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Abstract: Machine learning-based time-series forecasting has recently been intensively studied. Deep
learning (DL), specifically deep neural networks (DNN) and long short-term memory (LSTM), are the
popular approaches for this purpose. However, these methods have several problems. First, DNN
needs a lot of data to avoid over-fitting. Without sufficient data, the model cannot be generalized so
it may not be good for unseen data. Second, impaired data affect forecasting accuracy. In general, one
trains a model assuming that normal data enters the input. However, when anomalous data enters
the input, the forecasting accuracy of the model may decrease substantially, which emphasizes the
importance of data integrity. This paper focuses on these two problems. In time-series forecasting,
especially for photovoltaic (PV) forecasting, data from solar power plants are not sufficient. As solar
panels are newly installed, a sufficiently long period of data cannot be obtained. We also find
that many solar power plants may contain a substantial amount of anomalous data, e.g., 30%. In
this regard, we propose a data preprocessing technique leveraging convolutional autoencoder and
principal component analysis (PCA) to use insufficient data with a high rate of anomaly. We compare
the performance of the PV forecasting model after applying the proposed anomaly detection in
constructing a virtual power plant (VPP). Extensive experiments with 2517 PV sites in the Republic
of Korea, which are used for VPP construction, confirm that the proposed technique can filter out
anomaly PV sites with very high accuracy, e.g., 99%, which in turn contributes to reducing the
forecasting error by 23%.

Keywords: convolutional autoencoder; anomaly detection; PV forecasting

1. Introduction

Recently, carbon neutrality has become crucial to prevent climate change. Carbon
neutrality is a concept that reduces greenhouse gas (GHG) emissions from human activities
with the goal of net emission zero. To realize carbon neutrality, renewable generation
should increase up to 71% by 2050 to reform the energy system [1,2]. The transition to
a sustainable energy system is a pressing challenge, and renewable energy sources such
as solar power are critical to achieving this goal. In this regard, the Republic of Korea’s
government has also announced a commitment to carbon neutrality by 2050, given that the
Republic of Korea’s greenhouse gas emissions are the seventh highest in the world [3].

Solar energy has the potential to provide a reliable, sustainable, and cost-effective
source of electricity, particularly in regions with high levels of solar radiation. However,
the integration of large amounts of solar energy into the grid presents technical challenges,
including the need for accurate forecasting of solar power generation. Many papers have
recently discussed the challenges and opportunities associated with its implementation.
For example, In [4], the authors discussed the importance of solar energy technology in
promoting sustainable development, arguing that it has the potential to reduce green-
house gas emissions and increase access to energy in developing countries. In [5], the
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authors provided a comprehensive review of the literature on renewable energy and its
role in promoting sustainable development. Specifically, the authors examined various
aspects of renewable energy (including solar power generation) such as technology, policy,
and finance.

The main factors that affect solar power forecasts are daily weather conditions and
seasonal insolation [6]. In an early study, a physical model that considers the relationship be-
tween insolation and solar power generation among the above factors was studied first [7],
which approximates the insolation with a model that calculates power generation through
the rotation of the earth and the equivalent circuit of the PV cell. Since then, statistical
prediction models using traditional forecasting techniques such as autoregressive moving
average (ARMA) [8] and multiple linear regression (MLR) [9], have been proposed [10].
However, traditional solar forecasting through such modeling lacks adaptability to weather
changes, and it is difficult to accurately predict how much solar power will be generated
under different weather conditions.

Since then, there has been a need for an artificial intelligence (AI)-based PV fore-
casting model that can handle data uncertainty. Recently, machine learning and artificial
intelligence techniques have shown great promise in improving the accuracy of PV fore-
casting. In one paper, ref. [11] proposed a method for estimating global solar radiation
using meteorological variables, including sunshine duration. This method is popular as a
benchmark for solar radiation estimation. In [12], the authors reviewed the state-of-the-art
in solar radiation modeling, including physical models and empirical models. In [13], the
authors investigated the impact of feature selection methods on solar power forecasting
performance.

In early studies applying deep learning, multi-layer perceptron (MLP)-based models
were the most commonly used for solar power generation forecasting. For example, in [14],
an MLP was used to forecast solar power generation in Zimbabwe. Similarly, in [15], an
MLP was used to forecast solar power generation in Malaysia, using historical weather
data and solar radiation measurements as inputs to the artificial neural network (ANN)
model. Later studies started to explore the use of more advanced models, such as recurrent
neural network (RNN) [16] and LSTM [17]. In [18], an RNN was used to forecast solar
power generation. The space–time convolutional neural network (STCNN), which exploits
the location information of multiple PV sites and historical PV generation data, is used
in [19]. In [20], a PV forecasting model was based on wavelet transform and LSTM-dropout
network. Very recently, studies have focused on more advanced models such as attention-
based models, graph neural network (GNN) [21], and transformer-based models [22]. By
leveraging a transformer encoder and gated recurrent unit (GRU), a framework based on
Delaunay triangulation and TransGRU model forecasts PV with robustness against weather
forecast error [23]. In [24], leveraging deep reinforcement learning using proximal policy
optimization [25], error compensable forecasting is adopted, which switches the objective
of forecasting from reducing errors to making compensable errors.

Although the above studies show improved solar power forecasting performance, they
assume data without abnormal points. However, the reliability of collected solar power
generation data directly affects the performance and reliability of the learning model. That
is, when anomalous data enters the input, the accuracy of deep learning-based forecasting
models can substantially deteriorate. Therefore, it is necessary to include anomaly detection
as a preprocessing stage in PV power forecasting. Note that anomaly detection studies in
solar power forecasting mainly focused on cyberattacks or false detection. They detected
the data points with false data injection to prevent the power systems from malicious
attackers. However, even without false data injection, anomalous data points can exist.
In [26], the authors designed a fault classifier based on thermal image processing using
a support vector machine (SVM) by performing anomaly detection at the physical level.
In [27], the authors proposed an unsupervised monitoring system at the physical level
by inspecting the DC part of the PV system through momentary shading based on SVM.
In [28], the authors learned by replacing anomalies with predicted values. At each time
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step, the authors performed simple anomaly detection and then replaced it with DL-based
predicted values to compare the prediction performance. By analyzing the performance
of the machine learning models, in [6], the authors identified the best model that can
accurately detect anomalies in PV systems. The correlation coefficient between the internal
and external characteristic parameters of the power plant is obtained to analyze the anomaly
detection efficiency of the machine learning models.

In the real world, solar data potentially have anomalous values due to errors in sensor
measurements. In addition, many solar power plants in the Republic of Korea are classified
as behind-the-meters (BTMs), which are small-scale generators of 1 MW or less and do
not have real-time generation metering. This is one of the factors that greatly increases
the uncertainty of power generation forecasts and hinder the forecasting model’s ability to
learn in a supervised manner.

In the case of a virtual power plant (VPP), the next day’s power generation is forecasted
through collective resources, and a forecasting incentive is given depending on accuracy.
However, when anomalous data are included and the power generation pattern is erratic,
forecasting performance may be significantly degraded. In fact, we observe that the
collected solar power plant data from private owners differ from general power generation
patterns, possibly due to the combination of energy storage systems (ESS), which may not
be known in advance from the VPP operator’s perspective.

To this end, we propose an integrated anomaly detection framework leveraging a
convolutional autoencoder that proactively identifies and removes anomalous data. Then,
we configure VPP after filtering out anomaly and forecast power generation using deep
learning. We summarize our key contributions as follows.

• We propose a preprocessing method along with a forecasting model for various PV
sites that exhibit anomalous power generation. Unlike general PV forecasting, which
assumes normal power generation or knowledge of the anomaly in the BTM situation,
we proactively detect anomalous sites.

• For interpretable anomaly detection, we develop a model that combines convolutional
autoencoder (CAE) and principal component analysis (PCA) to extract and analyze
the features of solar power data with scree plot analysis. As a result, we can extract
and utilize features that contain important information from solar power data as
low-dimensional vectors.

• Our methodology is designed to be robust to real-world data. Leveraging the proposed
anomaly detection above, we compare two types of VPPs: the VPP with only normal
sites and the VPP with a random mixture of anomaly and normal sites. Based on
this, we show that simple and efficient unsupervised learning to construct a VPP with
only normal PV sites leads to better forecasting performance than the other case. We
observe that the forecasting error of the normal VPP is 6% or less, which satisfies the
condition for receiving full incentives in the renewable energy wholesale market run
by Korea Power Exchange (KPX).

The rest of this paper is organized as follows. Section 2 analyzes the actual PV site
data and proposes an anomaly detection model and the structure of the PV forecasting
model. Section 3 presents the forecasting results before and after anomaly detection for
VPPs of two experimental groups, followed by the conclusion in Section 4.

2. Proposed Methodologies
2.1. Dataset

The power generation data consists of 2517 PV sites. The data collection period
is 616 days of an hour per unit. To motivate our study, we first show the forecasting
performance using a multi-perceptron neural network in Table 1. As can be seen in Table 1
and Figure 1, the individual forecasting performance of three sites, “site S6”, “site S7” and
“site S8”, shows a big difference even though these sites are closely located; the performance
difference mainly comes from the presence of anomalous data.



Energies 2023, 16, 5293 4 of 20

Table 1. PV forecasting with MLP based single site model.

PV Site NMAE 1

S1 10.28%
S2 7.04%
S3 12.77%
S4 6.85%
S5 18.60%
S6 14.03%
S7 9.66%
S8 6.68%

1 Normalized mean absolute error.

Figure 1. Visualization of PV sites (S5 to S8).

To investigate the anomalous data pattern, we show the normal pattern of the daily PV
generation profiles in Figure 2. As can be seen in Figure 2, a typical daily PV generation has
a bell shape. Since using only a daily PV profile is not good for PV site anomaly detection,
we use overlapped PV profiles for the whole period of data. Similarly, anomalous PV
profiles are shown in Figure 3. As can be seen, anomalous daily PV profiles have distinctive
patterns, which do not seem to be solely PV generation. This could be the combination of PV
generation and battery charging/discharging and/or data collection errors. Surprisingly,
33% of PV sites turn out to have these anomalous patterns, which leads us to develop an
anomaly detection technique.

2.2. Anomaly Detection

Prior to anomaly detection, 1-dimensional time-series data are normalized first. The
normalized data of overlapped PV profiles are represented as a stacked daily solar profile
(SDSP) as shown in Figure 4, which is a 2-dimensional image. CAE is trained using this
image, and a latent vector is obtained from the last layer of the encoder. The obtained
latent vector has compressed information, and we use this feature in anomaly detection.
Specifically, we use PCA to reduce the dimension of the latent vector and also to project the
vector into new feature axes which have lower dimensions. Based on the covariance matrix
of PCA-projected vectors and its eigenvalue, the scree plot analysis is used to determine
the valid feature dimension. Finally, K-means clustering is used to separate the normal PV
sites and the anomalous PV sites. The overall process of the proposed anomaly detection is
summarized in Figure 5, and we here present each part one by one.
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Figure 2. Overlapped PV daily curves of normal sites.

Figure 3. Overlapped PV daily curves of anomalous sites.
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(a) SDSP of normal data.

(b) SDSP of anomaly.

Figure 4. Heatmap visualization of normal and anomaly data.
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Figure 5. Anomaly-aware Forecasting Architecture.

2.2.1. Convolutional Autoencoder

The autoencoder is a well-known unsupervised learning algorithm that has the target
output the same as its input, which can be used in various applications. The most repre-
sentative applications include data compression and feature extraction, and convolutional
autoencoder (CAE) [29] shows great performance with image input data. This technique
also has an advantage in denoizing input image data. CAE removes noise from input data,
thereby improving the quality of the data and improving the performance of forecasting
models or classification models. We use this model to learn and capture the time-series
feature in SDSP. Normal SDSP and anomalous SDSP are converted into latent vectors using
CAE, of which the structure is shown in Figure 6. The CAE has three convolutional layers
using batch normalization, ReLU activation function, and max pooling. The fully connected
network is used at the fourth layer, whose output, i.e., the latent vector, is an input of the
next step of PCA.
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Figure 6. Convolutional autoencoder (CAE) architecture.

2.2.2. Principal Component Analysis

Since CAE-converted SDSP’s latent vectors are in high-dimension, it is not good to
directly apply clustering techniques. For example, it is well-known that K-means clustering
is not effective in high-dimensional space [30]. To overcome this, we use PCA [31], which
is one of the most widely used dimensional reduction techniques. PCA converts data from
high-dimensional space into low-dimensional space while preserving the distribution of
original data as much as possible. PCA combines existing variables to create new variables
that are not related to each other. This technique attempts to explain the variance-covariance
structure in a linear combination by using multivariate data composed of several features.
Each vector’s variables are mapped to a low-dimensional graph, and the covariance matrix
of latent vectors can form new coordinate axes. The new axes maximize the variation in the
data and make it easier to interpret the covariance structure.

2.2.3. K-Means Clustering

As we mentioned above, PCA-projected latent vectors have lower dimensions than
the original latent vectors so the K-means algorithm can be used for clustering the PV sites
into the normal group and the abnormal group. When K-means clustering is applied, we
need to determine which cluster corresponds to anomaly data. For this, we check a few
PV sites we already know as an anomaly site and see where they belong to. Since this is
unsupervised learning it does not require a threshold to separate two groups. Nevertheless,
in Figure 12, one can imagine an implicit threshold that can separate two groups. K-means
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clustering is one of the clustering methods to bundle of data with similar characteristics [32].
In this algorithm, a similar characteristic means a location close to it. Euclidian distance is
used to calculate each location of data. In K-means clustering, the number of clusters K
should be determined using clustering indices such as the Dunn index, silhouette index,
etc. In our case, it is obvious that two clusters are enough for normal and anomaly PV sites.
Nevertheless, we check the clustering index in the experiment section where K = 2 is found
to be the most appropriate: one for the normal group and the other for the anomalous
group. The training process including model selection is given in the next section, where
we explain how to select the model while avoiding overfitting or underfitting. The test
result of forecasting is given in Section 3.2.

2.3. Model Selection

In this section, we show the structure of each model determined by model selection.

2.3.1. Model Selection of CAE

First, the CAE for anomaly detection is trained. The latent vector is said to be well
extracted when the input of the CAE is well reconstructed. Figure 7 visualizes the recon-
structed PV profiles of the randomly selected normal and anomalous sites. Comparing the
input SDSP with the reconstructed one confirms that normal and anomalous patterns are
clearly preserved during reconstruction. In addition, the reconstructed SDSP is not visually
distinguishable from the original SDSP.
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Figure 7. Visualization of CAE reconstruction with heatmap (left: original, right: reconstructed).

The latent vector dimension of CAE is chosen as 64 by the model selection process
shown in Table 2. We test CAE with different a,b, and c layer configurations, where a and b
indicate the kernel size and output channel size of the convolutional layer, and c indicates
the latent vector size of the CAE. Then we compare the model complexity, which is the
number of parameters of the CAE. As can be seen in Table 2, the layer configuration with
3, 2, 64 shows the highest silhouette score while others show similar anomaly detection
scores such as accuracy, precision, recall, and F1 score. With our proposed model, we can
minimize the model complexity and also maximize the silhouette score.
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Table 2. Anomaly detection model structures in the model selection process.

Layer Reconstruction Error Anomaly Detection Score

Complexity MSE RMSE MAE Accuracy Precision Recall F1 Score Silhouette
Score

3, 2, 16 30,883 0.0274 0.1655 0.0968 99.48% 99.23% 99.94% 99.58% 0.94
3, 2, 32 60,467 0.0237 0.1540 0.0875 99.44% 99.17% 99.94% 99.55% 0.90
3, 2, 64 119,635 0.0249 0.1577 0.0885 98.97% 98.72% 99.61% 99.16% 0.97

3, 2, 128 237,971 0.0260 0.1614 0.0961 99.09% 99.22% 99.29% 99.26% 0.87
3, 2, 256 474,643 0.0294 0.1715 0.0992 99.17% 98.91% 99.74% 99.32% 0.92
3, 3, 16 70,142 0.0190 0.1377 0.0727 99.13% 99.04% 99.55% 99.29% 0.94
3, 3, 32 136,686 0.0152 0.1232 0.0642 99.28% 99.23% 99.61% 99.42% 0.92
3, 3, 64 269,774 0.0140 0.1184 0.0607 99.44% 99.36% 99.74% 99.55% 0.92

3, 3, 128 535,950 0.0120 0.1093 0.0549 99.52% 99.61% 99.61% 99.61% 0.94
3, 3, 256 1,068,302 0.0127 0.1125 0.0563 99.44% 99.61% 99.48% 99.55% 0.92
3, 4, 16 126,325 0.0159 0.1262 0.0651 99.21% 99.16% 99.55% 99.35% 0.86
3, 4, 32 244,613 0.0113 0.1061 0.0524 99.17% 99.10% 99.55% 99.32% 0.89
3, 4, 64 481,189 0.0139 0.1181 0.0595 99.21% 99.29% 99.42% 99.35% 0.73

3, 4, 128 954,341 0.0082 0.0907 0.0447 99.48% 99.74% 99.42% 99.58% 0.86
3, 4, 256 1,900,645 0.0074 0.0859 0.0404 99.44% 99.55% 99.55% 99.55% 0.87

2.3.2. Model Selection of PCA

Then, the latent vector of each PV site is projected into a 10 dimension space using
PCA. The first two principal components (PCs) are plotted in Figure 8 for visualization.
As can be seen in Figure 8, the latent vectors are not well separated when PCA is not applied
(see Figure 8a). However, after PCA is applied, two groups are separated distinctively as
shown in Figure 8b. This can again be verified by a scree plot [33] in Figure 9.

The scree plot is a graph that shows the variances of the main principal components in
decreasing order. The proper number of PCs is determined when the cumulative percentage
reaches 80 to 90% and when an abrupt change is observed. Following this rule, it is sufficient
to use only one principal component when the latent vector dimension is 64, for example.
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Figure 8. Scatter plot of latent vectors. Our selection is (b).

Figures 8 and 9 visualize the data distribution of the results with the PCA-excluded
model and the CAE-PCA model with different parameters. It can be seen that the CAE-PCA
model with the latent vector size of 64 outperforms other models and the scree plot of the
selected parameter has 88% of the cumulative eigenvalues, while other models have lower
cumulative eigenvalues in the first PC. To confirm this further, we plot the distributions of
the most dominant PC (PC1) and the second dominant PC (PC2) in Figure 10a,b, respectively.
In this, blue is applied to the normal PV sites and red to the anomalous PV sites. Figure 10a
shows that the anomalous distribution is clearly separated from the normal one. In contrast,
the distributions of PC2 are largely overlapped, and thus separating the anomaly is not
possible at all. This result is also confirmed by the violin plot in Figure 11 where two
distributions of normal and anomaly locations are separated [34].
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2.3.3. Model Selection of K-Means Clustering

Finally, the vectors to which CAE-PCA is applied are separated into two clusters by
K-means clustering for anomaly detection. To demonstrate the effectiveness of CAE-PCA,
we consider three cases of K-means clustering depending on the input: (a) the raw SDSP,
(b) applying CAE to SDSP, and (c) applying CAE-PCA to SDSP. We use five evaluation
indexes of accuracy, precision, recall, F1 score, and silhouette score [35]. The silhouette
score is obtained by calculating the distance between each data point and the surrounding
data points. In general, it is a measure of whether the data in each cluster is well collected
and whether the clusters are well distinguished from each other. The larger the score value,
the better the clustering. The results are shown in Table 3, which confirms the effectiveness
of the proposed method; for example, the silhouette score is 0.97 and the recall of the
proposed model is 99.61%, which shows higher performance than the other two models.
We also compare the proposed model with a different number of clusters K. We vary K
from 2 to 5 and compare the silhouette score. The results in Table 4 and Figure 12 show
that clustering with only two clusters is the most appropriate to cluster the anomalous and
normal PV sites.
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Figure 12. K-means clustering experiment with different K = 2, 3, 4, 5.

Table 3. Anomaly detection performance comparison.

Model Silhouette Score Accuracy Precision Recall F1 Score

Only K-means 0.39 95.19% 93.48% 99.10% 96.20%
CAE + K-means 0.78 96.62% 95.18% 99.35% 97.31%

CAE-PCA + K-means 0.97 98.97% 98.72% 99.61% 99.16%

Table 4. Anomaly detection performance comparison.

Model/K Silhouette Score

CAE-PCA + K-means/K = 2 0.97
CAE-PCA + K-means/K = 3 0.94
CAE-PCA + K-means/K = 4 0.66
CAE-PCA + K-means/K = 5 0.51
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2.4. Forecasting Model

After anomaly detection, we construct VPP and forecast the PV power generation of
VPP. TransLSTM model, given in Figure 13, is a simple modification of our previous model
TransGRU in [23]; we replace GRU with LSTM for better forecasting with more parameters.
For the operational description of the transformer encoder along with its mathematical
representation, please refer to [23]. The structure of the forecasting model is shown in
Figure 13 and Table 5.

Figure 13. TransLSTM Architecture.

Table 5. Structure of the forecasting model.

Layer Name Dimension

0 transformer encoder 168
1 LSTM decoder 64
2 FC layer 1 256
3 FC layer 2 256
4 output FC layer 24

2.4.1. Transformer Encoder

We only adopt the encoder structure of the transformer model to put more weight
on important weather and PV generation factors as we did in our previous work [23].
For PV forecasting, we use one of the most popular time-series forecasting models called
transformer. The transformer model has shown great performance in machine translation [36],
which is also associated with a time series. The transformer model follows the encoder-
decoder, the structure of the existing seq2seq but only implements attention as the name of
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the paper. The model does not use RNNs, and even though it designs an encoder-decoder
structure, it also outperforms RNNs in translation performance.

2.4.2. LSTM

The performance of GRU and LSTM is similar. GRU has fewer parameters than LSTM
since it has only two gates and GRU has fast convergence compared to LSTM. It is common
that LSTM is efficient if sufficient data are given. We choose LSTM as a forecasting block
which differs from TransGRU. We feed the transformer’s encoded output into the LSTM-
based time-series forecasting block. LSTM overcomes the shortcomings of RNN and is
good at holding long-term memories. Forecasting a sequence of long-term samples can be
influenced by an input sequence given many time steps before. We use seven days of past
data as an input sequence. So we choose LSTM as a forecasting block to solve the long-term
dependencies in the network by LSTM’s gating mechanisms.

3. An Application of Anomaly Detection for VPP Power Forecasting
3.1. Data Preprocessing

In this section, we provide the experimental results of anomaly detection as well as
VPP forecasting.

3.1.1. PV Data

We use SDSP as an input of the anomaly detection model. Daily load profile consists of
24-h PV data. PV data are normalized with the min-max method. Then, they are converted
into a 2-dimensional matrix by stacking all daily PV profiles. Using SDSP, it is easy to visual-
ize the reconstruction performance of CAE, and we use a heatmap of SDSP for visualization.
With the heatmap images in Figure 7, one can compare the original image with the recon-
structed one.

3.1.2. Weather Data

In general, solar power generation is greatly affected by the weather conditions such
as the number of clouds, temperature, humidity, wind speed whether it rains or not, etc.
We use public weather data provided by the weather stations of the Korean Meteorological
Administration at over 100 different locations. We also use the information on the latitude
and longitude of weather stations in each region and the accumulated weather observation
data provided by the stations. When training the forecasting model, we add Gaussian noise
to the observation data so that the observation value has weather forecasting errors, just
like the actual weather forecast data.

The overall configuration of the dataset is shown in Figure 14. Using the latitude
and longitude of the solar power plant, the Euclidean distance of each weather station is
calculated. Then, the data from the closest PV site and the observatory are combined to
form a dataset. For day-ahead PV forecasting of the target day denoted by D, we use the
past seven days of PV generation D-7, D-6, ..., D-1. In addition, we use weather forecast
data for the past six days and the target day D-6, D-5, ..., D. In using the weather forecast
data, we add Gaussian noise with 15% error to the measured weather data to mimic the
weather forecast error. All models are trained using the hyperparameters in Table 6.

Figure 14. PV and Weather merged dataset.
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Table 6. Hyperparameters of model optimization.

Hyperparameter Value

Batch size 16
Learning rate 0.0001

Optimizer Adam
Epoch 200

Loss function MSE

3.2. Forecasting Result

For the experiment, PV sites are divided into two groups consisting of only the normal
site’s dataset and the mixed site’s dataset where normal and anomaly data exist. As shown
in Figure 15, we consider four regions, in each of which a VPP is composed of randomly
selected 20 PV sites. Random VPP construction is repeatedly performed in each region.
As a result, a total of 68 VPPs are constructed across four reasons, as summarized in
Table 7. On average, the total facility capacity of each VPP is 20 MW. About 600 days of
power generation and weather data for each VPP are divided into 70%, 15%, and 15%
train, validation, and test set, and the results for each VPP are shown in Tables 7–10.
The TransLSTM models that combine MLP, Transformer, and LSTM are used as forecasting
models. The forecasting performance measured in NMAE for regions A, B, C, and D shows
an improvement of 20–23% compared to the mixed data set. We also observe a similar
improvement when other forecasting models such as MLP or LSTM are used, which shows
the effectiveness of the proposed anomaly detection.

Forecasting performance is visualized in Figures 16 and 17, in which the forecasting
results for the same site with anomaly-unaware and anomaly-aware situations, respectively.
We see that the anomaly-aware forecasting model shows a more accurate result than the
anomaly-unaware case.

Figure 15. PV site visualization of each region (A–D).

Table 7. VPP forecasting before and after anomaly detection in region A.

Region A before Anomaly Detection Region A after Anomaly Detection
VPP ID Capacity (MW) NMAE (%) VPP ID Capacity (MW) NMAE (%)

A1 17.17 5.6 A16 21.14 4.66
A2 33.50 6.17 A17 13.80 5.01
A3 14.80 5.91 A18 18.37 4.5
A4 17.10 6.01 A19 24.34 4.49
A5 12.60 5.96 A20 19.87 4.51
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Table 7. Cont.

Region A before Anomaly Detection Region A after Anomaly Detection
VPP ID Capacity (MW) NMAE (%) VPP ID Capacity (MW) NMAE (%)

A6 12.99 5.91 A21 15.26 4.4
A7 24.51 6.46 A22 15.84 4.47
A8 17.70 6.19 A23 14.55 4.39
A9 17.95 6.16 A24 22.32 5.17

A10 20.46 6.48 A25 21.55 4.89
A11 19.95 6.35 A26 14.33 5.12
A12 25.62 6.06 A27 14.85 4.67
A13 10.11 6.38 A28 14.67 4.32
A14 17.92 5.6 A29 19.48 4.97
A15 20.84 6.5 A30 25.98 4.9

Average 18.88 6.12 18.42 4.70

Improvement 23.2%

Table 8. VPP forecasting before and after anomaly detection in region B.

Region B before Anomaly Detection Region B after Anomaly Detection
VPP ID Capacity (MW) NMAE (%) VPP ID Capacity (MW) NMAE (%)

B1 27.34 6.19 B8 25.94 4.81
B2 15.82 6.31 B9 24.22 5.39
B3 29.77 6.26 B10 24.10 4.66
B4 22.50 6.41 B11 26.29 4.87
B5 21.37 6.52 B12 19.69 5.02
B6 23.14 6.18 B13 36.16 4.82
B7 25.47 6.4 B14 19.52 4.96

Average 23.63 6.32 25.13 4.93

Improvement 22.00%

Table 9. VPP forecasting before and after anomaly detection in region C.

Region C before Anomaly Detection Region C after Anomaly Detection
VPP ID Capacity (MW) NMAE (%) VPP ID Capacity (MW) NMAE (%)

C1 17.85 5.85 C8 32.96 5.11
C2 16.97 6.4 C9 34.52 4.8
C3 25.38 6.46 C10 42.34 5.1
C4 25.97 6.14 C11 35.62 4.85
C5 20.84 6.4 C12 26.00 5.26
C6 39.45 6.5 C13 32.62 5.1
C7 30.69 6.82 C14 38.70 5

Average 25.31 6.37 34.68 5.03

Improvement 20.98%

Table 10. VPP forecasting before and after anomaly detection in region D.

Region C before Anomaly Detection Region C after Anomaly Detection

VPP ID Capacity (MW) NMAE (%) VPP ID Capacity (MW) NMAE (%)

D1 12.16 6.23 D6 15.44 4.5
D2 6.90 6.28 D7 24.23 4.49
D3 29.26 6.34 D8 19.68 5.28
D4 10.21 6.7 D9 17.61 5.16
D5 8.78 6.45 D10 37.53 5.03

Average 13.46 6.40 22.90 4.89

Improvement 23.56%
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Figure 16. Normal site forecasting before anomaly detection (Site Num: 38627).

0 5 10 15 20
Time(hour)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Lo

ad

predict
label

0 5 10 15 20
Time(hour)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Lo

ad

predict
label

0 5 10 15 20
Time(hour)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Lo

ad

predict
label

0 5 10 15 20
Time(hour)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Lo

ad

predict
label

0 5 10 15 20
Time(hour)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Lo

ad

predict
label

0 5 10 15 20
Time(hour)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Lo

ad

predict
label

PV#38627 model performance visualization

Figure 17. Normal Site’s forecasting after anomaly detection (Site Num: 38627).

4. Conclusions

In this paper, we propose a methodology for training a forecasting model by configur-
ing a VPP using weather data and PV sites with normal power generation patterns, which
involves detecting anomalies in PV site data. The anomaly detection model is constructed
using CAE, PCA, and K-means clustering. After extracting the latent vectors by applying
CAE, power generation with normal patterns can be determined by PCA and K-means
clustering. By validating and testing PV site data as an input to the model trained by
training data, normal and anomalous sites are separated. These normal and anomalous
data sets are then merged with weather data corresponding to each PV site. The results
show that forecasting performance improves when a forecasting model is trained using
normal data only. In the case of a VPP composed of normal data, the aggregated forecast
performance improve more than 23%, on average compared to the mixed VPP. This sub-
stantial improvement can be possible because the proposed anomaly detection is highly
accurate, e.g., 99% of accuracy.

There still remain some challenges. It is hard to detect a mixed anomaly site that has
both normal and anomalous generation patterns in different time periods. This could be
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due to changes in the way an ESS is installed or operated. As a future work, the impact of
site changes on anomaly detection can be investigated, in addition to the methodologies
to ensure that anomaly detection is robust for newly added sites with little historical data.
Anomaly detection per daily power generation pattern, rather than over the entire data of
each site, could probabilistically represent anomalies in power generation; for example, it
is possible to extend the proposed preprocessing method to forecast power generation for
newly installed sites with limited data.
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