of computational time due to its ability to extract temporal features in a
2D space. Although the incorporation of the TCN indeed enhances the feature extraction
capabilities and improves the accuracy of STLF, it does not reduce the computational time
of the TimesNet. In future work, we aim to exploit improvements within the TimesNet
framework to address the computational efficiency. Moreover, we will further optimize the
extraction capabilities of features of the model to achieve higher prediction accuracy.



Energies 2023, 16, 5330 16 of 17

Author Contributions: Conceptualization, C.Z. and J.W.; methodology, C.Z.; software, M.L.; valida-
tion, C.Z., J.W. and M.L.; formal analysis, C.Z. and S.D.; investigation, M.L. and S.D.; resources, Q.W.;
data curation, C.Z. and M.L.; writing—original draft preparation, C.Z.; writing—review and editing,
M.L.; visualization, J.W.; supervision, Q.W.; project administration, M.L. and S.D.; funding acquisition,
M.L. and S.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant 61865011 and Grant 62065012, and in part by the Natural Science Foundation of Jiangxi
Province of China under Grant 20212BAB202031, and in part by the Interdisciplinary Innovation
Fund of Natural Science, Nanchang University under Grant 9167-28220007-YB2111, and in part
by the National College Students’ Innovation and Entrepreneurship Training Program under
Grant 2022CX260.

Data Availability Statement: Data available in a publicly accessible repository that does not issue
DOIs Publicly available datasets were analyzed in this study. These data can be found here:
https://www.iso-ne.com/isoexpress/web/reports/load-and-demand (accessed on 7 June 2022)
and https://github.com/keatoncu/Southern-China-Dataset (accessed on 7 June 2022).

Conflicts of Interest: The authors declare that they have no known competing interests or personal
relationships that could have influenced the work reported in this paper.

Nomenclature

Abbreviations parameters
STLF short-term power load forecasting T time length
TCN temporal convolutional network dmodel input feature dimension
LSTM long short-term memory A strength of each frequency
ANN artificial neural networks fk frequencies
SVM support vector machines pk periodic lengths
CNN convolutional neural network xt input at time t
RNN recurrent neural network d dilation rate
FFT fast fourier transform k filter size
MAPE mean absolute percentage error yi true value
RMSE root mean square error ŷi predicted value
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