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Abstract: In this paper, the SCO2 Brayton regenerative and recompression cycles are studied and
optimized for a next-generation solar power tower under a maximum cycle temperature of over
700 ◦C. First, a steady-state thermodynamic model is developed and validated, and the impacts of
different operating parameters on three critical performance indexes, including the cycle thermal
efficiency, specific work, and heat storage temperature difference, are analyzed. The results reveal
that these performance indexes are influenced by the operating pressures, the SCO2 split ratio,
and the effectiveness of the regenerators in complex ways. Subsequently, considering the three
performance indexes as the optimization objectives, a triple-objective optimization is carried out
to determine the optimal operating variables with the aim of obtaining Pareto solutions for both
cycles. The optimization indicates that the regenerative cycle can achieve the maximum heat storage
temperature difference and the maximum specific work of 396.4 ◦C and 180.6 kW·kg−1, respectively,
while the recompression cycle can reach the maximum thermal efficiency of 55.95%. Moreover, the
optimized maximum and minimum pressure values of both cycles are found to be around 30 MPa
and 8.2 MPa, respectively. Additionally, the distributions of the optimized values of the regenerator
effectiveness and the SCO2 split ratio show different influences on the performance of the cycles.
Therefore, different cycles with different optimized variables should be considered to achieve specific
cycle performance. When considering thermal efficiency as the most important performance index,
the recompression cycle should be adopted. Meanwhile, its SCO2 split ratio and the regenerator
effectiveness should be close to 0.7 and 0.95, respectively. When considering heat storage temperature
difference or specific work as the most important performance index, the regenerative cycle should be
adopted. Meanwhile, its regenerator effectiveness should be close to 0.75. The results from this study
will be helpful for the optimization of superior SCO2 cycles for next-generation solar tower plants.

Keywords: next-generation solar power tower; SCO2 Brayton cycle; triple-objective optimization;
thermal efficiency; specific work; heat storage temperature difference

1. Introduction

In recent years, the escalating global consumption of fossil fuels has led to the more
pronounced occurrence of environmental pollution and ecological degradation [1,2]. To
reduce reliance on traditional fossil fuels and mitigate their negative impacts, renewable
energy technologies have experienced rapid advancements [3,4]. Solar thermal power
is an important alternative solar power generation technology possessing the ability of
heat storage [5,6]. The primary objective of solar thermal power technology development
is to enhance thermal efficiency, elevate specific work, and accomplish large-scale heat
storage. Among the available solar thermal power technologies, including the solar power
tower (SPT) [7,8], solar dish collector [9,10], linear Fresnel reflector [11,12] and parabolic
trough collector [13–15], the SPT is a promising option that is expected to meet the above
development requirements [16].
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Currently, commercial SPT plants operate with receiver outlet temperatures below
565 ◦C and use the steam Rankine cycle as their power cycle [17]. This cycle yields
a maximum cycle temperature of around 550 ◦C and a thermal efficiency of no more
than 44% [18]. To increase the economic competitiveness of these plants, it is essential
to increase their thermal efficiency by elevating their maximum cycle temperature [19]
and developing a more advanced power cycle [20]. Recent studies have shown that next-
generation SPT plants could achieve maximum cycle temperatures exceeding 700 ◦C [18,21].
Additionally, at a maximum cycle temperature of above 600 ◦C, the supercritical carbon
dioxide (SCO2) Brayton cycle has the potential to outperform the steam Rankine cycle
in terms of thermal efficiency [22,23]. Meanwhile, Chen et al. [24] found that the SCO2
Brayton cycle can produce a larger net work output than the steam Rankine cycle at a
maximum cycle temperature of 620 ◦C, making it more competitive. These two performance
advantages become more significant as the maximum cycle temperature increases [25].
Moreover, the SCO2 cycle’s heater can achieve a temperature difference exceeding 200 ◦C
between its two terminals [26], making it highly compatible with the heat storage unit [27].
Furthermore, employing the SCO2 cycle in an SPT grants several advantages over the
steam Rankine cycle, including greater adaptability to off-design operating conditions [28],
applicability to arid areas using dry-cooling methods [29], and a smaller heat exchanger
and turbomachinery [30]. In summary, the SCO2 Brayton cycle has shown great potential
to integrate with next-generation SPT plants.

In an SPT plant, improving the thermal efficiency, specific work, and compatibility
with the heat storage unit has always been a critical aspect of the SCO2 Brayton cycle.
Consequently, numerous studies have recently been conducted to optimize the performance
of various SCO2 cycle layouts in SPT systems. Many of these studies have advocated for
regenerative and recompression cycles due to their simplicity, compactness, and favorable
cycle performance [31]. For instance, Wang et al. [28] and Guo et al. [32] optimized several
SCO2 Brayton cycle layouts incorporated in the SPT plant and compared the optimization
results. Their results indicated that the recompression cycle could offer relatively high
thermal efficiency with a relatively simple layout, while the regenerative cycle could
provide relatively high specific work and heat storage temperature difference with the
simplest layout. Fahad et al. [33] integrated and optimized five SCO2 Brayton cycles within
an SPT system, comparing their net work outputs and thermal efficiencies at different
time points. Their results indicated that the regenerative and recompression cycles could
achieve the best performance at different time. Similarly, Chen et al. [34] evaluated six
SCO2 Brayton cycles in a next-generation SPT system and optimized each cycle based
on thermal efficiency and specific work under varying temperatures. They concluded
that the recompression and regenerative cycles were the most suitable options for the
next-generation SPT system. Wang et al. [35] further optimized the recompression cycle to
enhance the SPT system’s exergy efficiency. Their findings highlighted the importance of
increasing the system’s operating temperature to improve the recompression and overall
system performance. However, most optimization studies on SCO2 Brayton cycles have
mainly focused on single-objective or dual-objective optimizations, aiming to improve
thermal efficiency, specific work, or compatibility with the heat storage unit. Few studies
have explored the triple-objective optimization of the three critical performance indexes.

In this paper, parameter analysis and the triple-objective optimization of the regener-
ative and recompression cycles are conducted for a next-generation SPT system wherein
a typical maximum cycle temperature of 750 ◦C is considered. Initially, the impacts of
changes in operating pressure, regenerator effectiveness, and the SCO2 split ratio on ther-
mal efficiency, specific work (which denotes the net work output), and the heat storage
temperature difference (which denotes the ability to pair with the heat storage unit) are in-
vestigated. Subsequently, a triple-objective optimization for each SCO2 cycle is conducted,
and the optimization results are compared and discussed. Finally, the relationships between
the optimized variables and the three optimization objectives are further analyzed.
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In a typical next-generation solar power tower plant operating at above 700 ◦C, the
operational processes follow a defined sequence, as illustrated in Figures 1 and 2. Firstly, a
heliostat field is employed to reflect the incident solar radiation to a receiver located at the
top of a central tower. Then, a molten chloride salt [36] that can operate at above 700 ◦C is
used as the heat transfer fluid (HTF) to flow into the receiver, where it undergoes heating,
resulting in a high-temperature state that is denoted as A in Figures 1 and 2. Subsequently,
the high-temperature molten chloride salt at state A bifurcates into two streams. One of
the streams flows into the heater to heat the SCO2 and is subsequently cooled to state B.
The other stream is reserved in the hot tank of the heat storage unit. Eventually, the SCO2
propels the power cycle after undergoing heating in the heater, and the cold HTF at state B
is returned to the receiver or stored in the cold tank of the heat storage unit.

Energies 2023, 16, 5316 3 of 19 
 

 

a heliostat field is employed to reflect the incident solar radiation to a receiver located at 
the top of a central tower. Then, a molten chloride salt [36] that can operate at above 700 
°C is used as the heat transfer fluid (HTF) to flow into the receiver, where it undergoes 
heating, resulting in a high-temperature state that is denoted as A in Figures 1 and 2. Sub-
sequently, the high-temperature molten chloride salt at state A bifurcates into two 
streams. One of the streams flows into the heater to heat the SCO2 and is subsequently 
cooled to state B. The other stream is reserved in the hot tank of the heat storage unit. 
Eventually, the SCO2 propels the power cycle after undergoing heating in the heater, and 
the cold HTF at state B is returned to the receiver or stored in the cold tank of the heat 
storage unit. 

SCO2 1

2 3

4

5

6

T
G

R

MC

IC

H
ea

te
r

A

B
Heliostat field

Receiver

HTF

Hot tank

Cold tank

(a)

Cooler

 

 SCO2

Te
m

pe
ra

tu
re

  T
 (o C

)

Specific entropy s (kJ·kg−1·oC−1)

(b)

6

1

2

35

4

 

Figure 1. (a) Schematic of the next-generation SPT applying the SCO2 regenerative cycle and (b) its 
T-s plot. 
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Figure 2. (a) Schematic of the next-generation SPT applying the SCO2 recompression cycle and (b) 
its T-s plot. 
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illustrated in Figure 1b. During the operation of the SCO2 regenerative cycle, the process 
commences with the heating of SCO2 to its maximum pressure and temperature state, 
denoted as state 1, at the heater outlet. The heated SCO2 then enters the turbine to expand 
and is subsequently discharged when it attains its minimum pressure state, which is re-
ferred to as state 2. The SCO2 then undergoes a regeneration process in the regenerator (R) 
and a cooling process in the dry-cooling inter-cooler (IC) in succession, reaching state 3 
and its minimum-temperature state 4, respectively. Then, in order to transition the SCO2 
from state 4 to the maximum-pressure state 5, the main compressor (MC) is operated. The 
SCO2 then undergoes another regeneration process in the regenerator (R), improving its tem-
perature to state 6. Eventually, the SCO2 returns to the heater to complete a cycle process. 
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The SPT plant utilizing a typical SCO2 regenerative cycle is delineated in Figure 1a,
while the correlation between entropy and temperature (s-T) at each point in this cycle
is illustrated in Figure 1b. During the operation of the SCO2 regenerative cycle, the
process commences with the heating of SCO2 to its maximum pressure and temperature
state, denoted as state 1, at the heater outlet. The heated SCO2 then enters the turbine
to expand and is subsequently discharged when it attains its minimum pressure state,
which is referred to as state 2. The SCO2 then undergoes a regeneration process in the
regenerator (R) and a cooling process in the dry-cooling inter-cooler (IC) in succession,
reaching state 3 and its minimum-temperature state 4, respectively. Then, in order to
transition the SCO2 from state 4 to the maximum-pressure state 5, the main compressor
(MC) is operated. The SCO2 then undergoes another regeneration process in the regenerator
(R), improving its temperature to state 6. Eventually, the SCO2 returns to the heater to
complete a cycle process.

An SPT plant utilizing a typical SCO2 recompression cycle is delineated in Figure 2a
along with an illustration of the correlation between entropy and temperature (s-T) in the
cycle (see Figure 2b). In contrast to the SCO2 regenerative cycle, the SCO2 recompression
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cycle substitutes the regenerator (R) with a high temperature regenerator (HTR) and a low
temperature regenerator (LTR), while also including a re-compressor (RC). The cycle begins
with the SCO2 being heated by the heater and expanding from state 1 to state 2 in the
turbine. Then, the SCO2 at the turbine outlet (state 2) enters the HTR and LTR successively,
ultimately arriving at states 3 and 4, respectively. The SCO2 subsequently splits into two
streams, with stream 4a undergoing a cooling process in the dry-cooling inter-cooler (IC)
to achieve the minimum temperature state 5 and stream 4b progressing directly to reach
the maximum pressure state 8 via the compression process in the re-compressor (RC).
Following this, the SCO2 at the minimum pressure state 5 reaches the maximum-pressure
state 6, and state 7, through the main compressor (MC)’s compression process and the
LTR’s regeneration process, respectively. Finally, the two streams at states 7 and 8 converge
and participate in the HTR’s regeneration process, ultimately arriving at state 10.

2. Methods

In this section, an optimization model combining a steady-state thermodynamic model
and a multi-objective genetic algorithm is developed for the SCO2 Brayton cycle. This
model can not only predict the cycle performance reliably but also optimize the cycle
by considering three critical performance indexes as its objectives. The details of the
thermodynamic model and the multi-objective genetic algorithm are provided as follows.

2.1. Thermodynamic Simulation Model

As the main objective of this work is to examine and improve the performance of
the two studied SCO2 Brayton cycles, for the sake of simplicity, precise simulations of
the heliostat field, receiver, and heat storage unit were ignored in our simulation. How-
ever, comprehensive steady-state thermodynamic simulation models were meticulously
constructed to assess the performance of the two cycles. During the simulation, the thermo-
dynamic variables related to SCO2 at different temperatures and pressures were obtained by
using REFPROP [37]. In addition, the following plausible assumptions were implemented
to streamline the simulation procedures:

(1) The cycles always maintained stable operation [38].
(2) The potential energy and kinetic energy of each cycle was maintained unaltered [39].
(3) Heat dissipations and pressure reductions in the cycle were insignificant [40].
(4) The effectiveness model was suitable while modeling the regenerator [41].
(5) The cycle performance was not influenced by the mass flow rate of SCO2 [42].

The fundamental settings utilized in the thermodynamic simulation of the two SCO2
cycles are presented in Table 1, while Section 3.1.1 outlines the elaborate simulation proce-
dures for both cycles.

Table 1. Fundamental settings utilized in the thermodynamic simulation.

Parameters Values

Ambient pressure, p0 101.325 kPa
Ambient temperature, T0 15 ◦C [19]
HTF high temperature, TA 760 ◦C [43,44]
Maximum cycle temperature, T1 750 ◦C
Turbine isentropic efficiency, ηT 93% [45]
Cycle minimum temperature, t4 for
regenerative cycle, t5 for recompression cycle 35 ◦C [19]

Compressor isentropic efficiency, ηMC, ηRC 89% [35]
Mass flow rate of the SCO2, mSCO2 1 kg·s−1 [42]

2.1.1. Modeling of the Two SCO2 Brayton Cycles

After assuming the operating conditions and the fundamental settings of the two
SCO2 cycles, the detailed modeling processes for the cycles are introduced as follows.
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For the SCO2 regenerative cycle, the work contributed by the expansion of the SCO2
in the turbine (WT) is firstly determined using Equation (1). Next, the work spent by the
compression process of the main compressor (WMC) is expressed by Equation (2). Hence,
the net work output (Wnet) generated by the SCO2 regenerative cycle thus allows for being
determined via Equation (3).

WT = mSCO2 · (h1 − h2) = mSCO2 · (h1 − h2S) · ηT (1)

WMC = mSCO2 · (h5 − h4) = mSCO2 · (h5S − h4)/ηMC (2)

Wnet = WT − WMC (3)

Here, hi indicates the SCO2’s specific enthalpy at each state i; the subscript “s” repre-
sents the SCO2 under ideal conditions.

For the regenerator, the definition equations of its effectiveness, Equations (4) and
(5) [35,41], are utilized to derive the thermodynamic variables of the SCO2 at its outlets and
inlets. In this way, h6 is derived, and the heat obtained by the SCO2 from the heater (Q) is
then determined using Equation (6).

εR =

{
(h2 − h3)/

(
h2 − hp3,T5

)
when T2 − T3 ≥ T6 − T5

(h6 − h5)/
(
hp6,T2 − h5

)
when T2 − T3 < T6 − T5

(4)

h6 − h5 = h2 − h3 (5)

Q = mSCO2 · (h1 − h6) (6)

Here, hp3,T5 is the specific enthalpy predicted by selecting the pressure of SCO2 at
state 3 and the temperature of SCO2 at state 5; hp6,T2 is the specific enthalpy predicted by
selecting the pressure of SCO2 at state 6 and the temperature of SCO2 at state 2.

For calculating the minimum temperature of the HTF (TB), as indicated in Equation (7),
it is reasonable to assume that the entropy generations at the heater’s two terminals are
equivalent [46]. As a result, Equation (8) can be derived to determine the minimum HTF
temperature (TB) at the heater outlet.

∆Q/T1 − ∆Q/TA = ∆Q/T6 − ∆Q/TB (7)

TB =
T1 · T6 · TA

T1 · TA − T6 · (TA − T1)
(8)

Here, TA represents the maximum HTF temperature of the heater; ∆Q represents the
heat power that is exchanged by the fluids between the two sides of the heater.

The procedures employed to simulate the SCO2 recompression cycle bear similarities
to those employed in the SCO2 regenerative cycle. This similarity is supported by the
presence of energy equilibrium equations, as shown in Table 2. For the sake of brevity,
detailed explanations of these equations have been omitted.
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Table 2. Energy equilibrium equations for the SCO2 recompression cycle.

Process or Component Energy Equilibrium Equations

Turbine WT = mSCO2 ·(h1 − h2) = mSCO2 ·(h1 − h2S)·ηT
Main compressor WMC = SR·mSCO2 ·(h6 − h5) = SR·mSCO2 ·(h6S − h5)/ηMC
Re-compressor WRC = (1 − SR)·mSCO2 ·(h8 − h4) = (1 − SR)·mSCO2 ·(h8S − h4)/ηRC

LTR
ELTR= (h3 − h4)/(h3 − hp4,T6) when T3 − T4 ≥ T7 − T6
ELTR = (h7 − h6)/(hp7, T3 − h6) when T3 − T4 < T7 − T6
h3 − h4 = SR·(h7 − h6)

HTR
EHTR= (h2 − h3)/(h2 − hp3,T9) when T2 − T3 ≥ T10 − Tt9
EHTR = (h10 − h9)/(hp10,T2 − h9) when T2 − T3 < T10 − T09
h2 − h3 = h10 − h9

SCO2 merging h9 =SR·h7 + (1 − SR)·h8

Heater Q =mSCO2 ·(h1 − h10)
TB = (T1·T10·TA)/[T1·TA − T10·(TA − T1)]

Net work Wnet = WT − WMC − WRC

2.1.2. Model Validation

To validate the present model, an SCO2 recompression cycle previously studied by
Turchi et al. [47] is simulated using the present model. The specific input variables in
Table 3 and other simulation settings are left unchanged from those of Turchi et al. [47]. As
seen in Figure 3, the discrepancies between the present thermal efficiency data and Turchi
et al.’s data [47] are all in the range of −1.81 to 0.15 percentages, with a small standard
deviation of only 0.486 percentages for the absolute values of these discrepancies. Due to
the good consistency between the present results and those of Turchi et al. [47], the present
model can be considered trustworthy.

Table 3. Input variables for the validation [47].

Variables of SCO2 Recompression Cycle Values

Minimum cycle temperature, T5 32 ◦C
Minimum cycle pressure, pmin 7.38 MPa
Maximum cycle pressure, pmax 25 MPa
Effectiveness of the SCO2 LTR, εLTR 95%
Effectiveness of the SCO2 HTR, εHTR 95%
Efficiency of the SCO2 turbine, ηT 93%
Efficiency of the SCO2 compressor, ηMC, ηRC 89%
SCO2 split ratio, SR optimized
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2.2. Cycle Performance Indexes

The thermodynamic performance of the two SCO2 cycles for the next-generation SPT
plant can be evaluated by considering three parameters as essential performance indexes.

Firstly, it is important to acknowledge that a larger heat storage temperature difference
(∆T) between the two heat storage tanks can significantly improve each cycle’s compatibility
with the heat storage unit, thus playing a crucial role in the plant’s efficient operation [48,49].
Therefore, ∆T is selected as a critical performance index, as expressed in Equation (9).

∆T = TA − TB (9)

Here, TA is the HTF temperature in the hot tank or at the heater inlet/◦C; TB is the HTF
temperature in the cold tank or at the heater outlet/◦C.

Secondly, the specific work (w) and thermal efficiency (ηth) of an SCO2 Brayton cycle
are crucial factors in reducing the sizes of the cycle equipment and the heliostat field,
respectively. ηth is defined as the ratio between the net power produced by the cycle (Wnet)
and the heat power absorbed by the cycle (Q). w represents the output power that can
be generated by one kilogram working fluid. Therefore, improving these parameters can
contribute to lowering the overall capital cost of the cycle.

2.3. Optimization Approach

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is a multi-objective
optimization algorithm developed by Kalyanmoy Deb in 2002 [50].

NSGA-II operates through iterative improvements of a population of individuals
across multiple generations. Each generation begins with non-dominated sorting being
performed by NSGA-II to partition the individuals into different fronts based on their
non-dominance levels. Subsequently, NSGA-II assigns a fitness value to each individual,
taking into account both their front assignment and crowding distance. To generate new
offspring solutions from the existing population, NSGA-II employs genetic operators such
as crossovers and mutations. These offspring solutions are then evaluated and added to
the population considering their non-dominances and crowding distances. This iterative
process continues for multiple generations until NSGA-II converges to a set of solutions
that are non-dominated, representing an optimal trade-off among conflicting objectives.

Due to its proven capability to optimize several conflicting objectives simultaneously,
NSGA-II has been widely used in solving various real-world optimization problems [51,52].
In the current optimization, NSGA-II has also been chosen to optimize the SCO2 cycles
for next-generation SPT plants. The variables selected for optimization are the operating
pressures (pmax, pmin), SCO2 split ratio (SR), and effectiveness of the regenerators (εR, εHTR,
εLTR). The optimization ranges for these variables are provided in Table 4. The optimization
objectives include the specific work (w), the heat storage temperature difference (∆T), and
the thermal efficiency (ηth).

Table 4. Variable optimization ranges settings.

Variable pmax pmin εR εHTR εLTR SR

Range 15~30 MPa 7.4~10
MPa 0.75~0.95 0.75~0.95 0.75~0.95 0.3~1

To begin the optimization process, a first-generation population of 200 individuals
is created. Each individual’s phenotype represents the three optimization objectives. The
genes in the ith individual’s chromosome (Xi) determine its phenotypes and represent the
variables to be optimized, which can be expressed using Equation (10).

Xi =

{
(pmax, pmin, εR) for SCO2 regenerative cycle
(pmax, pmin, εHTR, εLTR, SR) for SCO2 recompression cycle

(10)
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Here, i = 1, 2, . . . , 200.
The optimization process involves the utilization of genetic operators such as selection,

crossover, and mutation, as well as techniques like fast non-dominant sorting, elite strategy,
and crowding distance. These approaches are implemented to enhance the efficiency and
effectiveness of the optimization process. Following 300 generations of evolution, the
population converges into the final optimized population, where each individual exhibits
optimized phenotypes including optimized ∆Ti, wi, and ηth,i.

3. Results and Discussion

In this section, firstly, a variable analysis will be employed to investigate the impacts
of operating pressure, regenerator effectiveness, and SCO2 split ratio on thermal efficiency,
specific work, and heat storage temperature difference. Subsequently, a triple-objective
optimization for each SCO2 cycle will be conducted, and the optimization results will be
compared and discussed. Finally, the relationships between the optimized variables and
the three optimization objectives will be further analyzed.

3.1. Variable Analysis

This section investigates the influences of key variables on the cycle performance
of the relevant SCO2 Brayton cycles. The variables of interest include the maximum
and minimum pressures (pmax, pmin), SCO2 split ratio (SR), and the effectiveness of all
regenerators (εR, εHTR, εLTR). To fully comprehend the impacts of these variables on the
cycle performance, it is imperative to examine the change in each performance index as each
variable is raised. During the variable analysis, while one variable is being raised, the other
variables maintain constant values, as indicated in Table 5. By comprehensively analyzing
the influences of each variable, a deeper understanding of their individual contributions to
the cycle performance can be attained.

Table 5. Settings of input variables for variable analysis.

Variables Settings

Maximum pressure, pmax 25 MPa
Minimum pressures, pmin 7.4 MPa
Regenerator effectiveness, εR 0.95
HTR effectiveness, εHTR 0.95
LTR effectiveness, εLTR 0.95
SCO2 split ratio, SR 0.7

3.1.1. Influences of the Maximum Cycle Pressure

Firstly, the impacts of the maximum pressure (pmax) on the specific work (w), heat
storage temperature difference (∆T) and thermal efficiency (ηth) of each of the two SCO2
cycles are analyzed. The results are displayed in Figure 4, where pmax = 14~30 MPa.

With the rise of pmax, Figure 4 reveals, specific work (w) increases monotonically
for both cycles. The reason for this is that the work output by the turbine and the work
consumed by the compressor are both increased. However, since the work output increases
more rapidly than the work consumed, the cycle net work (Wnet) and the specific work (w)
keep increasing. Secondly, ∆T also increases monotonically for both cycles as the SCO2
temperatures at the regenerator’s hot terminal (t2 and t6 in Figure 1; t2 and t10 in Figure 2)
decrease with a rising pmax. Furthermore, the change trend of the heat obtained by the
SCO2 from the heater (Q) is always consistent with that of the ∆T. Figure 4 illustrates that
the regenerative cycle’s ηth rises with a rising pmax since the improvement in cycle net
work (Wnet) outpaces that of the heat obtained by the SCO2 from the heater (Q) in the
regenerative cycle, resulting in an increasing trend for ηth. However, the recompression
cycle’s ηth initially rises, achieving its highest value of 52.61% when pmax reaches around
22 MPa, and then monotonously decreases. This is due to the fact that when pmax is within
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14~22 MPa, the increment in cycle net work (Wnet) outpaces that of the heat obtained by
the SCO2 from the heater (Q), while the situation reverses after pmax exceeds 22 MPa.
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By comparing the performance of the two cycles in Figure 4, it can be found that the
regenerative cycle generates larger specific work (w) and a wider heat storage temperature
difference (∆T) than the recompression cycle. Additionally, it achieves its maximum ∆T
and w of 289.3 ◦C and 171.6 kW·kg−1, respectively, at a pmax of 30 MPa. Meanwhile, the
recompression cycle is able to generate a higher thermal efficiency (ηth).

3.1.2. Influences of the Minimum Cycle Pressure

The impacts of the minimum cycle pressure (pmin) on the specific work (w), the thermal
efficiency (ηth), and the heat storage temperature difference (∆T) performed by each of the
two SCO2 cycles are displayed in Figure 5, where pmin = 7.4~10 MPa.
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Firstly, the rise in pmin results in increases in the specific work (w) for both cycles at
the initial stage. When pmin reaches the pseudo-critical pressure of 8.2 MPa [53,54], the
two cycles reach their maximum w values. For the recompression cycle, its maximum w is
146.3 kW·kg−1, and the corresponding value is 159.9 kW·kg−1 for the regenerative cycle.
Moreover, when pmin exceeds 8.2 MPa, the w values of both cycles decrease monotonically.

Secondly, Figure 5 indicates that the two cycles’ ∆T values marginally improve as pmin
rises from 7.4 MPa to 8.2 MPa and that these values attain their maxima (of 213.4 ◦C for
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the recompression cycle and 283.4 ◦C for the regenerative cycle) at 8.2 MPa. When pmin
exceeds 8.2 MPa, the ∆T values of both cycles begin to monotonously decline. In general,
an increase in pmin leads to a rise in the turbine outlet temperature (T2 in Figures 1 and 2)
and an increase in the SCO2 temperature at the outlet of the regenerator (T6 in Figure 1 and
T10 in Figure 2), resulting in a monotonic decrease in ∆T. However, when pmin is below
8.2 MPa, the high-pressure SCO2 temperature at the regenerator’s outlet decreases slightly
with the rising pmin. Hence, it is not surprising that the ∆T values of both cycles increase
slightly within this pmin range.

Lastly, as illustrated in Figure 5, an increase in pmin initially results in an improvement
in the ηth of the recompression cycle. Subsequently, the ηth remains almost constant at its
maximum value of 55.1% within the pmin range of 8 MPa to 9 MPa. When pmin exceeds
9 MPa, the ηth starts to decrease. In contrast, the ηth of the regenerative cycle first declines
to its minimum value of 44.69% at the pmin of 9.2 MPa and then starts to rise slightly.

3.1.3. Influences of the Regenerator Effectiveness

The impacts of the effectiveness of the regenerators on the thermal efficiency (ηth), the
specific work (w), and the heat storage temperature difference (∆T) performed by the two
SCO2 cycles are displayed in Figure 6. To simplify the analysis, the effectiveness of the
LTR and HTR in the recompression cycle (εLTR, εHTR) are always equal to the regenerator
effectiveness (εR), and εR is in the range of 0.75~0.95.
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Firstly, there is no doubt that the w of the regenerative cycle is not changed by an
increasing εR. This is because changing εR will not affect the work output by the turbine
and the work consumed by the compressor. However, the SCO2 temperature at the re-
compressor inlet (T4b in Figure 2) is decreased with an increasing εR, resulting in a decrease
in the re-compressor’s work consumption. Therefore, for the recompression cycle, its w
increases slightly with an increasing εR.

Secondly, as depicted in Figure 6, the heat storage temperature differences (∆T) of
both cycles narrow with an increasing εR. This is because an increase in εR raises the high-
pressure SCO2 temperature at the regenerator outlet (T6 in Figure 1 and t10 in Figure 2),
resulting in an increase in the temperature of the heat transfer fluid at the heater outlet (TB).
Moreover, the regenerative cycle exhibits a maximum ∆T of 352.3 ◦C when the εR value
is 0.75.

Finally, the analysis reveals that the net work (Wnet) values of both cycles remain al-
most unchanged while the amount of heat transferred to the SCO2 from the heater (Q) grad-
ually decreases. Consequently, the thermal efficiencies (ηth) of both cycles monotonously
increase. Additionally, compared to the regenerative cycle, the recompression cycle demon-
strates a higher ηth, with a maximum ηth of 52.42% achieved at an εR of 0.95.
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3.1.4. Influences of the SCO2 Split Ratio

The impacts of the split ratio (SR) of the SCO2 on the heat storage temperature differ-
ence (∆T), the thermal efficiency (ηth), and the specific work (w) of the SCO2 recompression
cycle are illustrated in Figure 7, where SR ranges from 0.3 to 1.0.
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As demonstrated in Figure 7, an increase in SR yields improvements in both w and
∆T in the recompression cycle. This is due to the reduction in SCO2 compressed by the
re-compressor with an increasing SR, allowing the main compressor to compress more
SCO2 at a lower temperature. As a result, the compression work consumed by the recom-
pression cycle is decreased, thereby increasing its net work (Wnet) and w. Furthermore, a
greater amount of SCO2 flows back to the LTR with an increasing SR, decreasing the outlet
temperatures of LTR and HTR (T7 and T10), ultimately reducing TB. Simultaneously, an
increase in SR first leads to an increase in ηth, which reaches its maximum value of 53.82%
at SR = 0.75, and is then followed by a gradual decrease.

Based on the results presented in Figures 4–6, it is evident that the regenerative cycle
outperforms the recompression cycle in terms of specific work (w). This is due to the fact
that the expansion processes of the two SCO2 cycles produce comparable power (WT). In
the simple regenerative cycle, all SCO2 enters the main compressor and is compressed
at the lowest temperature. In contrast, a portion of SCO2 in the recompression cycle
(state 4b in Figure 2) is compressed at a higher temperature by the re-compressor (RC),
requiring additional compression work. Consequently, the recompression cycle consumes
more compression work, resulting in lower Wnet and w. Nonetheless, the recompression
cycle improves the temperature of high-pressure SCO2 at the outlet of each regenerator by
splitting SCO2, thereby achieving lower ∆T and Q. Although the Q and the Wnet of the
recompression cycle are lower than those of the regenerative cycle, the effect of Q reduction
is greater, resulting in higher ηth than in the regenerative cycle.

3.2. Results of the Triple-Objective Optimization

The preceding analysis of variables demonstrates the intricate effects of the operat-
ing pressures (pmax, pmin) of the SCO2 Brayton cycle, the SCO2 split ratio (SR), and the
effectiveness of all regenerators (εR, εHTR, εLTR) on the specific work (w), the heat storage
temperature difference (∆T), and the thermal efficiency (ηth) of each of the two SCO2 cycles.
On one hand, when any of these variables change, the resulting trends in the three perfor-
mance indicators vary. On the other hand, the trends of individual performance indicators
are not always monotonic. In other words, a specific combination of these variables cannot
maximize all performance indicators simultaneously. To reach a compromise among the
different performance indicators, a triple-objective optimization approach is employed.
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3.2.1. Pareto Solutions for the Two SCO2 Brayton Cycles

Triple-objective optimization is performed for the two SCO2 cycles in accordance with
the optimization approach described in Section 2.3. The essential operational variables
are outlined in Table 1, while the variables subject to optimization are provided in Table 4.
During the optimization of each cycle, each cycle underwent three optimization runs,
resulting in three Pareto solutions. The Pareto solution that demonstrated the highest
overall performance was chosen to represent the optimization outcomes for each cycle.
Figure 8 illustrates the final Pareto solutions for the two cycles in a spatial coordinate
system consisting of “ηth, ∆T and w”. To facilitate a comparison between the two cycles,
their Pareto solutions were plotted on separate plane coordinate systems, which have been
presented in Figures 9 and 10.
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Figure 9 depicts the mapping of all points in Figure 8 onto the “w and ηth” coordinate
system. The results reveal that the recompression cycle cannot improve both w and ηth
simultaneously. Specifically, a decrease in ηth cannot always lead to a larger w, and when w
is lower than 180 kW·kg−1, an improvement in w will result in a deterioration in ηth. At
point A, the recompression cycle achieves its maximum ηth of 55.95%, which is 8.76% higher
than the maximum ηth of the regenerative cycle. Additionally, for the regenerative cycle,
an increase in ηth does not affect its w within the range of the entire optimization results,
and its w values are consistently higher than those of the recompression cycle. At point B,
the two optimization objectives of the regenerative cycle are maximized simultaneously
(ηth = 47.19%, w = 180.6 kW·kg−1).

Figure 10 illustrates the mapping of all points in Figure 8 onto the “∆T and ηth”
coordinate system. The results reveal that the ηth values of the two cycles exhibit a con-
flicting relationship with their ∆T values and that both objectives cannot be maximized
concurrently. Specifically, the optimized recompression cycle achieves higher ηth, while
the regenerative cycle obtains higher ∆T. By dividing Figure 10 into three areas, a detailed
analysis of the results can be conducted. In area I, only the recompression cycle can achieve
an ηth higher than 47.19% and a ∆T narrower than 305.4 ◦C, it and achieves the maximum
ηth value of 55.95% and the minimum ∆T value of 232.2 ◦C at point A. In area II, where
ηth is between 43.92% and 47.19%, the optimized ∆T values for both cycles are between
305.4 ◦C and 327.3 ◦C, and the two cycles exhibit similar optimization performance. In area
III, only the regenerative cycle can provide a ∆T wider than 327.3 ◦C and an ηth lower than
43.92% and reach the maximum ∆T value of 396.4 ◦C and the minimum ηth value of 36.34%
at point C.

3.2.2. Optimizing the Relations between Variables and Objectives

To further analyze the relationships between the optimized variables and the three op-
timization objectives (ηth, w, and ∆T) of each cycle, Figures 11–14 display the distributions
of the six optimized variables relating to the Pareto solution of each cycle.
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Figure 11. The distributions of the optimized pressures corresponding to the Pareto solutions of the 
two cycles. (a) Maximum pressure (pmax); (b) Minimum pressure (pmin). 
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Figure 12. The distributions of the optimized regenerator effectiveness values of the recompression 
cycle. (a) HTR effectiveness (εHTR); (b) LTR effectiveness (εLTR). 
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Figure 13. The distribution of the optimized regenerator effectiveness (εR) of the regenerative cycle. 

Figure 11. The distributions of the optimized pressures corresponding to the Pareto solutions of the
two cycles. (a) Maximum pressure (pmax); (b) Minimum pressure (pmin).
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Figure 11. The distributions of the optimized pressures corresponding to the Pareto solutions of the 
two cycles. (a) Maximum pressure (pmax); (b) Minimum pressure (pmin). 
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Figure 13. The distribution of the optimized regenerator effectiveness (εR) of the regenerative cycle. 
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Figure 11. The distributions of the optimized pressures corresponding to the Pareto solutions of the 
two cycles. (a) Maximum pressure (pmax); (b) Minimum pressure (pmin). 
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Figure 14. The distribution of the optimized SCO2 split ratio (SR) of the recompression cycle. 
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changed. Meanwhile, the ηth could be further decreased from 50.07% to its minimum value 

Figure 14. The distribution of the optimized SCO2 split ratio (SR) of the recompression cycle.

Figure 11 shows the distributions of the optimized cycle pressures (pmax and pmin)
corresponding to the Pareto solutions. It is obvious from Figure 11a,b that the optimized
pmax values of the regenerative cycle and the recompression cycle are fixed at around
29.96 MPa and 29.9 MPa, respectively, while their optimized pmin values are fixed at
8.20 MPa and 8.23 MPa, respectively. Therefore, the pmax and the pmin of each cycle should
be close to these fixed values regardless of any requirements for the cycle’s performance.

Figure 12 shows the distributions of the optimized regenerator effectiveness (εHTR and
εLTR) corresponding to the recompression cycle’s Pareto solution. Figure 12a,b show that the
influence of the varying optimized εHTR on each optimization objective is similar to that of
the varying optimized εLTR, and their distributions both cover the entire optimization range.

Firstly, when the optimized εHTR and εLTR are lower than the upper bounds of their
optimization ranges (0.95), the w of the recompression cycle remains at its maximum value
of about 180 kW·kg−1, and the ηth generally increases with the optimized εHTR and εLTR
while the ∆T has an opposite variation. Secondly, when the optimized εHTR and εLTR almost
reach their upper bounds of 0.95, the three optimization objectives also change within a
certain range. In this case, the ηth can be increased from 50.55% to its maximum value
of 55.95%, and the ∆T and the w can be decreased from 284.4 ◦C and 180 kW·kg−1 to
their minimum values of 232.2 ◦C and 163.1 kW·kg−1, respectively. Therefore, under the
optimized operating condition, the εHTR and the εLTR of the recompression cycle should
reach their upper bounds of 0.95 when the ηth is required to be as high as possible, which
may also lead to the reduction of the w. On the contrary, the εHTR and εLTR should reach
their lower bounds of 0.75 when the ∆T is required to be as high as possible.

Figure 13 displays the distribution of the optimized regenerator effectiveness (εR)
corresponding to the regenerative cycle’s Pareto solution. Figure 13 demonstrates that the
range of optimized εR and its influences on the three optimization objectives align with
those observed for εHTR and εLTR in Figure 12. The notable distinction lies in the fact that
the three optimization objectives remain unchanged when the optimized ER approaches its
upper bound of 0.95.

Figure 14 depicts the distribution of the optimized SCO2 split ratio (SR) corresponding
to the recompression cycle’s Pareto solution. Figure 14 clearly demonstrates that the
distribution of the optimized SR is concentrated in the range of 0.7–1.0, and the variation
of the optimized SR within this range has a significant impact on the three optimization
objectives. Firstly, when the optimized SR is lower than the upper bound of its optimization
range, the ηth generally decreases with the increase of the optimized SR while the ∆T and
the w have opposite variations. Secondly, when the optimized SR almost reaches its upper
bound of 1.0, the w reaches its maximum value of 180 kW·kg−1 and remains unchanged.
Meanwhile, the ηth could be further decreased from 50.07% to its minimum value of 43.92%,
and the ∆T could be further increased from 287.3 ◦C to its maximum value of 327.3 ◦C. It
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can be found that when SR reaches 1.0, the recompression cycle can produce almost the
same maximum w as the regenerative cycle.

4. Conclusions

In this work, an optimization model combining a steady-state thermodynamic model
and a multi-objective genetic algorithm has been developed for SCO2 Brayton cycles. Com-
pared with existing models, the present optimization model not only can predict the cycle
performance reliably but also can optimize the cycle by considering three critical perfor-
mance indexes, including the thermal efficiency, the specific work, and the heat storage
temperature difference, as the objectives. Based on this model, the SCO2 regenerative cycle
and the SCO2 recompression cycle for a next-generation SPT system have been studied and
optimized, and the following conclusions can be obtained.

(1) Variable analysis reveals that the minimum and maximum cycle pressures, the SCO2
split ratio, and the effectiveness of the regenerators have complex influences on
the three performance indexes—thermal efficiency (ηth), specific work (w), and heat
storage temperature difference (∆T). The variation trends of the three performance
indexes are different and not always monotonous. A set of certain values of the above
variables cannot make the three performance indexes reach their maximum values at
the same time.

(2) By comparing the two Pareto solutions obtained by the triple-objective optimization,
the variation relationships among the three performance indexes are obtained. It is
found that the ηth of the recompression cycle exhibits a conflicting relationship with
its ∆T and w. Meanwhile, there is also a conflicting relationship between ηth and ∆T
in the regenerative cycle, while the changes between ηth and w do not affect each
other. For the three performance indexes, the recompression cycle can produce a
higher optimal ηth, while the regenerative cycle can produce a wider optimal ∆T and
larger optimal w. Meanwhile, the recompression cycle could obtain the highest ηth of
55.95%, while the widest ∆T and the largest w of 396.4 ◦C and 180.6 kW·kg−1 can be
obtained by the regenerative cycle, respectively.

(3) When analyzing the distributions of the six optimized variables, it is found that the
minimum and maximum cycle pressures in the two cycles have their fixed optimized
values. Meanwhile, the solution of the regenerator effectiveness covers the entire
optimization range, and the solution of the optimized SCO2 split ratio is concentrated
in the range of 0.7–1.0. Moreover, the largest optimal w generated by the two cycles is
almost the same when the optimized SCO2 split ratio is close to 1.0.

(4) In realistic applications, different SCO2 cycles and corresponding optimized variables
could be considered when running the SCO2 cycles with different specific performance
demands. If the ηth is required to be as high as possible, the recompression cycle
should be adopted, and its regenerator effectiveness should be increased, while
the split ratio should be reduced. If the requirement for the ∆T or the w need to
be considered as the key index, the regenerative cycle should be applied, and the
optimized regenerator effectiveness should be reduced.

The developed model only can investigate the performance of SCO2 cycles under
steady state. Future work can focus on establishing a dynamic model that considers the
whole SPT system including the heliostat field, the solar receiver, the thermal storage, and
the SCO2 cycle.
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Notations

HTR high temperature regenerator SR split ratio of SCO2
HTF heat transfer fluid s specific entropy/kJ·kg−1 ◦C−1

IC intercooler Tmin temperature at the main
compressor inlet/◦C

LTR low temperature regenerator TA HTF temperature in the hot tank or
at the heater inlet/◦C

MC main compressor TB HTF temperature in the cold tank
or at the heater outlet/◦C

RC re-compressor T0 ambient temperature/◦C
SPT solar power tower T1 maximum temperature in

the cycle/◦C
SCO2 supercritical carbon dioxide w SCO2 specific work/kW·kg−1

A point with the maximum cycle WMC power consumption of the
thermal efficiency main compressor/kW

B point with the largest SCO2 WRC power consumption of the
specific work re-compressor/kW

C point with the widest heat Wnet net work of the cycle/kW
storage temperature difference

h specific enthalpy/kJ·kg−1 WT power generated in the turbine/kW
i sequence number Xi chromosome of the ith individual
mSCO2 mass flow rate of SCO2/kg·s−1 ∆T heat storage temperature

difference/ ◦C
pmax maximum cycle pressure/MPa ηth thermal efficiency of the cycle/%
pmin minimum cycle pressure/MPa ηMC, ηRC isentropic efficiency of the

compressor/%
p0 ambient pressure/MPa ηT isentropic efficiency of the turbine/%
Q heat obtained from the heater/kW εR, εHTR , εLTR effectiveness of the regenerator
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