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Abstract: Electricity prices are a central element of the electricity market, and accurate electricity
price forecasting is critical for market participants. However, in the context of increasingly integrated
economic markets, the complexity of the electricity system has increased. As a result, the number of
factors required to consider in electricity price forecasting is growing. In addition, the high percentage
of renewable energy penetration has increased the volatility of electricity generation, making it more
challenging to predict prices accurately. In this paper, we propose a probabilistic forecasting method
based on SHAP (SHapley Additive exPlanation) feature selection and LSTNet (long- and short-term
time-series network) quantile regression. First, to reduce feature redundancy and overfitting, we
use the SHAP method to perform feature selection in a high-dimensional input feature set, and
specifically analyze the magnitude and manner in which features affect electricity prices. Second, we
apply the LSTNet quantile regression model to predict the electricity value under different quantiles.
Finally, the probability density function and the prediction interval of the predicted electricity prices
are obtained by kernel density estimation. The case of the Danish electricity market validates the
effectiveness and accuracy of our proposed method. The accuracy of the proposed method is better
than that of other methods, and we assess the importance and direction of the impact of features on
electricity prices.

Keywords: probabilistic forecasting; SHAP; feature selection; LSTNet; quantile regression

1. Introduction

Electricity prices are the core of the electricity market and have strong economic
leverage. The fluctuations in electricity prices affect the flow and allocation of various
resources in the electricity market. In the electricity market environment, accurate electricity
price forecasting is of great importance to all participants in the market [1–3]. The increasing
penetration of renewable energy in the power system has made power generation more
volatile and the resulting electricity prices more unpredictable than ever before.

Existing studies on electricity price forecasting can be classified into deterministic and
probabilistic forecasts based on the form of the results. Deterministic forecasts usually
have a single point forecast value as output, while probabilistic forecasts can have quantile
estimates, forecast interval estimates, and probability density estimates as output.

Deterministic forecasting methods include mainly statistical and artificial intelligence
methods. Statistical models rely on linear regressions and represent forecasts through
linear combinations of explanatory variables. They are effective when dealing with linear
data but perform poorly when dealing with non-stationary and non-linear data. ARIMA
(autoregressive integrated moving average model) [4,5] and GARCH (generalized autore-
gressive conditional heteroskedasticity) [6] are commonly used statistical models. Artificial
intelligence models are better at handling non-smooth and non-linear data than statisti-
cal models, especially deep neural networks. The Recurrent Neural Network (RNN) is
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a powerful model for processing time series data, which achieves impressive results by
constructing additional maps to preserve the information from past inputs. As important
variants of RNN, LSTM (long short-term memory) and GRU (gated recurrent unit) are used
to solve the gradient vanishing problem of RNN [7,8]. Reference [9] decomposed a nonlin-
ear series of electricity prices using wavelet variations and then captured the appropriate
behavior of electricity prices using an Adam-optimized LSTM model. The validity of the
hybrid model was verified with Australian and French datasets. Reference [10] divided
the electricity price prediction into two parts: ARIMA predicted the linear part of the
electricity price series and Bi_LSTM (bidirectional long and short-term memory) predicted
the nonlinear part of the electricity price series. The results of the electricity price prediction
were obtained by combining the linear and nonlinear parts. Reference [11] used a new
evolutionary algorithm differential evolution DE to identify suitable hyperparameters for
LSTM to efficiently obtain optimal solutions for hyperparameters. Convolutional neural
networks (CNNs) excel in image-related tasks, and many electricity price prediction studies
use CNNs to extract time-series features [12]. Reference [13] used feature selection and
feature extraction techniques to reduce the dimensionality of the input data to eliminate the
redundancy of the data. Moreover, reference [13] used an enhanced convolutional neural
network ECNN and enhanced support vector regression ESVR as prediction models to
reduce the overfitting problem. The arithmetic examples of electricity load forecasting and
tariff forecasting verify the accuracy and stability of the model. Reference [14] proposed
a LSTNet model that can extract both long-term and short-term dependent patterns of
electricity price sequences, where a CNN is set to extract short-term dependent patterns,
and a RNN and RNN skip are set to extract long-term dependent patterns with a GRU
RNN component. When compared to several state-of-the-art base-line methods, LSTNet
significantly outperformed them in studies on real-world data with complicated mixtures
of repetitive patterns.

Traditional research on power system forecasting is dominated by deterministic fore-
casting, and it is difficult to avoid forecast errors. Deterministic forecasting is difficult to
apply in new energy power systems, because it is difficult to achieve quantitative analysis
and estimation of the fluctuation range of forecast errors. Probabilistic forecasting, as a
theory and method to quantify prediction uncertainty, can obtain the probability distri-
bution of the predicted object and provide more comprehensive prediction information
for decision makers [15]. Probabilistic prediction is commonly expressed through the
conditional probability distribution of the predicted object given the input information.
Probability density functions and cumulative distribution functions are both widely used
to accomplish this. Additionally, quantile and prediction intervals are discrete expressions
of probability distributions and are frequently used for more understandable and intuitive
probability predictions.

Probabilistic forecasting can be divided into parametric and nonparametric methods,
depending on whether the prediction object or the distribution model of the prediction
error is presupposed. The parametric method relies on prior knowledge of the distribution
of the predicted object and assumes that the predicted object or overall error of the predic-
tion follows a specific probability distribution model (e.g., normal distribution [16], beta
distribution [17], Weibull distribution, etc. [18]). Based on this assumption, the parameters
of the distribution model can be estimated to obtain the prediction results. The parametric
method can construct a forecasting model by making direct parametric assumptions about
the probability distribution of the predicted object, without relying on deterministic fore-
casting results [19]. This approach has been successful in improving the performance of the
parametric method’s probabilistic prediction by refining the distribution model. However,
this particular distribution model is not always applicable to issues that involve complex
and stochastic probabilistic prediction in new energy power systems.

The objects predicted in new energy power systems are highly stochastic and volatile,
with distributions that exhibit severe polymorphic and fat-tailed characteristics [20]. It
is challenging to correctly model such objects using traditional parametric distribution
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models, necessitating the use of sophisticated nonparametric models to measure prediction
errors. The nonparametric method of probabilistic prediction avoids issues such as irra-
tional distribution assumptions in the parametric method [21], by directly describing the
prediction distribution rather than making parametric assumptions about the prediction
error or the distribution of the predicted object [22,23]. The nonparametric method of
probability prediction offers a solution to the limitations of existing parametric distribution
models [24]. This method avoids prior assumptions about the prediction object or probabil-
ity distribution of the prediction error, which enables a more accurate description of the
prediction distribution. It can also approximate more complex distribution models, and
can provide both continuous and discrete representations of probability distribution by
utilizing kernel density estimation [25,26], hybrid density network [27], interval predic-
tion [28], and quantile regression [29,30]. Moreover, it requires less manual intervention
and provides a more consistent probability prediction distribution that aligns with the true
distribution. As a research hotspot in predicting new energy power systems [31,32], the
nonparametric method of probability prediction has gained considerable attention.

In response to renewable energy uncertainty and an expanding feature set in electricity
price forecasting, we propose a new probabilistic forecasting method that combines SHAP
feature selection and LSTNet quantile regression to predict day-ahead electricity prices.
First, the SHAP method is used to select features from the electricity dataset to reduce
redundancy and achieve feature dimensionality reduction. The SHAP method is an additive
feature attribution method that identifies the contribution of each feature to the model
and associates these features with the electricity market. Additionally, the SHAP method
can be used to replace traditional feature selection methods by using feature importance.
Next, we introduce a probabilistic forecasting model that is based on LSTNet quantile
regression. With the neural network quantile regression approach, we obtain predicted
electricity price quantiles at different levels of probability by applying the LSTNet model to
test data. Finally, we use the kernel density estimation algorithm to estimate the probability
distribution of the predicted electricity prices and generate prediction intervals at different
confidence levels.

The rest of the paper is organized as follows. Section 2 describes the key techniques
used in the prediction method. Section 3 conducts a case analysis to demonstrate the
effectiveness of our proposed method. Section 4 concludes the paper.

2. Materials and Methods
2.1. SHapley Additive exPlanation-SHAP

The SHAP method is derived from cooperative game theory and is an additive feature
attribution method that is used to explain the contribution of each feature in a predictive
model. This method builds an additive explanatory model, where each input feature is
considered as a contributing factor to the output, and the model’s prediction is interpreted
as the aggregate sum of the feature attribution values. Suppose the i-th sample is xi, the
j-th feature of the i-th sample is xij, the predicted value of the model for the ith sample is yi,
and the baseline (usually the mean of all sample target variables) of the whole model is
ybase, then the SHAP value obeys the following equation:

yi = ybase + f (xi1) + f (xi2) + f (xi3) + . . . + f (xik) (1)

where f (xik) is the SHAP value of feature xik. Intuitively, f (xik) is the value of the contribu-
tion of the kth feature in the ith sample to the final predicted value yi.

Unlike the traditional feature selection method based on feature importance, the SHAP
value has a positive or negative value. When f (xik) > 0, it indicates that the feature boosts
the prediction value, and vice versa, it indicates that the feature makes the prediction
value lower.

In order to have a reliable method of attributing feature contribution to a prediction,
SHAP values must satisfy three axioms: local accuracy, missingness, and consistency. The
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only value that meets all three of these criteria is the Shapley value. The Shapley value can
be calculated by the following equation:

φj = ∑
S⊆{x1,··· ,xp}r{xm}

|S|!(p− |S| − 1)!
p!

(
fx
(
S ∪

{
xj
})
− fx(S)

)
(2)

where
{

x1, · · · , xp
}

is the set of all input features, p is the number of input features, and
fx(S) is the prediction of the feature subset S .

This paper utilizes the SHAP method mainly in two areas: feature selection and feature
analysis. As power systems continue to advance, the number of features associated with
electricity prices has increased, sometimes resulting in a dataset with high dimensionality
and computational complexity, known as “dimensional disaster”. Our purpose for using
feature selection is to mitigate these issues by reducing the dimensionality of the data
and removing redundant features. We take the absolute values of all SHAP values under
each category of features and compute their average. This average value characterizes
the importance of different categories of features. The formula used to calculate feature
importance is as follows:

Ij =
1
P

P

∑
i=1

∣∣ f (xij
)∣∣ (3)

To analyze the ways and patterns by which features affect electricity prices, this paper
presents an in-depth examination of the electricity market by creating feature dependency
graphs. These diagrams highlight the patterns between SHAP values and the magnitude
of feature values. The feature dependency diagram provides a visualization where the
horizontal axis represents the magnitude of the value of a particular feature type, the
vertical axis represents the corresponding SHAP value, and each point on the axis represents
a sample.

2.2. Long- and Short-Term Time-Series Network-LSTNet

Electricity price series data display a mixture of long-term cyclic patterns and short-
term nonlinear patterns, which traditional methods cannot accurately differentiate. To
address this limitation, the LSTNet network is able to capture both the short-term locally
dependent patterns between multidimensional input features with convolutional layers,
and complex long-term dependent patterns with recurrent neural network layers and
recurrent-skip layers. However, the nonlinear nature of the convolutional and recurrent
components results in a major drawback: output insensitivity to input scale. To remedy
this, the LSTNet model adds a linear component to the prediction using a fully connected
layer (Dense) that simulates the autoregressive process. Consequently, outputs can react to
variations in the input scale. Refer to Figure 1 for the LSTNet structure.
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The individual modules of LSTNet are specified as follows.
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(1) Convolutional module

This layer is a convolutional neural network without pooling layers, and this struc-
ture extracts short-term features in the time dimension and local dependencies between
variables. The convolution kernel performs the following convolutional operations on the
input matrix.

S = f (WX + b) (4)

where S is the feature matrix obtained from the convolution operation, W is the weight
matrix, b is the offset vector, W and b is the parameter obtained from the network learning,
and f is the Relu function.

(2) Recurrent and Recurrent-skip modules

Recurrent-skip modules are RNN structures with time-hopping links and jumping
links between the current unit and hidden units of the same phase in any adjacent recurrent
unit to extend the time span of the information flow. The LSTM network is employed
in this paper as a variant of RNN to serve as the recurrent unit. Basic units of the LSTM
network consist of forgetting gates, input gates, and output gates. The structure of the
recurrent-skip unit is shown in Figure 2.
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The input xt in the forgetting gate, together with the state memory unit Ct−s and the
intermediate output ht−s, determines which information the state memory unit is to forget.
The input xt is changed by the sigmoid and tanh functions to determine which information
is retained in the state memory unit. The intermediate outputs ht are determined by
the updated Ct and ot. The computational equations for the recurrent module and the
recurrent-skip module are expressed uniformly as follows:

ft = σ
(

W f · [ht−s, xt] + b f

)
it = σ(Wi · [ht−s, xt] + bi)

ot = σ(Wo · [ht−s, xt] + bo)

C̃t = tanh(WC · [ht−s, xt] + bC)

Ct = ft · Ct−s + it · C̃t

ht = ot · tanh(Ct)

(5)

where ft, it, ot, Ct, ht are the forgetting gates, input gates, output gates, intermediate
outputs, and cell states, respectively. W f , Wi, Wo, WC are the weights corresponding to the
different state gates. b f , bi, bo, bC are the offset terms of the different state gates, respectively.
s is the number of hidden cells skipped, and when the value is 1, it is a LSTM network.
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(3) Autoregressive module

In the LSTNet architecture, the autoregressive module uses the classical autoregres-
sive AR model as the linear component, and the AR model can be expressed by the
following equation:

hL
t,i =

qar−1

∑
k=0

War
k yt−k,i + bar (6)

where hL
t,i is the predicted AR component prediction, War

k and bar is the coefficient of the
model, and qar is the window size of the input matrix.

The final prediction result of LSTNet Ŷt is obtained by integrating the prediction of
the recurrent module hD

t and the prediction of the autoregressive module model hL
t .

Ŷt = hD
t + hL

t (7)

2.3. LSTNet Quantile Regression
2.3.1. Linear Quantile Regression

The traditional least squares method is linear, and, therefore, provides inadequate
coverage in the analysis of factors that could influence the response variable. Additionally,
predicting outcomes in the power system involves a variety of complex factors, and mean
regression often produces poor results with low prediction accuracy. To address these
challenges, Koenker et al. introduced the concept of quantile regression in 1978. This
approach retains the statistical information of both explanatory and response variables
and resolves the problem of heteroskedasticity, which can limit the usefulness of the more
common least squares method. Considering a response variable Y, influenced by k factors
X1, X2, · · · , Xk, then the quantile regression model is:

QY(τ | X) = β0(τ) + β1(τ)X1 + β2(τ)X2 + · · ·+ βk(τ)Xk ≡ X′β(τ) (8)

where QY(τ | X) is the conditional τ quantile of the response variable Y given by the
explanatory variable X = [X1, X2, · · · , Xk]

T, τ is the quantile point, and τ ∈ (0, 1),
β(τ) = [β0(τ), β1(τ), β2(τ), · · · , βk(τ)]

T is the regression coefficient vector. The regression
coefficient vector changes with the quantile τ, which is significantly different from the
constant vector in the mean regression.

The estimation of the parameter vector β(τ) can be translated into solving the follow-
ing optimization problem:

min
β

N

∑
i=1

ρτ

(
Yi −X

′
iβ
)
= min

β
∑

i|Yi≥X′β

τ
∣∣∣Yi −X

′
iβ
∣∣∣+ ∑

i|Yi<X′i β

(1− τ)
∣∣∣Yi −X

′
iβ
∣∣∣ (9)

where N is the sample size. Before optimizing the quantile regression, the test function
is defined and the optimal parameters are optimally estimated by minimizing the test
function, which is defined as:

ρτ(µ) = µ(τ − I(µ)) (10)

I(µ) is an indicative function and is calculated as:

I(µ) =
{

1, µ < 0
0, µ > 0

(11)

After obtaining an estimate of the parameter vector β(τ), the conditional quantile at
the quantile τ can be measured. When τ takes continuous values on the (0,1) interval, the
conditional distribution of the response variable can be obtained.
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2.3.2. Neural Network Quantile Regression

The quantile regression model is linear, which limits the ability to capture the complex
patterns of influence between explanatory variables and the response variable that occur in
more realistic behavior patterns. Nonlinear paradigms are a better fit for these behavior
patterns. Artificial neural networks (ANNs) are well-suited for addressing these nonlinear
paradigms, thanks to their ability to model nonlinear structures between inputs and outputs.
To this end, Taylor introduced the neural network quantile regression model [16], which is
presented below:

QY(τ | X) = f [X, W(τ), V(τ)] (12)

where W(τ) is the vector of connection weights between the input layer and the implied
layer, and V(τ) is the vector of connection weights between the implied layer and the
output layer. The estimation of the parameter vectors W(τ) and V(τ) can be transformed
to solve the optimization problem as follows:

min
W,V

{
N
∑

i=1
ρτ [Yi − f (Xi, W, V)] + λ1 ∑

j,i
w2

ji + λ2 ∑
i

v2
i

}

= min
W,V

(
∑

i|Yi≥ f (Xi ,W,V)
τ | Yi − f (Xi, W, V)

∣∣∣∣∣+ ∑
i|Yi< f (Xi ,W,V)

(1− τ)

∣∣∣∣∣Yi

− f (Xi, W, V) | +λ1 ∑
j,i

w2
ji + λ2 ∑

i
v2

i

) (13)

where λ1, λ2 are penalty parameters to avoid the network structure from falling into an
over-fitting state. After obtaining the parameter estimation vectors Ŵ(τ) and V̂(τ), the
conditional quantile estimates of Y can be obtained as:

Q̂Y(τ | X) = f
(
X, Ŵ(τ), V̂(τ)

)
(14)

when τ takes continuous values on the (0,1) interval, the conditional quantile curve
Q̂Y(τ | X) is called the conditional distribution.

2.3.3. LSTNet Quantile Regression

LSTNet quantile regression consists of AR quantile regression, which is a linear
quantile regression method in the autoregressive module of LSTNet, and LSTM quantile
regression, which is a neural network quantile regression method in the recurrent module.
According to conditional quantile theory, the quantile curve of Q is the distribution function
when τ belongs to (0,1), and let (Z1, Z2, · · · , Zt) be the mutually independent quantile
functions obtained from the estimated probability distribution:

Zt = Q̂Y(τ | X) (15)

where t = (1, · · · , T); T equals the number of quartiles; Z is the quantile function; and Q̂Y
is the conditional quantile of Y.

Due to the strong generalization ability of the kernel function, we applied it to construct
probability density functions that have a significant effect on the distribution of the response
variable and used the rule-of-thumb for the bandwidth selection, which further enhances
the smoothness and continuity of the probability density curve by integrating the obtained
quantile functions. Using the obtained quantile function as an input to the kernel density
estimation, the kernel density is estimated as:

f̂h(Z) =
1

Th

T

∑
t=1

K
(

Z− Zt

h

)
(16)
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where h is the window width; n is the number of samples; and K() is a non-negative kernel
function, which can generally be chosen as Gaussian, matrix, triangular, epanechnikov, etc.
In this paper, we use the Gaussian function.

Different kernel function choices are not sensitive in kernel density estimations, and
the Gaussian kernel function is selected in this paper. The selection of different bandwidths
directly affects the fitting effect of the distribution. If too large, the estimated curve will be
too smooth and the data structure will be masked. If too small, the estimated curve will be
under-smoothed, resulting in excessive data noise. Therefore, the choice of window width
is the most critical when fitting with nonparametric kernel density estimation.

In this paper, the classical method Rule-of-Thumb method is used to select the window
width, and the obtained window width can be expressed as:

ĥrot =

(
4σ̂5

3n

)1/5

(17)

where σ̂ is the sample standard deviation.

2.4. Evaluation Metrics

Probabilistic forecasting aims to maximize the sharpness of the predicted distribution,
but with reliability in mind. Reliability refers to the uniform consistency between the
prediction and observation of the distribution. Sharpness refers to how closely the predicted
distribution covers the actual distribution. For interval forecasting methods, the most
commonly used reliability and sharpness metrics are the prediction interval coverage
(PICP) and the prediction interval average width (PINAW).

PICP =
1

W

W

∑
w=1

kwa (18)

PINAW =
1
T

T

∑
t=1

U(xt)− L(xt) (19)

where W is the number of points to be predicted, kwa is a Boolean quantity, and kwa = 1, indi-
cating that the actual value falls within the prediction interval under the given confidence a,
kwa = 0, indicating that the actual value falls outside the prediction interval. T is the
forecast time interval and U(·) and L(·) are the upper and lower limits of the electricity
price forecast.

However, there is a contradiction between a high confidence level and a narrow
interval width. In the 2014 global energy forecasting competition, the pinball loss was used
to evaluate the effectiveness of probabilistic forecasting, which can solve the contradiction
between PICP and PINAW by considering the reliability index and the sharpness index
together. The smaller the pinball loss is, the better the probabilistic forecasting effect is.

Lq,t(yt, ŷt) =

{
(1− q%)(ŷt − yt) ŷt ≥ yt

q%(yt − ŷt) ŷt < yt
(20)

In this paper, the performance of the probabilistic forecasting is evaluated by the
average pinball loss (AL).

AL =
1

QS

Q

∑
q=1

∑
t∈S

Lq,t(yt, ŷt) (21)

3. Case Studies

This section is dedicated to validating the effectiveness of our proposed method for
day-ahead electricity price forecasting. First, we present an overview of the Danish elec-
tricity market. Then, using the SHAP method, we assess each feature’s importance on
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electricity prices and select the feature set with a relatively higher impact on the prices.
Furthermore, we provide specific examples of how the selected features impact the prices.
Finally, in order to verify the validity of the proposed method, we conduct point forecasting
and probabilistic forecasting, respectively. By comparing the performance of the proposed
model in point forecasting and probabilistic forecasting, we demonstrate that probabilis-
tic forecasting can effectively quantify the uncertainty of prediction while guaranteeing
accuracy. In both point forecasting and probabilistic forecasting, the models using SHAP
feature selection have obvious improvements compared with the original models, which
proves the effectiveness of the SHAP feature selection. Comparing the accuracy of the
benchmark models with the proposed model, the latter is obviously superior to the others,
which proves the advantage of the LSTNet quantile regression.

3.1. Overview of the Danish Electricity Market

This paper uses the Danish electricity market dataset. Denmark is a pioneer country
in green energy transition. According to statistics, fossil energy generation accounts for
25.9% of the Danish energy mix, while clean energy generation accounts for 74.1%. Among
them, 50% of Denmark’s electricity consumption comes from wind and solar energy, while
the proportion of coal generation is only 13%. The Danish Energy Agency estimates that
Denmark’s green energy production will exceed the country’s total electricity consumption
in 2028. The Danish grid is divided into two parts: the eastern grid (Zealand, DK2) and
the western grid (Jutland and Funen, DK1), where the eastern grid DK2 is connected to
Sweden AC to form the Nordic synchronous grid, and the western grid DK1 is connected
to Germany AC to be part of the central European synchronous grid. In addition, the
eastern grid is connected to the German DC and the western grid is connected to the
Norwegian DC. Denmark’s eastern grid is connected to the western grid via a 400 kV DC
line with a transmission capacity of 600,000 kW. the maximum export capacity of Denmark’s
connection to neighboring countries is 6.52 million kW and the maximum import capacity
is 5.73 million kW. The exchange of electricity between Denmark and neighboring countries
depends mainly on tariff differences and transmission capacity limitations. For example,
in 2015, Denmark imported large amounts of electricity from Norway and Sweden due to
their high hydroelectric generation capacity and low electricity prices. The general situation
of the Danish electricity market is shown in Figure 3.
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Figure 3. Overview of the Danish electricity market.

All data in this paper are available from www.energidataservice.dk. The time span of
the dataset is from 1 May 2019 to 31 August 2019. The day-ahead tariff for the DK1 region
is the forecast tariff, as shown in Figure 4. The dataset contains features as shown in Table 1.
The training set is from 1 May 2019 to 31 July 2019 and the test set is from 1 August 2019 to
31 August 2019.

www.energidataservice.dk
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Table 1. The features included.

Feature Name Explanation

DK1_7 DK1 electricity price seven days lag
DK1_2 DK1 electricity price two days lag
DK1_1 DK1 electricity price one day lag
DK2_7 DK2 electricity price seven days lag
DK2_2 DK2 electricity price two days lag
DK2_1 DK2 electricity price one day lag
DE_1 DE electricity price one day lag

NO2_1 NO2 electricity price one day lag
SE3_1 SE3 electricity price one day lag
SE4_1 SE4 electricity price one day lag
SYS_1 system price one day lag
Pro_1 DK1 production one day lag
Con_1 DK1 consumption one day lag

Wind_1 DK1 wind power one day lag
Solar_1 DK1 solar power one day lag

HydroPower_1 DK1 hydropower one day lag
ExNO_1 electricity exchange between DK1 and NO
ExGE_1 electricity exchange between DK1 and DE
ExGB_1 electricity exchange between DK1 and DK2

3.2. Feature Selection and Analysis

In this paper, the SHAP method is used for feature selection of the dataset. The predic-
tion model is LSTNet and the optimization algorithm is the adaptive moment estimation
method (ADAM), which can design independent adaptive learning rates for different pa-
rameters, thus it is better suited for problems with non-smooth objectives, noisy, or sparse
gradients. After hyperparameter adjustment, the number of neurons in the LSTNet model
is 128 for RNN and RNN-skip, 64 for CNN, and 24 for the skip parameter.

Figure 5 shows the feature importance ranking chart similar to the traditional feature
selection method. The traditional feature selection method usually compares feature series
and tariff series and calculates the correlation coefficient between them, and this correlation
coefficient is the importance of that class of features, such as the Pearson correlation
coefficient. In contrast, the SHAP method characterizes the importance of each class of
features by averaging the absolute values of the importance of individual features under
each sample. It can be seen that the largest influence on the predicted electricity price
is the feature DK2_7. Among the neighboring countries, the German electricity market
has the largest influence on the Danish electricity market, with DE_1 ranked fourth in
the feature importance ranking chart. Among all renewable energy sources, the feature
HydroPower_1, which characterizes hydropower, is the most important, followed by the
feature Wind_1, which characterizes wind power, and finally by the feature Solar_1, which
characterizes photovoltaic power generation. Among all electric energy exchange features,
the electric energy exchange feature ExGE_1 between the DK1 region and Germany is the
most important, followed by the electric energy exchange feature ExGB_1 between the DK1
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region and the DK2 region. Finally, among all the electrical energy exchange features, the
electrical energy exchange feature ExGE_1 between DK1 region and Germany is the most
important, followed by the electrical energy exchange feature ExGB_1 between DK1 region
and DK2 region, and finally, the electrical energy exchange feature ExNO_1 between DK1
region and Norway. In this paper, we select the top seven features as the input feature set.
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Figure 5. Features rank.

Figure 6 shows the effect of each sample on the predicted electricity price under
different features. Each point on each feature row represents a sample from the test set.
The color of the points is determined by the value of the corresponding feature under that
sample. DK2_7 represents the tariff in the DK2 region with a lag of one week from the
forecast date. It can be seen that most of the blue sample points are in the left half of the
region and most of the purple sample points are in the right half of the region. This means
that the feature pulls down the forecasted electricity price when the price of electricity in
the DK2 region one week before is lower, and conversely raises the forecasted electricity
price when the price of electricity in the DK2 region one week before is higher. The case
of feature DK1_7 is similar to that of feature DK2_7, except that the peak of importance
of feature DK1_7 is greater. The case of feature SE4_1 is different from that of features
DK1_7 and DK2_7. It can be seen that most of the blue sample points in this feature row
are located in the right zone, while the purple sample points are located in the left half of
the zone. This means that when predicting DK1 electricity prices, the feature will increase
the predicted electricity prices when the electricity prices in the SE4 region are lower a day
ago, and conversely the feature will pull down the predicted electricity prices when the
electricity prices in the DK1 region are higher a day ago.
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Figure 6. Features impact.

In order to gain more insight and analyze the Danish electricity market, we plotted the
feature dependence between the values of the features and the importance of the features.
Figure 7 shows the feature dependence plot for the wind power feature Wind_1. The
vertical axis is the SHAP value and the horizontal axis is wind power generation. It can
be seen that when the wind power generation is less than 1000, the sample points are
concentrated below the value of SHAP value 0. When the wind power generation is greater
than 1000, the sample points are concentrated above the value 0. This means that for the
Danish electricity market, the threshold value of wind power discharge affecting electricity
price is 1000 a few days ago, and when the feature Wind_1 is less than 1000, the wind
power feature reduces the electricity price; when the feature Wind_1 is greater than 1000,
the wind power feature increases the electricity price.
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Figure 8 shows the feature dependence diagram of the electric energy exchange feature
ExGE_1. It can be seen that when the electric energy exchange between DK1 region and
Germany is less than 800, the sample points are concentrated above the value of SHAP
value 0. The sample points are concentrated below the value 0 when the electricity exchange
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is greater than 1000. This means that for the Danish electricity market, the threshold value of
the electricity exchange between DK1 and Germany is 800, and when the feature ExGE_1 is
less than 800, the electricity exchange feature increases the electricity price; when the feature
ExGE_1 is greater than 800, the electricity exchange feature decreases the electricity price.
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3.3. Probabilistic Forecasting Results

In this paper, we propose a probability density prediction method based on LSTNet
quantile regression. After obtaining the predicted electricity prices under different quar-
tiles, we use the kernel density estimation algorithm to estimate the probability density
distribution of the predicted electricity prices and obtain the prediction intervals at different
confidence levels. In this paper, we set LSTM and BPNN as the benchmark models and the
inter-quantile quantile interval is 0.1.

It is worth mentioning that when the quantile is 0.5, the predicted price quantile
is the point forecasting price. Table 2 shows the forecasts of different models when the
quantile is 0.5. In this paper, we adopt RMSE and MAPE as the point prediction model
evaluation metrics.

Table 2. Point forecasting metrics.

RMSE MAPE

BPNN 8.35 13.02
LSTM 7.8 14.62

LSTNet 4.96 8.39
SHAP–BPNN 4.27 10.34
SHAP–LSTM 3.62 9.28

SHAP–LSTNet 2.35 5.39

It can be seen that among all neural network models, the LSTNet model has the best
prediction performance and is most suitable for the day-ahead electricity price forecasting
task. Specifically, among the models without feature selection, the LSTNet model has the
smallest error metrics RMSE and MAPE; among the models with feature selection, the
SHAP–LSTNet model has the smallest error metrics. Among them, compared with the
LSTM model, the error metrics RMSE and MAPE of the LSTNet model reduce by 36.41%
and 42.61%, respectively. Compared with the SHAP–BPNN model, the error metrics RMSE
and MAPE of the SHAP–LSTNet model reduces by 44.96% and 47.87%, respectively. In
the comparison between the model without feature selection and the model with feature
selection, the error metrics of the model with feature selection are smaller. For example, the
error metrics RMSE and MAPE of the SHAP–LSTNet model reduced by 52.62% and 35.76%,
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respectively, compared to the LSTNet model. This is mainly because feature selection
reduces redundant features and reduces the risk of model overfitting.

Figure 9 shows the point forecast price for a three-day period in August 2019. It can
be seen that the SHAP–LSTNet model fits the real electricity price curve best.
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After obtaining different price quartiles, the kernel density estimation is used to obtain
the probability density functions at different moments of the forecast day and the prediction
intervals at different confidence levels. Table 3 shows the metrics at different confidence
levels. The confidence levels are 0.9, 0.8, and 0.7, respectively.

Table 3. Interval forecasting metrics.

0.9 0.8 0.7

SHAP–BPNN
PINAW 22.22 15.28 9.72

PICP 10.87 7.42 5.77
AL 2.61 2.25 4.88

SHAP–LSTM
PINAW 72.22 44.44 34.72

PICP 32.74 25.72 17.42
AL 0.88 1.58 1.85

SHAP–LSTNet
PINAW 97.22 80.56 77.78

PICP 35.79 27.13 24.13
AL 0.41 0.80 1.14

It can be seen that the metrics at different confidence levels are different. For example,
at the confidence level of 0.9, the largest PINAW among all models is the SHAP–LSTNet
model, however, the smallest PICP is SHAP–BPNN. At this time, it is difficult to select the
best model based on the PINAW and PICP alone, so we use the average pinball loss to assist
us in our decision. At this point, the AL metrics of the SHAP–LSTNet and SHAP–BPNN
models are 0.41 and 2.61, respectively, and it is clear that the former is more suitable for
the day-ahead price forecasting task. Figure 10 shows the prediction interval of different
models at the confidence level of 0.9. It can be seen that the narrowest interval width
is the SHAP–BPNN model, but most of the actual price points are not covered in this
interval, which is obviously not possible. The most desirable model is SHAP–LSTNet,
which basically covers all actual price points except for a few, and the interval width is also
relatively small.

Moreover, from the table we can see that the PINAW is higher, but the PICP is larger at
a high confidence level, and the PICP is smaller, but the PINAW is lower at a low confidence
level. Figure 11 shows the prediction interval plot of the SHAP–LSTNet model at different
confidence levels. It can be seen that the higher the confidence level, the more actual price
points are covered by the prediction interval, but the larger the interval width, while the
lower the confidence level, the smaller the interval width, but fewer actual price points are
covered by the prediction interval. Similarly, we use the average pinball loss to complicate
our decision. It can be seen that at all confidence levels, the 0.9 confidence level has the
smallest AL indicator.
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4. Conclusions 

In response to the uncertainties associated with renewable energy and the growing 

number of features in electricity price forecasting, this paper proposes a probabilistic 

method for predicting day-ahead electricity prices using SHAP feature selection and 

LSTNet quantile regression. In order to reduce redundant features and over-fitting, and 

improve forecasting performance, the SHAP method is utilized to handle the expanding 

set of input features that arise from an integrated market. Furthermore, we assess the 

importance and direction of the impact of features on electricity prices, which significantly 

improves the interpretability of forecasts. We also employ a probability forecasting 

method to quantify the uncertainty in electricity price forecasting. By applying the LSTNet 

quantile regression based on kernel density estimation, we can estimate the probability 

distribution of the predicted electricity prices and obtain the predicted electricity price 

interval to achieve conditional probability density prediction. Our results demonstrate the 

effectiveness of the proposed feature selection method at reducing overfitting and 

improving prediction accuracy. Moreover, the proposed method outperforms the 

comparison algorithm, and its prediction intervals effectively quantify the uncertainty in 

electricity price forecasting. 
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Net quantile regression. In order to reduce redundant features and over-fitting, and im-
prove forecasting performance, the SHAP method is utilized to handle the expanding set of
input features that arise from an integrated market. Furthermore, we assess the importance
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interpretability of forecasts. We also employ a probability forecasting method to quantify
the uncertainty in electricity price forecasting. By applying the LSTNet quantile regression
based on kernel density estimation, we can estimate the probability distribution of the
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conditional probability density prediction. Our results demonstrate the effectiveness of
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