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Abstract: An accurate parameter extraction of the proton exchange membrane fuel cell (PEMFC)
is crucial for establishing a reliable cell model, which is also of great significance for subsequent
research on the PEMFC. However, because the parameter identification of the PEMFC is a nonlinear
optimization problem with multiple variables, peaks, and a strong coupling, it is difficult to solve
this problem using traditional numerical methods. Furthermore, because of insufficient current and
voltage data measured by the PEMFC, the precision rate of cell parameter extraction is also very low.
The study proposes a parameter extraction method using a generalized regression neural network
(GRNN) and meta-heuristic algorithms (MhAs). First of all, a GRNN is used to de-noise and predict
the data to solve the problems in the field of PEMFC, which include insufficient data and excessive
noise data of the measured data. After that, six typical algorithms are used to extract the parameters
of the PEMFC under three operating conditions, namely high temperature and low pressure (HTLP),
medium temperature and medium pressure (MTMP), and low temperature and high pressure (LTHP).
The last results demonstrate that the application of GRNN can prominently decrease the influence of
data noise on parameter identification, and after data prediction, it can greatly enhance the precision
rate and reliability of MhAs parameter identification, specifically, under HTLP conditions, the V-I
fitting accuracy achieved 99.39%, the fitting accuracy was 99.07% on MTMP, and the fitting accuracy
was 98.70%.

Keywords: PEMFC; GRNN; MhAs; parameter identification; data processing; HTLP; MTMP; LTHP

1. Introduction

With the rapid development of technology and continuous economic growth, the
demand for various fossil fuels and electricity is increasing day by day. The existing
problem is that the energy conversion efficiency of traditional fossil energy is relatively
low, and it causes huge environmental pollution, bringing the greenhouse effect, rising sea
levels, acid rain, and other thorny environmental problems [1,2]. In addition, the massive
development and utilization of traditional non-renewable energy will also cause the global
energy crisis [3]. In this context, countries around the world have begun to vigorously
develop clean energy and renewable energy. The proton exchange membrane fuel cell
(PEMFC) is widely used because of the advantages of high energy density, high power
generation efficiency, starting at a low temperature and a long working life [4,5].

With the widespread application of the PEMFC, precise modeling of batteries is crucial
for optimizing the control of cell systems and improving cell power generation efficiency.
Currently, there are many models for the PEMFC, including three-dimensional steady-state
models [6] and electrochemical steady-state models [7]. Among them, electrochemical
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stability models can predict the state of batteries very well, it is beneficial for the safe and
stable operation of the PEMFC and cell management. Accurate cell models rely on accurate
internal model parameters, so accurate parameter identification of PEMFC batteries is
a prerequisite for establishing accurate and reliable cell models. However, because the
PEMFC parameter identification is a nonlinear problem with multiple variables, multiple
peaks, a strong coupling, and limited V-I data measured by the cell, it is arduous to
use traditional numerical analysis methods for parameter identification, for example, the
least squares method, gradient descent method, and the identification results are not
ideal [8]. However, meta-heuristic algorithms (MhAs) are widely used in the field of
PEMFC parameter extraction due to their low initial value requirements and global search
ability, which can avoid falling into local optimum [9].

A study [10] proposed an identification method based on adaptive focusing particle
swarm optimization (AFPSO). Compared with particle swarm optimization (PSO), AFPSO
has a stronger global search capability and faster optimization speed. Final experimental
results also demonstrate that the obtained results have high fitting accuracy with the data
obtained from experimental testing, and can effectively identify the parameters of the
cell. In work [11], a PEMFC parameter estimation study based on an extended Kalman
filter (EKF) was proposed. By constructing a semi-mechanistic and semi-empirical PEMFC
model, based on the characteristics of the existing sensor signals in the model system, the
EKF was used to extract parameters of the cell model. Specifically, this method estimates
the parameters during PEMFC off-design operation, and it is more in line with the actual
application of batteries. Work [12] uses an extreme learning machine (ELM) to identify
cell parameters, where under the actual operating conditions, the measured current and
voltage data will inevitably have exception values, that is, noise data, which will affect the
identification accuracy of parameters in the model. Therefore, in this study, it is proposed
to use ELM to train the data, then perform noise reduction processing, then use algorithms
for parameter identification. The results obtained also prove that the data after noise
reduction processing is used for parameter extraction, and the identification accuracy is
significantly improved. In the literature [13], a PEMFC parameter identification study of
improved chicken swarm optimization (ICSO) was proposed. In this paper, the author
introduced a Tent mapping strategy to initialize the population, which can improve the
uniformity and ergodicity of the population. Secondly, set adaptive inertia weights on
the feeding speed of individual chickens, which can improve the optimization efficiency
of individual hens, and the Levy flight strategy were introduced to randomly update
the chicken position, greatly improving the algorithm’s global search ability. Finally, by
comparing the parameter identification results obtained by ICSO with those obtained by
other heuristic algorithms, it was proven that the ICSO algorithm has better parameter
identification accuracy and a stronger model generalization ability. Reference [14] proposed
an improved method based on a differential evolution algorithm, which is unique in
that it references a probability selection model, which assigns a selection probability for
every individual in the evolutionary population regarding their performance. In the
work, to verify the effectiveness of algorithm, standard test functions were also used for
testing. The experimental results showed that after the algorithm improvement, high
data fitting accuracy can be achieved, and the parameters of the cell can be identified
very accurately. In literature [15], a novel method based on the Levenberg Marquardt
backpropagation (LMBP) algorithm was proposed. The neural network was designed
based on the PEMFC model, and the LMBP algorithm was used for parameter identification.
The LMBP is a variant of the Newton method, which combines the steepest descent method
with the Gaussian Newton method and iteratively calculates using the Jacobian matrix,
greatly improving computational efficiency. The final experimental results in the study
also indicate that neural networks have higher fitting accuracy compared to heuristic
algorithms, and the speed of parameter identification research through LMBP is much
faster than that of heuristic algorithms. SOA is a swarm intelligence optimization algorithm
that simulates the random search behavior of human beings. The SOA algorithm optimizes
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the parameters of the PEMFC model, and then compares the results with those of other
algorithms, proving that the algorithm has good fitting accuracy, and it can significantly
improve and enhance the accuracy of the PEMFC model parameters [16]. In reference [17], a
PEMFC parameter identification method based on Bayesian regularization neural network
(BRNN) was proposed. BRNN is used to de-noise data and MhAs are used to identify
parameters, and the results are compared with other heuristic algorithms. The extraction
results of BRNN data de-noising are more accurate than the original data results, and the
results obtained are more stable with fewer outliers.

Overall, current research on PEMFC parameter identification mainly utilizes the
MhAs method [18–20], and most of the research focuses on algorithm improvement to
improve the accuracy and speed of parameter extraction. Only a few studies consider
the impact of the data itself on the identification results. However, the study proposes
MhAs based on a generalized regression neural network (GRNN) for PEMFC parameter
extraction, which trains the GRNN, predicting and de-noising the data, fully considering
the insufficient measured data and the impact of noise data on the final identification results,
and conducting parameter identification research on the PEMFC under three operating
conditions, namely high temperature and low pressure (HTLP), medium temperature and
medium pressure (MTMP), and low temperature and high pressure (LTHP) [17]. The last
results demonstrate that after data processing, its identification accuracy is higher and its
performance is better. This study provides a new approach to the identification of PEMFC
parameters, and its contributions and innovations can be summarized as follows:

1. Established the PEMFC model and conducted parameter identification research on
the model under three operating conditions;

2. Considering the influence of insufficient data volume and noise data, a GRNN was
used to de-noise and predict the measured V-I data, and the final results fully demon-
strate its excellent robustness when applied to PEMFC parameter extraction under
various operation conditions;

3. Based on the data processed by a GRNN, six typical heuristic algorithms were com-
pared for their effectiveness in PEMFC parameter identification. The results demon-
strate that after data processing, accuracy can be greatly improved.

The structure of the remaining part is as follows: Section 2 is the modeling of the
PEMFC, mainly introducing the internal chemical mechanism of PEMFC power generation
and its cell model, and then establishing an objective function for the model. Section 3
mainly displays the application of GRNN-MhAs in PEMFC parameter identification re-
search, which involves using a GRNN for data de-noising and prediction processing, and
then using MhAs for parameter identification. Section 4 mainly displays the parameter
identification results obtained by six algorithms under three working conditions. Section 5
is the discussion section. Section 6 provides some important conclusions obtained from this
research, as well as some prospects for future PEMFC parameter identification research.

2. PEMFC Modeling

Establishing the PEMFC model is beneficial to conduct in-depth research on the
parameter identification of a cell. This section mainly introduces the basic principles and
mathematical models of the mechanism of the PEMFC.

2.1. The Mechanism of the PEMFC

In principle, the PEMFC is equivalent to a reverse device for water electrolysis. A
typical PEMFC is composed of an anode, a cathode, and a proton exchange membrane. The
anode is the site of hydrogen fuel oxidation, the cathode is the site of oxidant reduction,
and both poles contain catalysts to accelerate electrode electrochemical reactions [21–23].

In addition, the electrochemical reaction mechanism of the PEMFC is shown in
Equations (1)–(3) [24].

Anode side:
H2 → 2H+ + 2e− (1)
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Cathode side:
1
2

O2 + 2H+ + 2e− → H2O (2)

Overall chemical reaction,

H2 +
1
2

O2 → H2O (3)

2.2. Mathematical Model of the PEMFC

The model introduced in this section is only one kind of cell model, namely the 0-D
model. Note that many other multi-dimensional models exist. Considering the impact of
some losses in electrochemical reactions on the output characteristics of the PEMFC, the
output voltage is as follows [25]:

Vest = Enernst −Vact −Vohm −Vcon (4)

where Vact, Vohm and Vcon, respectively, represent activation voltage loss (V), ohmic voltage
loss (V), and concentration voltage loss (V); Enernst is the thermodynamic electromotive
force (V); Enernst can be expressed as [26]:

Enernst =
∆G
2F

+
∆S
2F

(Tk − Tref) +
RT
2F

[
ln
(

PH2

)
+

1
2
(

PO2

)]
(5)

where ∆G and ∆S represent changes in free Gibbs energy and entropy, respectively, the
value of ∆G is 228,170 J/mol; F represents a constant (96,485.3383 C/mol); R is the universal
gas constant (8.314 J/(K·mol)); Tk and Tref, respectively, represent the actual temperature
and reference temperature; Tk has a value of 353.15 K under HTLP operating conditions,
333.15 K under MTMP operating conditions, and 313.15 K under operating conditions; PH2

and PO2 denote the partial pressure of hydrogen (atm) and oxygen (atm), which can be
expressed as [27]:

PH2 = 0.5× RHa × Psat
H2O ×


RHa × Psat

H2O

Pa
× exp (

1.635
(

icell
A

)
T1.334

k
)

−1

− 1

 (6)

PO2 = RHc × Psat
H2O ×


RHa × Psat

H2O

Pc
× exp (

4.192
(

icell
A

)
T1.334

k
)

−1

− 1

 (7)

where RHa and RHc are the relative humidity of the vapor, the values of RHa and RHc
are both 1 under HTLP operating conditions, 2 under MTMP operating conditions, and 3
under operating conditions; Pa and Pc the inlet pressure of the anode and cathode (atm),
respectively; icell is the output current (A); A is the effective activation area, the value of
∆G is 50.6 cm2; Psat

H2O is the saturation pressure (atm), which is as follows:

log10

(
Psat

H2O

)
= 2.95× 10−2 × Tc − 9.19× 10−5 × T2

c + 1.44× 10−7 × T3
c − 2.18 (8)

Tc = Tk − 273.15 (9)

In addition, the activation voltage loss Vact can be expressed as:

Vact = ε1 + ε2Tk + ε3Tk ln
(
CO2

)
+ ε4Tk ln(icell) (10)
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where ε1, ε2, ε3, and ε4 are semi-empirical coefficients; CO2 denote the concentration of
oxygen catalyzed by the anode catalyst surface (mol/cm3), which is shown below:

CO2 =
PO2

5.08× 106 × e(
−498

Tk
)

(11)

In addition, the ohmic voltage Vohm loss is as follows [28]:

Vohm = icell(Rm + Rc) (12)

where Rm and Rc are the electron transfer resistance and proton exchange membrane
equivalent resistance (Ω), Rm can be expressed as:

Rm = ρm

(
l
A

)
(13)

where l is the thickness of the proton exchange membrane, the value of l is 178 µm; ρm
represents the resistivity (Ω·cm), which can be expressed as:

ρm =

181.6×
[

1 + 0.03×
(

icell
A

)
+ 0.062×

(
Tk
303

)2( icell
A

)2.5
]

[
λ− 0.643− 3×

(
icell
A

)]
exp

[
4.18×

(
Tk−303

Tk

)] (14)

where λ is the water content.
In addition, the concentration voltage Vcon loss can be expressed as:

Vcon = −b ln
(

ln
J

A× Jmax

)
(15)

where b is the parameter coefficient (V); J is the current density (A/cm2); Jmax is the
maximum current density, the value of Jmax is 1.5 A/cm2.

Finally, it is clear from Equations (4)–(15) that the PEMFC needs to identify seven
unknown parameters, namely ε1, ε2, ε3, ε4, λ, Rc, b.

2.3. Objective Function

This study utilizes RMSE to measure the accuracy of extraction results. It can effectively
reflect the accuracy of the calculated value, that is, the degree of deviation between the
calculated value and the actual value. Therefore, RMSE is defined as the objective function,
as follows:

RMSE(x) =

√
1
N ∑N

i=1[Vact(i)−Vest(i)]
2, x = [ε1, ε2, ε3, ε4, λ, Rc, b] (16)

where N is the quantity of data; Vact and Vest represent the measured voltage and
calculated voltage.

Furthermore, the constraints of key parameters are as follows:

s.t.


εi,min ≤ εi ≤ εi,max
λmin ≤ λ ≤ λmax

Rc,min ≤ Rc ≤ Rc,max
bmin ≤ b ≤ bmax

, ∀i ∈ {1, 2, 3, 4} (17)

3. GRNN-MhAs for PEMFC Parameter Extraction
3.1. Principle of GRNN

A GRNN is a special form of nonlinear regression feedforward neural network, belong-
ing to the branch of radial basis function (RBF). GRNN is based on non-parametric regres-
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sion and follows the principle of maximum probability to obtain the network output [29].
The GRNN model inherits the good nonlinear approximation function of RBF neural net-
work. The algorithm of the GRNN model has a fast convergence speed, a small amount
of calculation, and can be well handled in the face of fewer training samples. It has been
widely applied in structural analysis, control decision-making, system identification, and
other aspects, especially in dealing with a curve fitting.

As shown in Figure 1, the GRNN model consists of four function layers, namely the
input layer, pattern layer, summation layer, and output layer [29]. The network input
X = [x1, x2, . . . , xn]

T, and its output is Y = [y1, y2, . . . , yk]
T.
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The GRNN adopts the idea of nonlinear regression analysis. Let x, y be random
variables, let X be the real observation value, g(x, y) be the joint probability density function,
and the regression of y for x is determined by the following Equation (18):

E(y|X) = y(X) =

∫ +∞
−∞ yg(X, y)dy∫ +∞
−∞ g(X, y)dy

(18)

The function g(x, y) can be obtained by nonparametric estimation of the observation
samples of x and y, as the Equations (19) and (20) show:

g(X, y) =
1

n(2π)
p+1

2 σp+1
∑n

i=1 exp[−d(X, xi)]∗ exp
[
−(y− yi)

2
]

(19)

d(X, xi) = ∑p
j=1

[ x0j − xij

σ

]2
(20)

where σ is called the smoothing factor. Bring Equations (19) and (20) into Equation (18),
and because

∫ +∞
−∞ xe−x2

dx = 0, simplifying Equation (18) can be shown as follows:

y(X) =
∑n

i=1 y exp
[
−(y− yi)

2
]

∑n
i=1 exp[−d(X, xi)]

(21)
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Obviously, in Equation (21) above, when the input training samples are determined,
the training of neural networks is essential to determine the smoothness factor σ. The
process only requires adjusting the smoothness factor σ to change the transfer function.

Based on the above principles, the basic operation process of a GRNN is as follows [30]:
Step 1 Input Layer: The number of neurons is equal to the dimension m of the input

vector X = [x1, x2, . . . , xn]
T in the learning sample, and directly transfers the input variables

to the pattern layer.
Step 2 Model Layer: The number of neurons in the model layer is equal to the number

of learning samples n, and the neurons correspond to the learning samples one by one.
Assuming a function which is shown in the following formula:

D2
i = (X− Xi)

T ∗ (X− Xi) (22)

where D2
i represents the square of the Euclid distance between the input variable of the

i-th neuron and its learning sample X. In mode layer, Gaussian function is chosen as the
activation kernel function, and the transfer function can be expressed as:

pi = exp

[
−

D2
i

2σ2

]
, i = 1, 2, . . . , n (23)

where σ is a smoothing parameter.
Step 3 Summation Layer: about the GRNN, two types of neurons are used for summa-

tion in the summation layer. Among them, the first type corresponds to the dimension k of
the output vector, with a total of k nodes. The connection weight between the i-th neuron
in the pattern layer and the j-th molecular summation neuron in the summation layer is the
j-th element of the output sample Yi, there is a transfer function as follows:

SNj = ∑n
i=1 yij pi, j = 1, 2, . . . , k (24)

The second type only has one neuron SD. Perform arithmetic summation on all
neurons in the pattern layer, and another transfer function is as follows:

SD = ∑n
i=1 pi (25)

Step 4 Output Layer: Each neuron divides the output of the summation layer, and the
output of the j-th neuron corresponds to the estimation result Ŷ(X) is as follows:

yj =
SNj

SD
, j = 1, 2, . . . , k (26)

In summary, in the training process of the GRNN, only the smoothing parameters
need to be adjusted σ to change the transfer function to obtain regression estimates.

3.2. Parameter Extraction Process

The conventional process for parameter identification of PEMFC based on a GRNN
and MhAs is mainly divided into three sectors: data collection, data preprocessing, and
optimization parameter extraction, and the specific process is shown in Figure 2.

The concrete process can be expressed as follows: collect actual cell voltage and current
data, and then the GRNN model is trained for data prediction and data noise reduction to
obtain the predicted data and de-noising data. Finally, six heuristic algorithms were used
to optimize and iterate the PEMFC data, and the final parameter identification results were
obtained. Note that this work uses RMSE to measure the size of error, and the steps are
shown in Figure 3.
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4. Case Studies

In this part, a GRNN and six typical MhAs were used to extract the parameters of
the PEMFC model, respectively, moth fire optimization (MFO) [31], PSO [32], beetle an-
tennae search (BAS) [33], grey wolf optimization (GWO) [34], marine predator algorithm
(MPA) [35], and artificial ecosystem-based optimization (AEO). Then, the operating con-
ditions were set up according to the actual working conditions of the cell, namely HTLP,



Energies 2023, 16, 5290 9 of 30

MTMP, and LTHP. Due to the phenomenon of noise and insufficient available data, a
GRNN was used to preprocess, de-noise and predict the 25 pairs of current and voltage
data extracted from the cell. Finally, 145 sets of data were predicted and used for parameter
identification research under multi-data. In this study, the parameters of PEMFC are shown
in Table 1.

Table 1. Model and algorithms parameter settings.

Types Parameters Value

PEMFC
PEM effective area 50.6 cm2

PEM thickness 178 µm2

Maximum iterations 500
Algorithms Run times 10

Remark 1. The cell data in this study comes from experimental data provided by the cell manufac-
turer. The reason why a GRNN is used to process the V-I data of the PEMFC in this research is due to
the inevitable impact of noise data in the measurement data. In addition, due to the loss of measured
data, to verify the robustness of the GRNN applied to PEMFC parameter recognition, as well as
the difficulty in measuring the V-I data of the PEMFC during actual operation, and due to battery
aging and other phenomena, the difference between the measured data and the data from the battery
factory is significant, which has a significant impact on the final parameter identification results.

4.1. GRNN for V-I Data Preprocessing
4.1.1. GRNN for V-I Data De-noising

Small fluctuations may affect experimental data, similarly, the PEMFC is inevitably
affected by noise when used in different environments. Undoubtedly, irregular changes in
multiple variables can affect the inaccurate parameter identification of the PEMFC.

Therefore, to minimize the effect of the noise condition on the accuracy of the calcula-
tion results as much as possible, this paper adopts a GRNN [31]. The results obtained by
de-noising the original data obtained under three operating conditions using the GRNN
are shown in Figures 4–6.
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4.1.2. GRNN for V-I Data Prediction

The parameter identification of PEMFC essentially relies on the most primitive current
and voltage data, and the accuracy of the final identified parameters largely depends on
the original data. However, actual data are difficult to obtain.

Therefore, this study uses existing data to train the GRNN model, then performs
data prediction, expands the data volume, and improves the accuracy of identification
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parameters. The results obtained by data prediction of the original data obtained under
three operating conditions using the GRNN are shown in Figures 7–9.
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4.2. PEMFC Parameter Extraction of HTLP
4.2.1. Noised Data

Table A1 of Appendix A shows the statistics of the results of parameter extraction
of noise and noise reduction data, respectively, by six algorithms under HTLP, where the
symbol ‘N’ denotes the results obtained from noised data and ‘DN’ denotes the results
obtained from de-noised data. From Table A1 of Appendix A, it is obvious that after data
noise reduction, the RMSE is lower than that obtained from noised data. After data noise
reduction, the RMSE of the PSO algorithm and the BAS algorithm has a magnitude of the
minus second power of ten, while the RMSE of the other four algorithms has a magnitude
of the minus third power of ten. The MPA algorithm exhibits the most significant decrease
of 82.10%, whereas the BAS algorithm demonstrates a comparatively smaller reduction
of 42.62%.

In addition, Figure 10 shows the RMSE convergence curves obtained by six algorithms
trained on two datasets. The results obtained based on data de-noising have smaller errors
than those obtained from noised data. The special process is that the RMSE obtained by
six algorithms on de-noised data is lower than that obtained from noised data.

In order to acquire the visual impact of the two different training data, the boxplot
illustrates the distribution of RMSE obtained by MhAs which is presented in Figure 11.
It can be seen from the figure that after data de-noising, the RMSE corresponding to
each algorithm in the boxplot decreased to a certain extent. However, after data de-
noising, the upper and low bounds of the boxplot of PSO and BAS changed significantly,
shrinking toward the RMSE median. In addition, MPA, AEO, GWO, and MFO have
superior performance compared with other algorithms. This fully shows that GRNN data
noise reduction can improve the stability of MhAs in parameter identification.

Figure 12 presents the V-I characteristic curves based on high-temperature and low-
pressure obtained by the GRNN fitting the MPA algorithm under noise reduction data
conditions. It can be seen that the curve of fitting data almost coincides with the curve of
actual data and the error measured by RMSE is equal to 99.39%, which demonstrates the
parameter identification effect is in line with expectations.
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4.2.2. Insufficient Data

Table A2 of Appendix A shows the statistics of the results of parameter extraction
of insufficient and predicted data, respectively, by six algorithms under HTLP, where the
symbol ‘O’ denotes the source data and ‘P’ denotes the predicted data. From Table A2
of Appendix A, it can be obtained by observation that after data prediction, the RMSE
achieved by the five algorithms is lower than that obtained from predicted data, except
for PSO algorithm. After data prediction, the RMSE of the PSO algorithm and the BAS
algorithm has a magnitude of the minus second power of ten, while the RMSE of the other
four algorithms has a magnitude of the minus fourth power of ten. The GWO algorithm
exhibits the most significant decrease of 66.66%, whereas the MPA algorithm demonstrates
a comparatively smaller reduction of 28.58%.

Figure 13 describes the RMSE convergence curves obtained by six algorithms on two
datasets, with most algorithms having lower RMSE obtained from predicted data, and
only RMSE based on multi-data of PSO being larger than RMSE based on low data. In
addition, compared with other algorithms, MPA, AEO, and MFO can quickly acquire a
smaller RMSE and have great stability.
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Figure 13. Convergence curves of RMSEs obtained by MhAs on original data and predicted data
under HTLP. (a) original data and (b) predicted data.

The boxplot illustrates the distribution of RMSE obtained by MhAs which is presented
in Figure 14. It can be obtained by observation that except for the PSO, the RMSE obtained
based on predicted data are lower than the RMSE obtained from original data. On the
contrary, the RMSE of PSO has increased. In addition, MPA, AEO, GWO, and MFO have
superior performance compared with other algorithms.
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4.3. PEMFC Parameter Extraction of MTMP
4.3.1. Noised Data

Table A3 of Appendix A shows the statistics of the results of parameter extraction of
noise and noise reduction data, respectively, by six algorithms under MTMP. From Table A3
of Appendix A, it can be seen that after data noise reduction, the RMSE obtained by the six
algorithms is lower than that obtained from noised data. After data noise reduction, the
RMSE of the PSO algorithm and the BAS algorithm has a magnitude of the minus second
power of ten, while the RMSEs of the other third algorithms have a magnitude of the minus
third power of ten. The GWO algorithm exhibits the most significant decrease of 66.53%,
whereas the BAS algorithm demonstrates a comparatively smaller reduction of 25.09%.
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Figure 15 describes the RMSE convergence curves obtained by six algorithms under
noise and noise reduction data conditions. It can be obtained by observation that the RMSE
based on de-noised data of parameter identification results has decreased. The special
process is that the RMSE obtained by six algorithms on de-noised data is lower than that
obtained from noised data.

Energies 2023, 16, x FOR PEER REVIEW 22 of 36 
 

 

the RMSE of the PSO algorithm and the BAS algorithm has a magnitude of the minus 

second power of ten, while the RMSEs of the other third algorithms have a magnitude of 

the minus third power of ten. The GWO algorithm exhibits the most significant decrease 

of 66.53%, whereas the BAS algorithm demonstrates a comparatively smaller reduction of 

25.09%. 

Figure 15 describes the RMSE convergence curves obtained by six algorithms under 

noise and noise reduction data conditions. It can be obtained by observation that the 

RMSE based on de-noised data of parameter identification results has decreased. The spe-

cial process is that the RMSE obtained by six algorithms on de-noised data is lower than 

that obtained from noised data. 

 
(a) 

 
(b) 

Figure 15. Convergence curves of RMSEs obtained by MhAs on noise data and de-noised data under 

MTMP. (a) noise data and (b) de-noised data. 
Figure 15. Convergence curves of RMSEs obtained by MhAs on noise data and de-noised data under
MTMP. (a) noise data and (b) de-noised data.

Figure 16 describes the RMSE distribution boxplot obtained by six algorithms. It can
be obtained by observation that except for the BAS, the RMSE obtained from predicted
data has decreased. On the contrary, the upper and low bounds of BAS have increased.
Also, there are a few outliers in the boxplot of MFO and PSO. In addition, MPA, AEO, and
GWO have superior performance compared with other algorithms. This fully shows that
GRNN data noise reduction can improve the stability of MhAs in parameter identification.
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Figure 17 presents the V-I characteristic curves based on medium-temperature and
medium-pressure obtained by the GRNN fitting the GWO algorithm under noise reduction
data conditions. It can be obtained by observation that the curve of fitting data almost
coincides with the curve of actual data and the error measured by RMSE is equal to 99.07%,
which demonstrates the parameter identification effect is in line with expectations.

Energies 2023, 16, x FOR PEER REVIEW 23 of 36 
 

 

Figure 16 describes the RMSE distribution boxplot obtained by six algorithms. It can 

be obtained by observation that except for the BAS, the RMSE obtained from predicted 

data has decreased. On the contrary, the upper and low bounds of BAS have increased. 

Also, there are a few outliers in the boxplot of MFO and PSO. In addition, MPA, AEO, and 

GWO have superior performance compared with other algorithms. This fully shows that 

GRNN data noise reduction can improve the stability of MhAs in parameter identification. 

 

Figure 16. Boxplot of RMSEs obtained by MhAs on noise data and de-noised data under MTMP. 

Figure 17 presents the V-I characteristic curves based on medium-temperature and 

medium-pressure obtained by the GRNN fitting the GWO algorithm under noise reduc-

tion data conditions. It can be obtained by observation that the curve of fitting data almost 

coincides with the curve of actual data and the error measured by RMSE is equal to 

99.07%, which demonstrates the parameter identification effect is in line with expecta-

tions. 

 

Figure 17. GRNN for V-I curve fitting based on de-noised data under MTMP of GWO. 

  

Figure 17. GRNN for V-I curve fitting based on de-noised data under MTMP of GWO.

4.3.2. Insufficient Data

Table A4 of Appendix A shows the statistics of the results of parameter extraction
of insufficient and predicted data, respectively, by six algorithms under MTMP. From
Table A4 of Appendix A, it is obvious that by data prediction, the RMSE obtained by
the four algorithms is lower than that obtained from predicted data, except for the MFO
and PSO algorithms. After data prediction, the RMSE of the PSO algorithm and the BAS
algorithm has a magnitude of the minus second power of ten, while the RMSE of other
algorithms has a magnitude exceeding the minus fourth power of ten. The MPA algorithm
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exhibits the most significant decrease of 63.40%, whereas the BAS algorithm demonstrates
a comparatively smaller reduction of 13.26%.

Figure 18 describes the RMSE convergence curves obtained by six algorithms on two
datasets, with most algorithms having lower RMSE based on predicted data, and only
RMSE based on prediction data of BAS and PSO being larger than RMSE based on low
data. In addition, compared with other algorithms, MPA and AEO can quickly acquire a
smaller RMSE and have great stability.
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Figure 18. Convergence curves of RMSEs obtained by MhAs on original data and predicted data
under MTMP. (a) original data and (b) predicted data.

Figure 19 describes the RMSE distribution boxplot obtained by six algorithms. It
can be obtained by observation that the RMSE obtained based on predicted data has
decreased. In addition, MPA has superior performance compared with other algorithms.
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This fully shows that GRNN data noise reduction can improve the stability of MhAs in
parameter identification.
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4.4. PEMFC Parameter Extraction of LTHP
4.4.1. Noised Data

Table A5 of Appendix A shows the statistics of the results of parameter extraction of
noise and noise reduction data, respectively, by six algorithms under LTHP. From Table A5
of Appendix A, it can be obtained by observation that after data de-noising, the RMSE
obtained by the five algorithms is lower than that obtained from noised data, except for
the BAS algorithm. In particular, the MFO algorithm exhibits the most significant decrease
of 73.85%, whereas the PSO algorithm demonstrates a comparatively smaller reduction of
26.21%. After data noise reduction, the RMSE of the PSO algorithm and the BAS algorithm
has a magnitude of the minus second power of ten, while the RMSE of the other four
algorithms has a magnitude of the minus third power of ten.

Figure 20 describes the RMSE convergence curves obtained by six algorithms under
noise and de-noised data conditions. It can be obtained by observation that most of the
RMSE based on de-noised data of identification results have decreased, while the RMSE of
the BAS has increased after data noise reduction.

The boxplot illustrates the distribution of RMSE obtained by MhAs which is presented
in Figure 21. It can be obtained by observation that except for the BAS, the RMSE obtained
from predicted data has decreased. On the contrary, the upper and low bounds of PSO and
the upper bound of BAS have increased. In addition, MPA, AEO, and GWO have superior
performance compared with other algorithms. This fully shows that GRNN data noise
reduction can improve the stability of MhAs in parameter identification.

Figure 22 shows the V-I characteristic curves based on low-temperature and high-
pressure obtained by GRNN fitting the MFO algorithm under noise reduction data cases. It
can be obtained by observation that the curve of fitting data almost coincides with the curve
of actual data and the error measured by RMSE is equal to 98.70%, which demonstrates the
parameter identification effect is in line with expectations.
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4.4.2. Insufficient Data

Table A6 of Appendix A shows the statistics of the results of parameter extraction of
insufficient and predicted data, respectively, by six algorithms under LTHP. From Table A6
of Appendix A, it is obvious that after data prediction, the RMSE obtained by the six
algorithms is lower than that obtained from predicted data. After data prediction, the
RMSE of the PSO algorithm and the BAS algorithm has a magnitude not exceeding the
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minus third power of ten, while the RMSE of the other algorithm has a magnitude exceeding
the minus fourth power of ten. The MFO algorithm exhibits the most significant decrease
of 92.69%, whereas the PSO algorithm demonstrates a comparatively smaller reduction
of 43.01%.

Figure 23 describes the RMSE convergence curves obtained by six algorithms on two
datasets, with all algorithms having lower RMSE based on predicted data.
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Figure 23. Convergence curves of RMSEs obtained by MhAs on original data and predicted data
under LTHP. (a) original data and (b) predicted data.
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The boxplot illustrates the distribution of RMSE obtained by MhAs which is presented
in Figure 24. It can be obtained by observation that except for the BAS and PSO, the
RMSE of other algorithms obtained from predicted data has decreased. However, the
lower bound RMSE of PSO and the upper bound RMSE of BAS have increased. In addi-
tion, MPA, AEO, and MFO have superior performance compared with other algorithms.
This fully shows that GRNN data noise reduction can improve the stability of MhAs in
parameter identification.
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5. Discussions

Table 2 summarizes the research related to PEMFC parameter identification in re-
cent years. It can be seen from the statistical comparison results that most studies have
not simultaneously considered the impact of noise data and insufficient data volume on
the final parameter extraction accuracy. The research conducted in this study precisely
compensates for the shortcomings in this area and provides excellent guidance for the
research on PEMFC parameter extraction direction. However, through the research in this
study, it can be found that in using heuristic algorithms, due to their unique parameter
random search ability, some algorithms have abnormal numerical accuracy in the results
when extracting parameters. For example, under MTMP conditions, after data prediction
and parameter extraction using the BAS algorithm, the identification accuracy showed
abnormalities, after data de-noising, and the accuracy decreased by 13.26%. Overall, the
method proposed in this research is not only suitable for PEMFC parameter identification
but also for photovoltaic (PV) and solid oxide fuel cell (SOFC) parameter identification.
Through this study, it has been fully demonstrated that it has extremely good performance
in the field of parameter identification. All experimental results in this article are based
on the data in Tables A7–A9, where Table A7 represents the V-I data of PEMFC under
HTLP, Table A8 represents the V-I data under MTMP, and Table A9 represents the V-I data
under LTHP.
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Table 2. Summary of research on parameter identification of some PEMFCs in recent years.

Approach Year Cell Type
Data Process Operating Condition

Data
De-Noise

Data
Prediction No Consider No Consider

BRNN-MhAs [17] 2021 Ballard-Mark-V
PEMFC 3 3

IDE [14] 2021 N.P. 3 3

LMBP [15] 2021 Ballard-Mark-V
PEMFC 3 3

ICSO [13] 2023 N.P. 3 3

ELM-MhAs [12] 2023 Ballard-Mark-V
PEMFC 3 3

Note. N.P.: Not provided.

Additionally, the study did not take into account the impact of changes in temperature
and other factors on the identification results during the actual operation of the PEMFC,
and the shortcomings of this study are that although the overall accuracy can be improved
after data processing, it has not improved much. Further research is needed in this direction
in the future. Additionally, the research did not consider the specific impact and role of the
identified parameters on the cell itself [36–38].

6. Conclusions and Prospect

This study proposes a parameter identification method for the PEMFC using GRNN
and MhAs. The original cell V-I data are processed using GRNN, which includes data
de-noising and data prediction. In addition, six typical heuristic algorithms were used to
extract parameters of the PEMFC under three operating conditions: HTLP, MTMP, and
LTHP. Then, the obtained results were compared with the results extracted from the original
data, and the results show that using GRNN to process the data can markedly enhance
the precision rate of final identification, specifically, after data prediction, the accuracy
of the MFO algorithm has been improved by 92.69% under LTHP conditions. And after
data de-noising processing, it is obvious that it can improve the stability of parameter
identification results. Finally, by substituting the identified parameters into the model,
the fitting accuracy of V-I data obtained under all three operating conditions was very
high. Specifically, under HTLP conditions, the V-I fitting accuracy achieved 99.39%, the
fitting accuracy was 99.07% on MTMP, and the fitting accuracy was 98.70%. All in all, after
processing the PEMFC data using GRNN and using MhAs for cell parameter extraction,
the efficiency, accuracy, and stability of the final identification results of PEMFC parameter
identification can be greatly improved. This study provides a novel approach to the field of
PEMFC parameter identification.

In the end, this study provides significant guidance for future research on PEMFC
parameter extraction. However, future research on this aspect should pay more attention
to the impact of data analysis on the final identification results. In addition, consideration
should also be given to the impact of the identified parameters on the internal mechanism of
the cell itself. In general, further research should be conducted on the internal characteristics
of the cell, such as its state of charge and health, through the identified parameters.
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Appendix A

Table A1. Parameters identification results of noise data and de-noised data based under HTLP
and MhAs.

State Algorithms Data
Identified Parameters

RMSE
ε1 ε2 ε3 ε4 λ Rc(Ω) b(V)

HTLP

MPA N −0.9071 2.5000 × 10−3 3.6000 × 10−5 −1.0000 × 10−4 23.0000 1.0000 × 10−4 0.0136 8.2100 × 10−3

DN −0.9437 3.4000 × 10−3 9.8000 × 10−5 −1.0000 × 10−4 13.5231 8.0000 × 10−4 0.0136 1.4792 × 10−3

AEO N −0.9384 2.5000 × 10−3 3.6000 × 10−5 −1.0000 × 10−4 18.1835 1.0000 × 10−4 0.0136 8.2182 × 10−3

DN −0.9142 2.8000 × 10−3 6.1300 × 10−5 −1.5836 × 10−4 13.4758 8.0000 × 10−4 0.0136 1.4798 × 10−3

PSO N −0.9610 2.9000 × 10−3 3.6000 × 10−5 −2.6000 × 10−4 17.8012 1.0000 × 10−4 0.0220 8.3356 × 10−2

DN −0.9882 3.0000 × 10−3 3.6000 × 10−5 −2.6000 × 10−4 14.1474 1.0000 × 10−4 0.0693 4.2543 × 10−2

BAS N −1.0078 3.2000 × 10−3 5.5900 × 10−5 −1.6467 × 10−4 17.2423 1.5174 × 10−4 0.0217 3.8371 × 10−2

DN −0.9756 3.0000 × 10−3 7.1700 × 10−5 −1.1658 × 10−4 13.9875 2.4255 × 10−4 0.0156 2.2016 × 10−2

GWO N −0.8561 2.7000 × 10−3 6.1100 × 10−5 −1.7406 × 10−4 19.4860 6.5726 × 10−4 0.0136 8.3379 × 10−3

DN −0.8714 2.8000 × 10−3 7.0143 × 10−5 −1.5764 × 10−4 11.3971 4.8605 × 10−4 0.0136 1.5914 × 10−3

MFO N −0.9520 2.7000 × 10−3 4.3300 × 10−5 −1.7414 × 10−4 23.0000 8.0000 × 10−4 0.0136 8.2942 × 10−3

DN −0.8531 3.1000 × 10−3 9.3100 × 10−5 −1.5858 × 10−4 12.7877 1.0000 × 10−4 0.0136 1.5251 × 10−3

Table A2. Parameters identification results of original data and predicted data based under HTLP
and MhAs.

State Algorithms Data
Identified Parameters

RMSE
ε1 ε2 ε3 ε4 λ Rc(Ω) b(V)

HTLP

MPA O −0.9788 2.6836 × 10−3 3.6000 × 10−5 −1.7361 × 10−4 23.0000 1.0000 × 10−4 0.0136 1.8172 × 10−4

P −0.9040 2.4849 × 10−3 3.6873 × 10−5 −1.7361 × 10−4 23.0000 3.2975 × 10−4 0.0136 1.2978 × 10−4

AEO O −1.0234 3.3728 × 10−3 7.4400 × 10−5 −1.7358 × 10−4 22.9704 1.0000 × 10−4 0.0136 1.8329 × 10−4

P −0.9936 3.0606 × 10−3 5.8834 × 10−5 −1.7361 × 10−4 22.9999 3.0556 × 10−4 0.0136 1.2979 × 10−4

PSO O −0.9918 2.9998 × 10−3 5.3800 × 10−5 −1.8100 × 10−4 20.4025 2.9781 × 10−4 0.0136 4.5757 × 10−2

P −0.9975 3.1380 × 10−3 6.0205 × 10−5 −1.0567 × 10−4 21.0376 7.1037 × 10−4 0.1105 7.1117 × 10−2

BAS O −0.9646 2.7871 × 10−3 4.7900 × 10−5 −1.2795 × 10−4 11.8778 7.2134 × 10−4 0.0315 4.7789 × 10−2

P −1.0520 3.2208 × 10−3 6.9550 × 10−5 −1.1996 × 10−4 16.9202 1.0746 × 10−4 0.0233 2.4037 × 10−2

GWO O −1.0150 3.3641 × 10−3 7.5400 × 10−5 −1.7248 × 10−4 14.8613 1.8872 × 10−4 0.0136 7.8535 × 10−4

P −1.1592 3.9697 × 10−3 8.8869 × 10−5 −1.7324 × 10−4 21.1633 2.9474 × 10−4 0.0137 2.6180 × 10−4

MFO O −0.8531 2.5174 × 10−3 4.9000 × 10−5 −1.7360 × 10−4 23.0000 1.0000 × 10−4 0.0136 1.8301 × 10−4

P −0.8539 3.2393 × 10−3 9.8000 × 10−5 −1.7361 × 10−4 23.0000 2.6234 × 10−4 0.0136 1.2979 × 10−4

Table A3. Parameters identification results of noise data and de-noised data based under MTMP
and MhAs.

State Algorithms Data
Identified Parameters

RMSE
ε1 ε2 ε3 ε4 λ Rc(Ω) b(V)

MTMP

MPA N −0.9356 2.5684 × 10−3 3.6000 × 10−5 −1.7905 × 10−4 23.0000 1.0000 × 10−4 0.0136 9.0391 × 10−3

DN −0.9416 3.3689 × 10−3 9.8000 × 10−5 −1.4121 × 10−4 10.0000 8.0000 × 10−4 0.0149 3.0236 × 10−3

AEO N −1.0197 3.0243 × 10−3 5.0100 × 10−5 −1.7902 × 10−4 22.9999 1.1388 × 10−4 0.0136 9.0398 × 10−3

DN −0.9375 2.5467 × 10−3 4.1900 × 10−5 −1.4125 × 10−4 10.0000 8.0000 × 10−4 0.0149 3.0294 × 10−3

PSO N −0.9882 3.0804 × 10−3 3.6000 × 10−5 −2.6000 × 10−4 14.1474 1.0000 × 10−4 0.0693 5.0083 × 10−2

DN −0.9547 3.3380 × 10−3 9.8000 × 10−5 −9.5400 × 10−5 13.7242 8.0000 × 10−4 0.0292 2.3422 × 10−2

BAS N −0.9699 3.0822 × 10−3 8.2000 × 10−5 −9.9500 × 10−5 19.7473 4.3042 × 10−4 0.0369 2.5185 × 10−2

DN −0.9584 2.7603 × 10−3 4.5600 × 10−5 −1.7596 × 10−4 11.8635 7.0335 × 10−4 0.0272 1.8866 × 10−2

GWO N −1.1160 3.7093 × 10−3 7.7473 × 10−5 −1.7869 × 10−4 22.9456 6.0307 × 10−4 0.0136 9.1580 × 10−3

DN −1.0319 2.8337 × 10−3 4.2200 × 10−5 −1.4112 × 10−4 10.0000 4.7206 × 10−4 0.0151 3.0655 × 10−3

MFO N −0.9990 3.1232 × 10−3 6.1200 × 10−5 −1.7904 × 10−4 23.0000 1.0000 × 10−4 0.0136 9.0445 × 10−3

DN −1.1997 3.5568 × 10−3 5.7400 × 10−5 −1.4348 × 10−4 10.0000 1.0000 × 10−4 0.0136 3.4203 × 10−3

Table A4. Parameters identification results of original data and predicted data based under MTMP
and MhAs.

State Algorithms Data
Identified Parameters

RMSE
ε1 ε2 ε3 ε4 λ Rc(Ω) b(V)

MTMP

MPA O −0.9872 3.6025 × 10−3 9.7600 × 10−5 −1.7220 × 10−4 16.5370 7.9936 × 10−4 0.0158 7.2400 × 10−6

P −0.8886 3.3117 × 10−3 9.8000 × 10−5 −1.7224 × 10−4 17.0972 7.9999 × 10−4 0.0158 2.6500 × 10−6

AEO O −0.8531 2.9435 × 10−3 7.9900 × 10−5 −1.7234 × 10−4 19.3780 8.0000 × 10−4 0.0161 6.8300 × 10−5

P −1.0941 3.8739 × 10−3 9.4200 × 10−5 −1.7224 × 10−4 17.0795 8.0000 × 10−4 0.0158 3.1200 × 10−5
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Table A4. Cont.

State Algorithms Data
Identified Parameters

RMSE
ε1 ε2 ε3 ε4 λ Rc(Ω) b(V)

PSO O −0.9523 3.3678 × 10−3 9.8000 × 10−5 −9.5400 × 10−5 18.0146 8.0000 × 10−4 0.0373 1.8500 × 10−2

MTMP

P −1.0564 3.5663 × 10−3 9.8000 × 10−5 −9.5400 × 10−5 21.0946 8.0000 × 10−4 0.0174 2.1842 × 10−2

BAS O −0.9972 3.5814 × 10−3 9.2100 × 10−5 −1.2458 × 10−4 19.1842 1.6857 × 10−4 0.0408 2.9545 × 10−2

P −0.9651 3.3046 × 10−3 9.2400 × 10−5 −1.2678 × 10−4 18.4227 7.8429 × 10−4 0.0436 2.5628 × 10−2

GWO O −0.9400 2.5785 × 10−3 3.6500 × 10−5 −1.7195 × 10−4 10.1534 1.0110 × 10−4 0.0137 2.6819 × 10−4

P −0.9093 2.8226 × 10−3 5.9800 × 10−5 −1.7183 × 10−4 11.3025 3.9408 × 10−4 0.0142 2.2363 × 10−4

MFO O −0.9032 2.4639 × 10−3 3.6300 × 10−5 −1.7252 × 10−4 23.0000 8.0000 × 10−4 0.0163 1.2940 × 10−4

P −0.8551 3.0497 × 10−3 8.6800 × 10−5 −1.7204 × 10−4 10.3446 1.0000 × 10−4 0.0136 2.8621 × 10−4

Table A5. Parameters identification results of noise data and de-noised data based under LTHP
and MhAs.

State Algorithms Data
Identified Parameters

RMSE
ε1 ε2 ε3 ε4 λ Rc(Ω) b(V)

LTHP

MPA N −0.9243 3.3842 × 10−3 9.8000 × 10−5 −1.6452 × 10−4 10.9407 8.0000 × 10−4 0.0136 1.0637 × 10−2

DN −0.8969 3.2076 × 10−3 9.8000 × 10−5 −1.4003 × 10−4 10.0000 8.0000 × 10−4 0.0150 2.7961 × 10−3

AEO N −1.0965 3.3347 × 10−3 5.5484 × 10−5 −1.6454 × 10−4 10.9277 8.0000 × 10−4 0.0136 1.0638 × 10−2

DN −0.9823 3.3547 × 10−3 8.9066 × 10−5 −1.4016 × 10−4 10.0000 7.9998 × 10−4 0.0150 2.7965 × 10−3

PSO N −0.9883 3.0805 × 10−3 3.6000 × 10−5 −2.6000 × 10−4 14.1474 1.0000 × 10−4 0.0693 5.3206 × 10−2

DN −0.9449 2.9247 × 10−3 3.6000 × 10−5 −2.6000 × 10−4 18.8108 1.0000 × 10−4 0.0474 3.9261 × 10−2

BAS N −0.8917 2.6943 × 10−3 5.5447 × 10−5 −1.6776 × 10−4 13.2096 4.8206 × 10−4 0.0181 3.8512 × 10−2

DN −0.9934 3.2872 × 10−3 6.4747 × 10−5 −1.3804 × 10−4 14.4718 3.5248 × 10−4 0.0240 5.7263 × 10−2

GWO N −1.0674 3.0840 × 10−3 4.4299 × 10−5 −1.6480 × 10−4 10.7232 2.5220 × 10−4 0.0136 1.0681 × 10−2

DN −1.0596 3.5278 × 10−3 8.3867 × 10−5 −1.4073 × 10−4 14.3708 5.6604 × 10−4 0.0176 3.1399 × 10−3

MFO N −1.1679 3.2876 × 10−3 3.6000 × 10−5 −1.6487 × 10−4 10.7555 1.0000 × 10−4 0.0136 1.0692 × 10−2

DN −1.0772 3.7835 × 10−3 9.8000 × 10−5 −1.4003 × 10−4 10.0000 8.0000 × 10−4 0.0150 2.7961 × 10−3

Table A6. Parameters identification results of original data and predicted data based under LTHP
and MhAs.

State Algorithms Data
Identified Parameters

RMSE
ε1 ε2 E3 ε4 λ Rc(Ω) b(V)

LTHP

MPA O −0.9778 3.5659 × 10−3 9.7853 × 10−5 −1.7098 × 10−4 16.4825 8.0000 × 10−4 0.0169 3.9481 × 10−5

P −0.9494 3.4339 × 10−3 9.4921 × 10−5 −1.7101 × 10−4 17.0471 7.9376 × 10−4 0.0170 1.2754 × 10−5

AEO O −0.9935 3.1003 × 10−3 6.1264 × 10−5 −1.7103 × 10−4 15.4458 5.4652 × 10−4 0.0167 3.9974 × 10−5

P −0.9575 3.0169 × 10−3 6.3508 × 10−5 −1.7106 × 10−4 16.0734 4.7360 × 10−4 0.0169 1.3427 × 10−5

PSO O −0.9703 2.9028 × 10−3 5.0162 × 10−5 −1.6158 × 10−4 15.0542 2.0792 × 10−4 0.0328 3.4588 × 10−2

P −0.9990 2.7318 × 10−3 3.6000 × 10−5 −1.4170 × 10−4 10.1816 5.8666 × 10−4 0.0420 1.9711 × 10−2

BAS O −0.9182 3.0406 × 10−3 7.5044 × 10−5 −1.7750 × 10−4 13.8505 4.2091 × 10−4 0.0301 3.1607 × 10−2

P −0.9931 3.1320 × 10−3 5.9052 × 10−5 −1.7616 × 10−4 15.8719 3.5783 × 10−4 0.0192 6.0350 × 10−3

GWO O −1.1501 3.6883 × 10−3 6.7517 × 10−5 −1.7042 × 10−4 10.4514 2.1721 × 10−4 0.0146 3.6019 × 10−4

P −1.0010 3.0434 × 10−3 5.5508 × 10−5 −1.7142 × 10−4 17.3989 4.1713 × 10−4 0.0172 1.0451 × 10−4

MFO O −0.9458 3.0558 × 10−3 6.8896 × 10−5 −1.7060 × 10−4 10.0000 8.0000 × 10−4 0.0136 5.6641 × 10−4

P −0.9375 2.5788 × 10−3 3.6958 × 10−5 −1.7101 × 10−4 16.5422 8.0000 × 10−4 0.0169 4.1393 × 10−5

Table A7. Original data under HTLP condition [39].

V I

0.0100 0.9817

0.0700 0.8619

0.1300 0.8233

0.1900 0.7993

0.2500 0.7817

0.3100 0.7677

0.3700 0.7560



Energies 2023, 16, 5290 27 of 30

Table A7. Cont.

V I

0.4300 0.7459

0.4900 0.7370

0.5500 0.7289

0.6100 0.7215

0.6700 0.7147

0.7300 0.7082

0.7900 0.7021

0.8500 0.6963

0.9100 0.6906

0.9700 0.6850

1.0300 0.6795

1.0900 0.6740

1.1500 0.6684

1.2100 0.6625

1.2700 0.6562

1.3300 0.6491

1.3900 0.6404

1.4500 0.6272

Table A8. Original data under MTMP condition [39].

V I

0.0100 0.9439

0.0700 0.8314

0.1300 0.7950

0.1900 0.7723

0.2500 0.7556

0.3100 0.7422

0.3700 0.7310

0.4300 0.7213

0.4900 0.7126

0.5500 0.7047

0.6100 0.6975

0.6700 0.6907

0.7300 0.6843

0.7900 0.6782

0.8500 0.6723

0.9100 0.6665

0.9700 0.6608

1.0300 0.6551
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Table A8. Cont.

V I

1.0900 0.6493

1.1500 0.6434

1.2100 0.6371

1.2700 0.6302

1.3300 0.6223

1.3900 0.6124

1.4500 0.5969

Table A9. Original data under LTHP condition [39].

V I

0.0100 0.9112

0.0700 0.8061

0.1300 0.7720

0.1900 0.7506

0.2500 0.7349

0.3100 0.7222

0.3700 0.7115

0.4300 0.7023

0.4900 0.6940

0.5500 0.6864

0.6100 0.6794

0.6700 0.6728

0.7300 0.6666

0.7900 0.6606

0.8500 0.6548

0.9100 0.6491

0.9700 0.6435

1.0300 0.6378

1.0900 0.6320

1.1500 0.6259

1.2100 0.6195

1.2700 0.6125

1.3300 0.6043

1.3900 0.5940

1.4500 0.5777
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