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Abstract: Dye-sensitized solar cells have been under development for the last three decades but
are yet to see the market. This has been attributed to stability issues of the electrolyte in the cell.
Electrolytes can be liquid, quasi-solid, or solid. Liquid electrolytes were the first to be developed and,
therefore, have been subject to radical revisions in both composition and applicability. They have
shown the best power conversion efficiencies but have poor thermal stability. Although quasi-solid
and solid-state electrolytes were developed to overcome these stability issues, they too have their
limits. The aim of this paper is to explore the development of liquid electrolytes, outlining the current
state of the technology and considering their potential in the photovoltaic market.
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1. Introduction

The finite supply of fossil fuels and their adverse effects on the environment have
led researchers to investigate various ‘cleaner’ alternatives since the second half of the
20th century. Photovoltaics (PV) emerged as a promising candidate and has been in the
market since the early 2000s, amounting to about 945 GW of global installed capacity in
2021 [1]. This includes not only large-scale solar power stations but also small roof-top
installations for private use. Most commercially sold photovoltaics are generally either
first-generation crystalline silicon cells or second-generation thin-film cells. Both have
a relatively high power conversion efficiency (PCE) and service life, which makes them
suitable for commercial use [2,3].

Dye-sensitized solar cells (DSSCs) are part of the third generation of PV as they are
still in the development stage and are unsuitable for the market at present. However,
they offer advantages that might make them more popular than conventional photovoltaic
technologies. Unlike these which use silicon or chalcogenide materials, DSSCs can be
manufactured with more economical and environmentally friendly components. They
also provide the advantage of being semi-transparent and hence customizable as window
glass or glass facades for buildings. Moreover, unlike traditional Si-cells, they also have
been shown to perform well under dimly lit environments. This makes them ideal for
small indoor applications or even building integrated photovoltaic (BIPV) applications that
not only generate electrical energy but also add to the aesthetic value [4–6]. At present,
however, there are very few DSSCs on the market [7,8].

The problem lies in their low PCE and the instability of several crucial components.
Instability issues attributed to the electrolyte are a major contributor to cell degradation and
limit the current service life to around 6 years, making them impractical for commercial use.
PV modules are anticipated to experience a minimal degradation in PCE of less than 10%
compared to their initial efficiency over a span of 20 years of outdoor operation. Moreover,
to meet the accepted critical threshold, it is expected that the initial efficiencies should be at
least 10%.
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With the energy crisis in Europe and the general need to move towards renewable
energies, innovation in PV technology is at an all-time high. In the last decade, there has
been a significant increase in the amount of research being conducted and published on
DSSCs, providing with them invaluable experimental data. This may finally allow DSSCs
to enter the PV market in the foreseeable future. However, there are several technical and
non-technical hurdles that it may potentially face. From a commercial point of view, the
production costs at the entry stage would probably be higher than those of conventional
PV technology. This could deter potential buyers who might find the investment costs
too high and the service life too low for a good return on investment. In addition, most
consumers are familiar with the blue-tinted glass panels on rooftops, whereas DSSCs would
be a completely foreign concept and may not be as readily accepted.

There is currently a growing shift towards a circular economy due to increased aware-
ness of the limited availability of resources [9]. It would be ideal if the market entry of
DSSCs is in compliance with circular economy concepts. Ensuring a long life before en-
tering the market would be beneficial not only for economic reasons but also to ensure a
sustainable approach to production. In the long run, this would result in lower resource
consumption and less waste [10]. In addition to lifetime improvements, other technical
factors need to be optimized for DSSCs to be successful in the PV market. It can be argued
that because the field of DSSCs is constantly undergoing extensive research and improve-
ment, a consumer may feel the need to frequently replace the product with a “newer and
better” version to keep up with developments. This could discourage potential buyers,
who may feel the need to wait until the technology is stable enough to invest in it. As a
result, this would negate the need for longer lifetimes in the early stages of market intro-
duction but lead to more waste. All the while the extent to which DSSCs can be recycled is
largely uncertain. All these factors need to be optimized before the cells can be considered
commercially viable.

Among the challenges to enter into the market, the stability issue persists as the most
crucial technical aspect, as it also pertains to possible health risks and environmental
damage. The composition of the electrolyte is the key to stabilizing the cell; therefore, its
analysis could provide a better understanding of the issue and the need for optimization.
This paper aims to compare experimental results and theoretical analysis of stability issues
found with commonly used liquid electrolytes. The focus would also be on the extent to
which these issues are relevant for commercialization.

2. Dye-Sensitized Solar Cell (DSSC)

DSSCs work on the principle of using photosensitive dyes as a medium that captures
light energy, which can then be converted to electricity. Although the principle of convert-
ing the energy of photons to electricity in this manner was first documented as early as
1972 by Fujishima et al. [11], Grätzel and O’Regan’s work in 1991 enabled the ground-
breaking development of DSSCs with notably high efficiency (η = 7%) [12]. Their work
has since led to much research and advancement with current efficiency values at 15.2% (in
laboratory conditions and AM 1.5) as of early 2023 [13].

Design and Working Principles

Figure 1 shows the schematic structure of a DSSC, consisting primarily of two elec-
trodes and an electrolyte in between. The generation of electrons occurs in the photosen-
sitive dye that is administered to the surface of the anode (the working electrode). The
most widely used configuration of an anode is that of a transparent conductive oxide
(TCO) glass (indium or fluorine-doped tin oxide), coated with a mesoporous metal oxide
semiconductor like TiO2 or ZnO [14]. Titanium dioxide offers a bandgap of about 3.2 V
and is both nontoxic and inexpensive, making it a common choice as the semiconductor
material. It is responsible for electron transmission, and therefore, functions better when
more of the surface area is exposed. It was the use of the rough surface of a mesoporous
layer of TiO2 instead of a smooth coating that facilitated the breakthrough of Grätzel and
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O’Regan in 1991 [3]. A thin film of inorganic or natural photosensitive dye is then adsorbed
onto the semiconductor layer of the anode. Cells offer flexibility in the choice of dye used.
Panchromatic ruthenium complexes are widely preferred for their high PCE. However,
natural plant-based dyes, such as chlorophyll and anthocyanins, are also suitable and offer
a less toxic alternative. They, however, tend to have a lower PCE [15]. The cathode is also a
TCO glass sheet that encompasses the cell. Between the electrodes is also an electrolyte, a
solvent containing a reversible redox mediator (often (I−/I3

−) redox couple).
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The incident photons oxidize the dye sensitizer from the ground state to the excited
state. The sensitizer is then oxidized as the excited electron leaves the LOMO (lowest
unoccupied molecular orbital) and enters the conduction band of the metal oxide layer on
the anode. The rate of this ‘electron injection’ from the dye to the semiconductor without
recombination dictates the efficiency of the cell. The electrolyte’s redox pair is also a crucial
component as it supplies the oxidized sensitizer with the electrons necessary to regenerate,
thus facilitating better electron injection into the semiconductor by hindering undesirable
recombination. The oxidized I3

− ions then migrate to the counter electrode. Here, they
are reduced once again to I− anions by the electrons that have traveled from the anode
through an external circuit, and so the circuit is closed [3,17].

The defining values of a DSSC are the cell’s short circuit current density (JSC), open
circuit voltage (Voc), and the fill factor (FF), which is the ratio of the maximum power of
the cell to the product of VOC and JSC, from which the power conversion efficiency can be
determined. The reactions facilitated by the electrolyte play a crucial role in determining
these values, and their behavior over time. Therefore, to enhance the service life for
commercialization purposes, cells must be developed with a focus on minimal degradation
of the PCE, VOC and JSC values.

VOC depends on the energy difference between the electrons at the anode and those at
the cathode [3]. This is the maximum voltage that the cell can supply to an external circuit,
and in a DSSC is primarily dependent on the redox potential of the electrolyte (redox pair)
and the Fermi level of the semiconductor layer [4]. In an open circuit, the potential at
the cathode is equal to the redox potential of the electrolyte, while the potential at the
anode is equal to the Fermi level of the semiconductor (e.g., TiO2). Undesirable reactions
between electrons in the anode and the redox couple of the electrolyte can significantly
reduce the VOC of the cell. On average, these recombination reactions occur at a much
slower rate than the main reaction, but their effects are evident when observed over longer
periods of time. This makes it a relevant factor that needs to be limited or eliminated before
commercialization [13]. Si-based PVs on the market have an average lifetime of 25 years,
which is far beyond what DSSC can offer in its current state [18,19].



Energies 2023, 16, 5129 4 of 16

Among the various components of a DSSC, the electrolyte has the greatest influence
on the long-term stability of the cell. As such, it is arguably the most extensively researched
component, with variations in design, composition and shape over the years. Primarily, the
electrolyte is chosen so that the recombination of electrons in the metal oxide conduction
band with the redox couple is minimal, and that it can withstand external influences (such
as temperature differences) without breaking down (chemical stability) or corroding other
components [3,17]. As mentioned earlier, it also plays an important role in determining the
PCE of a cell. Keeping the PCE as high as possible is a priority, but highly efficient cells
tend to be more unstable by nature. This can be seen as a driving force in the search for a
type of electrolyte that offers the best compromise.

Organic solvents were among the first electrolytes used. However, they are highly
volatile and toxic, which led to the development of cells using ionic liquids such as imida-
zolium, pyridylium and guanidinium. However, these have to be adapted to overcome the
problems of volatility and toxicity while still allowing sufficient ionic conduction. Leakage
issues can still occur and sealing methods or the use of quasi-solid or solid electrolytes
have been proposed as alternatives.

The two most commonly used types of liquid electrolytes in DSSCs are discussed in
the following sections. New types of liquid electrolytes, such as glycerol-based electrolytes,
are constantly being explored as alternatives that could overcome the limitations of existing
types [20]. Due to the lack of sufficient experimental data on these lesser-known electrolytes,
they will not be discussed in detail.

3. Volatile Organic Solvents

The most commonly used form of electrolyte is a solution of an ionic redox couple
(such as (I−/I3

−)) dissolved in an organic solvent such as nitriles (organic compounds
containing −C ≡ N groups) or esters. The key properties that characterize a solvent are
its polarity, viscosity, boiling point and the diffusion coefficient of ions (such as I−-ions)
in the solvent. An ideal solvent should be nonreactive with the dye or semiconducting
material. Acetonitrile, the simplest form of nitrile, is the most commonly preferred solvent.
As an aprotic solvent, it interacts mainly through dispersion forces [21], rather than read-
ily donating its proton for hydrogen bonding. This ensures that the electrolyte does not
interfere with the adsorption of the dye onto the semiconductor layer, as has been seen
with protic solvents such as water and alcohols [22,23]. Other solvents that may be used
include nitriles such as propionitrile, pentanenitrile or larger nitriles (such as methoxy-
acetonitrile and 3-methoxypropionitrile) and esters such as ethyl carbonate and polyvinyl
carbonate (PC).

The size of the molecule has been found to be closely related to its properties. In
general, smaller molecules have shown better PCE values, whereas larger nitrile molecules
are more likely to exhibit better stability [24]. This is because smaller molecules are more
likely to be less viscous, which allows better charge diffusion but also makes them more sus-
ceptible to thermal degradation. Acetonitrile, due to its molecular structure as the simplest
nitrile hydrocarbon, has a very low viscosity (0.34 cP at 25 ◦C, water for comparison has a
dynamic viscosity of 0.890 cP at 25 ◦C) which allows the redox couple to move faster [3].
The low viscosity also allows for the dissolution of additives, which can further enhance
the properties of the electrolyte without significantly hindering charge diffusion through
increased viscosity. In addition, acetonitrile has a higher apparent diffusion coefficient
for I− ions compared to larger nitriles such as methoxyacetonitrile [24]. Therefore, an
iodide-based redox pair can be easily dissolved in it. A wide electrochemical window,
which is the difference between its reduction potential and the oxidation potential at which
the electrolyte breaks down, ensures that the electrolyte does not easily react with the
electrode or undergo degradation [25,26].

Acetonitrile is commercially produced as a by-product of the synthesis of acrylonitrile
(propylene ammoxidation) with a yield of 2–4 L per 100 L of acrylonitrile [27,28]. It is
widely used in UV spectroscopy, liquid chromatography, and lithium batteries, as well as
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in the synthesis of pharmaceutical products such as vitamins and as a solvent for insulin.
Compared to other nitriles, acetonitrile is, therefore, the most readily available solvent for a
DSSC. Its properties as a solvent, and how to improve them, are constantly being studied,
given its many applications. 148.9 kilotons will be produced in 2022 and an estimated
197 kilotons could be produced in 2027 based on current trends [29]. While availability
makes acetonitrile the most cost-effective option, issues of leakage and thermal degradation
need to be addressed. Certain additives have been found to significantly improve PCE
or increase thermal stability. One such additive is 4-tert-butylpyridine (TBP), which has
been observed to increase PCE by limiting unwanted charge recombination [30]. These
issues and the possible solutions that are currently under consideration will be the subject
of further discussion in the sections below.

3.1. Common Issues
3.1.1. Volatility and Thermal Decomposition

Ideally, the solvent should have a boiling point above 100 ◦C; this would ensure
that the solvent does not evaporate at elevated temperatures during operation. However,
volatile organic solvents, as the name suggests, are highly volatile, meaning they have
lower boiling points and can evaporate easily. Propionitrile has been suggested as an
alternative to acetonitrile as it has a higher boiling point (97.2 ◦C) compared to acetonitrile
(81.6 ◦C) [31,32]. According to the accelerated aging tests carried out by Hinsch et al.,
thermal stress was found to be the most critical factor, which can be directly attributed to
the chemical properties of the electrolyte, (the solvent and the additives) [33]. In the case
of thermal decomposition, both acetonitrile and propionitrile give off highly toxic fumes
consisting of nitric oxide and cyanide [34]. Leakage can, therefore, be highly hazardous
and toxic to the environment, requiring appropriate sealing procedures.

As mentioned above, the volatility of liquid electrolytes could be suppressed by using
additives. Yoon et al. carried out a series of tests to model the energy efficiency of a building
using DSSCs as building integrated photovoltaics (BIPV) in the form of windows. They
used an electrolyte containing lithium iodide, 1-hexyl-2,3- dimethylimidazolium iodide,
guanidium thiocyanate and 4-tert-butylpyridine (TBP) additives in a solvent mixture of
acetonitrile and pentanenitrile [35]. Guanidium thiocyanate is a popular additive that not
only has a positive effect on PCE but also improves thermal stability [36]. TBP, discussed
earlier, is highly effective in enhancing PCE and is also used in most studies of liquid
electrolyte DSSCs in BIPV [37]. An 85:15 mixture of acetonitrile and pentanenitrile (boiling
point: 142 ◦C), as used by Yoon et al., was found to be less volatile than pure acetonitrile
while keeping the viscosity low enough for good charge transport [35,38].

3.1.2. Leakage Issues and Sealing Methods

Liquid electrolytes are highly susceptible to leakage issues, and for toxic solvents like
nitriles, this could result in serious health and environmental damage. No product that
carries such a risk would be allowed for commercialization, and therefore, appropriate mea-
sures must first be adopted. Alternative constructs such as solid-state polymer electrolytes
have gained significance due to these issues but, considering higher PCE achievable and
estimated lower production cost of liquid electrolytes, it might still be of interest to consider
sealing methods.

There are several factors to be considered when choosing an appropriate sealant.
The high polarity of organic solvents makes them capable of dissolving most organic
compounds. Therefore, the sealant itself might also be in danger of corrosion. Furthermore,
the sealant must be able to protect the cell from external influences like moisture and heat.
To achieve high-temperature resistance, superior seal integrity is critical [19].

DSSCs need to be sealed in two critical areas of the cell, (1) the edges to encapsulate the
cell, and (2) the electrolyte injection holes. The sealant covering the injection holes is highly
susceptible to electrolytic corrosion as it is in direct contact with the electrolyte. However,
this is not as significant in the case of quasi-solid or solid-state DSSCs. However, the sealant
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covering the edges is critical for all types of electrolytes. It must not only prevent leakage
but also protect the cell from moisture and other external influences. Thermoplastics, UV-
curable resins and glass frits are the most commonly used sealants. While thermoplastics
are cost-effective due to their use in other areas, they tend to have a low tolerance to water,
oxygen and UV [39]. UV-curable resins have better tolerance and thermal stability but are
polymers that often corrode due to the high polarity of the electrolyte. They are, therefore,
unsuitable for long-term use, especially at the electrolyte injection holes [40]. The use of
silicone rubber or the process of glass frit bonding has been proposed as an alternative
to organic sealants due to their high moisture, heat, UV, and electrolyte tolerance [41].
Glass frits in particular provide airtight hermetic encapsulation, but this process generally
requires high temperatures of over 300 ◦C. This is not feasible as components such as
the electrolyte cannot withstand such high temperatures. As an alternative, Martins et al.
proposed laser-assisted fritting, which is more compatible with other cell components
because it uses laser beams that only raise the temperature for a very short time (a few
seconds) [42]. Such sealing methods may be the most effective solution, but they are
also more expensive than conventional sealants [43]. It may, however, be argued that the
increasing market share of laser technology could make the complete sealing of DSSC using
laser-assisted glass fritting commercially viable.

Another possibility is shown by Kato et al. [44] who used olefin elastomer, acrylic and
epoxy resin, and polyisobutylenes to seal the glass flakes. With further optimization, they
were able to produce DSSCs with 75% residual efficiency after 12 years outdoors.

3.1.3. Light Absorption

Another problem with acetonitrile is its absorption in the visible-light spectrum.
Accelerated aging tests have identified visible-light absorption, ultraviolet (UV) exposure,
and thermal effects as stress factors on the stability of DSSCs [33]. Hereby, it was noted that
stress caused by visible light absorption is not as degrading as the other two factors, but
still results in a drop in VOC and JSC values. UV exposure, on the other hand, significantly
adds to instability. In general, it is not the solvent that is directly affected, but rather
the dissolved iodide redox couple. The solvent, however, must be chosen based on its
absorption in the UV spectrum. Acetonitrile, which is commonly used in high-power
light chromatography, has a relatively low absorption in the UV spectra which enables it
to be a good solvent, despite the absorption in the visible light spectrum. It is believed
that the irreversible reduction of iodine in the (I−/I3

−) redox pair to iodide is the main
cause of degradation through UV exposure as it depletes the number of charge carriers.
This process is called electrolyte bleaching and is believed to cause discrepancies at the
TiO2-dye-electrolyte interface (photoactive area). Some studies have suggested that UV
exposure might be causing the excitation of the TiO2 which in turn leads to the oxidation
of organic compounds [4]. To combat these issues, the implementation of UV filters has
become typical for the design of DSSCs [45,46]. Furthermore, alternatives to TiO2 and
iodide base redox complexes have been explored [4].

The disadvantage of incorporating UV filters would be the additional cost of produc-
tion. Furthermore, it is uncertain to what extent UV filters actually limit UV degradation
in outdoor conditions. Poskela et al. argued that the commonly used UV filter with a
cut-off of 400 nm may not be sufficient for outdoor use [45]. The aging test results of DSSCs
exposed to visible light only and DSSCs exposed to the full spectrum including UV light
(using xenon lamps) with a UV filter were compared. It was found that after 1500 h of
exposure, the PCE of the visible-light DSSC remained largely stable, whereas that of the
UV-exposed DSSC decreased to 10% of the initial efficiency, despite the UV filter. In order
to determine the reason for this degradation, the electrochemical impedance spectra (EIS)
of the tested cells were measured. EIS is an impedance measurement made by varying the
frequency of an AC power supply. The different components of the cells respond to differ-
ent frequencies, for example, the impedance of the TCO-coated electrodes approximates
that of an ohmic series resistance. The EIS in Figure 2a shows that this value remains more
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or less stable for the first 2000 h. Meanwhile, an increase in internal resistance caused by
reduced charge transfer (Figure 2b) and diffusion (Figure 2c) contributes immensely to the
internal resistance after only 1000 h. This can be explained by the irreversible reduction of
iodine. It shows that UV filters may not be sufficient to completely eliminate the adverse
effects of UV light on the cell. Choosing a redox pair or electrolytes that do not have the
iodide-triiodide redox pair may be a better alternative for longer life.
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Such stability tests of DSSCs are often conducted under controlled conditions using
lamps that simulate sunlight (such as sulfur lamps or light-emitting diodes (LEDs) for
visible light spectra and xenon lamps for the entire light spectrum) to simulate normal
conditions. Conclusions drawn from these tests may not necessarily apply to actual outdoor
applications. Tests carried out in the actual working environment of DSSCs are still very
rare and may be necessary in order to correctly predict PCE values or JSC curves over time.

3.1.4. Instability of Redox Mediator

In addition to the UV-incompatibility of (I−/I3
−), it also poses several other problems.

Firstly, the iodide-based redox couple could corrode sealant material or metals (like silver
and copper) that are employed as electron collectors in large-scale module concepts [47].
As a result of damaged sealant integrity, the risk of iodine vapor leakage could be a serious
problem [4]. Moreover, triiodide and other polyiodides (like I5

−) that may temporarily
exist in the solvent absorb part of the visible light spectra competing with the dye and
reducing the PCE. The regeneration of the dye as facilitated by the iodide/triiodide system
is believed to be a complex two-electron oxidation step process that causes undesirable
energy loss and limits the overall achievable Voc [4,47]. In the two-step process the I−

along with the oxidized dye first forms a diiodide radical I2
−· which has more negative

redox potential than the (I−/I3
−)pair. Therefore, the formation of the radical leads to a loss

of energy [48,49]. Other redox mediators include pseudo halogen based SCN−/(SCN)2
and SeCN−/(SeCN)2 which have lower redox potentials, this could facilitate lower energy
loss during dye regeneration. The SCN−/(SCN)2 in particular, was observed to have
insufficient current densities, and the rate of dye regeneration was considerably lower than
that of (I−/I3

−) [49,50]. This could be due to lower diffusion coefficients.
Redox complexes are a crucial component of both liquid and gel-based quasi-solid

DSSCs As seen in the case of the iodide-triiodide pair, the redox couple can significantly
affect the photovoltaic values of a cell. In general, this depends mostly on their redox
potential, which in the case of DSSCs is the driving force for the reduction of the oxidized
dye [51]. It is usually described using the Nernst equation as follows:

Eredox = Eθ′
red −

RT
zF

ln
ared
aox
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Here, Eθ′
red is the standard potential measured against a standard hydrogen electrode.

(I−/I3
−) has a standard potential of 0.35 V, (Co3+/Co2+) 0.56 V and (Cu+/Cu2+) 0.87 V.

‘R’ is the gas constant, ‘T’ the temperature and ‘F’ is the Faraday constant. ‘z’ represents
the number of electron oxidation steps, which for the (I−/I3

−) has a value of 2, whereas
(Co3+/Co2+) or (Cu+/Cu2+) this would be 1. aox and ared describe the chemical activity
of the oxidized and reduced species, respectively [49]. A comparative depiction of the
redox potentials of (I−/I3

−), (Co3+/Co2+) and (Cu+/Cu2+) can be seen in Figure 3.
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The use of transition metal redox complexes has also been proposed as an alternative,
including but not limited to cobalt and copper-based pairs. The main advantage of these
complexes over halogen-based ones is the tunability of the redox potential. This can be
achieved by the selective combination of specific ligands. Nusbaumer et al. suggested
that the cobalt complex [Co(dbbip)2](ClO4)2 has minimal absorption in the visible region.
Although they showed exceptional PCE results in low light, this was not the case at high
light intensities [52]. The redox complex is susceptible to hemmed mass transport due
to the larger molecular size, resulting in recombination reactions. [53]. To counteract
these problems, the use of appropriate ligands (for example, 2,2′-bipyridine (bpy) as a
bidentate ligand) has been proposed. Feldt et al. showed that [Co(bpy)3]3+/2+ when paired
with hexafluorophosphate (PF6

–) counterion had an optimal driving force and good mass
transport due to the smaller size of the cobalt complex [54]. With the use of co-sensitized
dyes, efficiencies of up to 14.2% have been reported [55]. Copper-based redox couples are
also worth mentioning due to their non-toxic nature and lower cost compared to cobalt.
Using a copper-based redox couple, Freitag et al., were able to obtain 11.3% PCE at AM of
1.5 G [56].

4. Ionic Liquids

Although organic solvents have shown the best efficiencies, their volatility makes
them unsuitable for elevated temperatures. As a result, iodide-based ionic liquids (ILs)
have been proposed as an alternative or additive to organic solvents [57,58]. Ionic liquids
are essentially salts that are liquid at low temperatures (generally, but not limited to, a
melting point of less than 100 ◦C). Room temperature ionic liquids (RTILs) are liquid at
room temperature (around 20 ◦C to 25 ◦C). As the name suggests, the liquid is composed
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entirely of ions, and the combination of cation and anion can be varied as required, giving
them the name ‘designer solvent’, and allowing free choice of properties (such as volatility
or polarity).

Due to the large number of possible cation-anion combinations, the classification of
ILs is difficult. However, the two types that are most relevant to DSSCs are the halide-based
ILs and the heterocyclic ILs. Halide-based ILs showed high thermal stability and were
one of the first types to be investigated. However, they break down easily and can form
strong acids (such as HCl) when exposed to water [24]. The ionic liquids that are most
commonly used for DSSCs are heterocyclic compounds, such as imidazolium salts, with
1-alkyl-3-methylimidazolium as the preferred organic cation [24,59]. These salts are RTILs
with good diffusivity and stability. Their relatively wide electrochemical window makes
them excellent electrolytes. The viscosity and density of the IL are determined by the length
of the alkyl group in the cation. The longer the chain, the higher the viscosity and the lower
the density. In general, however, ILs are much more viscous than organic solvents such
as acetonitrile, which hinders charge transport and facilitates unwanted recombination
reactions. To mitigate this problem, a higher concentration of the redox mediator is required,
preferably one that is not iodide based to avoid rapid degradation [60,61]. Much research
is also being conducted on their potential as quasi-solid electrolytes in the form of ionic
liquid crystals (ILCs). This could potentially eliminate the risk of leakage [62].

A study by Gao et al. compared the aging test results of different electrolytes used
in DSSCs (see Table 1). The widely preferred acetonitrile-based electrolyte was found
to have high efficiency and the best FF. However, due to the volatility of acetonitrile,
long-term thermal tests could not be carried out. This again highlights the need for
other types of electrolytes to commercialize DSSCs. They then tested the longer-chain
methoxypropionitrile-based electrolyte, which had a lower efficiency but performed well
in the thermal aging test. The efficiency dropped to just under 9% after 1000 h of AM
1.5G irradiation at 60 ◦C. The ionic liquid electrolyte showed a significantly lower initial
efficiency, but the device efficiency only decreased from 7.41 to 7.04% after 1000 h, while
the other values remained more or less constant [63].

Table 1. Comparison of electrolytes used by Gao et al. and their measured values. From [63].

Electrolyte Used Short Circuit Current Density
JSC/mA cm−2

Open Circuit Voltage
VOC /mV Fill Factor FF Efficiency

η/%

Acetonitrile-based 18.62 744 0.755 10.5

Methoxypropionitrile-based 17.98 746 0.737 9.7

Binary ionic liquid 14.77 681 0.737 7.41

ILs can also be used in combination with an organic solvent or as an additive to an
organic solvent [64]. In the form of a mixture or binary solvent, the IL imparts thermal
stability to the acetonitrile (or organic solvent), and the low viscosity of the acetonitrile,
in turn, allows good charge transport. Tedla et al. compared different proportions of
the IL, 1-butyl-3-methylimidazolium bromide (BMIBr), in acetonitrile [60]. It was found
that mixtures with more than 30% of IL had a lower PCE value. This could be due to the
restricted charge transport that occurs with an increase in viscosity. Aging tests were also
carried out over 46 days, which showed that the cells with the binary solvent retained
more than 85% of their efficiency (Figure 4), whereas the reference cell, which used only
acetonitrile, retained only about 60% of its initial PCE [65]. This conclusion provides a
plausible solvent that has both good efficiency and thermal stability.
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The trade-off between efficiency and stability is perhaps the ultimate barrier to DSSC
entry into the photovoltaic market. This is where the use of IL additives or binary solvents
may be able to provide the balance required for commercial use. There is potential for
further developments that could make long-term stability a reality for liquid electrolyte
DSSCs. There is also scope for considerable improvement if the other components of the
cell (like the dye or TCO-coating) are also optimized. Wang et al. proposed the use of
more than one dye sensitizer with an ionic liquid electrolyte to bridge this gap. These
co-sensitized systems allow the different dyes to capture a broader spectrum of incident
solar light. This opens up the discussion of optimizing other components of the cell to
compensate for the loss in efficiency with thermally stable electrolytes. Co-grafting of the
dyes C268 and SC-4 on the TiO2 layer allowed the cell to reach 10% PCE, and after 1000 h
of full sun exposure at 60 ◦C, it showed only a 3% drop in PCE [66].

5. Other Alternatives

Extensive research is also being undertaken in the development of gel-like quasi-solid
and solid-state electrolytes. There are serval different types of solid-state DSSCs that use
either p-type semiconductors, organic hole-transport materials (HTMs), or ionic liquid crys-
tals (ILCs) [67]. The p-type semiconductor-based DSSCs use a p-type semiconductor like
Spiro-MeOTAD (2,2′,7,7′-Tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene)
or NiO [68,69]. NiO-based cells have shown the best efficiencies but have also been ob-
served to have high rates of undesirable recombination reactions with the dye [70]. Hybrid
solid-state DSSCs use organic HTM in combination with an inorganic compound, such as
metal oxide. Kim et al. reported a PCE of 6.16% for fiber-based hybrid solid-state cells in
2020 [71]. In general, direct contact with the dye and TiO2 is hindered by the crystallinity
of the solid polymer electrolyte. To overcome this problem, plasticizers can be introduced
to reduce the crystallinity and give the electrolyte a more gel-like shape. The increased
mobility allows for better ionic conductivity [72]. Polymer electrolytes are by far the best
alternatives to volatile organic solvents such as acetonitrile and propionitrile in terms of
stability. Furthermore, gel-based DSSCs can be used in textile applications due to their low
volatility and non-corrosive properties [73].

Quasi-solid electrolytes have characteristics of both liquid and solid electrolytes. They
can be fabricated by incorporating polymers, organic small-molecule gels, or nanoparti-
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cles [24]. They have shown better PCE values than solid states due to the ionic conductivity
akin to liquid electrolytes, in place of the holes and electrons as charge carriers. Gel polymer
electrolyte DSSCs are known for their excellent thermal stability and long-term stability [74].
According to experimental work by Yang et al., the GPE cell retained 83% of its initial PCE
after 40 days, whereas the PCE of the reference liquid electrolyte dropped to 27% of its
original value [75]. This can conceivably be traced back to insufficient sealing methods
or the use of an inadequate electrolyte system (like that of an IL-organic solvent binary
solvent). It should be noted that there is a lack of research that directly compares the perfor-
mance of the best-known Gel Polymer Electrolyte (GPE) cells with equally effective liquid
electrolyte combinations. Such comparisons can only be made between different research
papers, which might have employed varying methodologies for collecting photovoltaic
data. However, since, as pointed out by Wortmann et al. [76], even the comparison of a
researcher’s results is not always comparable due to lack of reproducibility and slightly
varying presentation, we also refrain from such a comparison here. A solution for this
problem would be a large series of experiments by a researcher who tries to reproduce the
results from different publications under always the same, comparable conditions.

Figure 5 is a schematic representation of four different types of structures in which
DSSCs are commonly found. The structure discussed in detail in this paper is shown in
Figure 5a, which shows a liquid electrolyte DSSC with a sandwich structure, i.e., two TCO-
coated glass plates ‘sandwiching’ the cell. Although this is the most common configuration,
there are other designs that offer various advantages over the sandwich model. Monolithic
DSSCs (M-DSSCs) are another common configuration that requires only one TCO-coated
glass surface (Figure 5b,c). This could reduce material costs by around 20-30% [77] and
allow cells to be easily connected in series to form modules (monolithic serial connection),
making them worthy of consideration for commercialization. They could also offer potential
advantages in large-scale roll-to-roll manufacturing due to their simplified structure [78].
The use of carbon-based counter-electrodes also makes the cells more cost-effective [79–81].
Figure 5c shows a possible design that eliminates the need for TCO glass and instead
uses a Ti-metal back contact coated with a thin compact layer of titanium nitride (TiN).
TCO glass is expensive to produce due to the high cost of the raw materials used, the
ever-increasing demand and the lack of alternatives. According to a market report by
Business Research-insights, the COVID-19 pandemic also saw major disruptions in the
supply chain of FTO on a global scale [82], so TCO-free DSSCs may be worth considering
for further development.
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It is also important to recognize our dependence on petroleum-derived compounds.
Although optimizing cell efficiency, ensuring high stability and reducing production costs
are driving factors in the race to commercialization, this should be accompanied by an
awareness of the potential environmental impact. The finite nature of natural resources
was the key factor that led to DSSCs and other renewable energy generation methods.
Therefore, continued dependence on already depleting non-renewable natural resources
must be avoided wherever possible. Research over the last few decades has given us
a better understanding of the cell and its components. This should enable us to design
components that are sustainable. Various proposals have been made for the use of natural
dyes, quasi-solid electrolytes based on biopolymers, natural carbon electrodes, etc. For
example, the production of acetonitrile using bioethanol has been proposed by Tripodi
et al. as a possible “green” production process for acetonitrile, which, as mentioned above,
is in increasing demand from various industries [83]. The simulations carried out show
that the use of maize or lignocellulosic residues such as wood and sugar cane as the raw
material could help to achieve carbon neutrality and steer the production of DSSCs in an
environmentally friendly direction.

6. Conclusions

As mentioned throughout this paper, the compromise between efficiency and stability
poses a significant challenge for the integration of liquid electrolyte DSSCs into any market.
This challenge has resulted in complexities in cell design and subsequent manufacturing
processes. Various aspects, ranging from the preparation of electrolyte solutions to the
sealing techniques, have undergone substantial changes in attempts to overcome these
challenges. Each type and design of DSSCs come with its own limitations, rendering some
more suitable for specific applications than others. Currently, organic liquid electrolytes
with ionic liquid (IL) additives and co-sensitized dyes have demonstrated the most fa-
vorable balance between efficiency and stability. These configurations show promise as
viable designs for large-scale modules. However, achieving such designs necessitates the
implementation of appropriate sealing methods. Laser-assisted glass frits have proven to
be excellent sealants, although their use may elevate production costs.

In the end, the cost factor will play a pivotal role in determining the feasibility of
DSSCs in the photovoltaic (PV) market, particularly as traditional PV technologies become
more affordable for consumers. The commercialization of DSSCs as a viable alternative to
traditional photovoltaic (PV) technologies holds promise, considering the extensive research
and rapid development they have witnessed over the past few decades. While other third-
generation solar cells, such as perovskite cells, have emerged as strong competitors to
conventional silicon-based PVs, DSSCs may find particular significance in smaller-scale
applications, especially considering the growing popularity of the Internet of Things (IoT)
and flexible computing technologies. DSSCs uniquely exhibit excellent performance in
low indoor lighting conditions, making them well-suited for powering IoT devices and
flexible electronics. Additionally, their intricate design and structure can be more effectively
implemented in smaller-scale production, aligning with the requirements of these emerging
technologies. While perovskite cells may dominate the landscape in terms of overall
efficiency and power output, DSSCs offer unique advantages in specific niche applications.
Therefore, despite facing competition from other advanced solar cell technologies, DSSCs
can carve out a distinct market presence, particularly in areas where their characteristics,
such as indoor performance and adaptability to smaller-scale production, align with specific
requirements. This would mean that there would be no obligation for the DSSCs to still
function profitably after 20 years. Of course, the costs of the cells would have to be
calculated differently so that they are already profitable after 5 years, for example. This
could be achieved if efficiency-increasing but expensive and difficult-to-handle additives
in the electrolyte could be dispensed with and a possible sealing only had to be designed
for a quarter of the time. Especially for IoT applications and other niche products that do
not require high voltages, simpler DSSC designs could occupy an area previously difficult
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to cover by SI-PV and replace batteries and the like here. The saving of mostly toxic
additives in the electrolyte and necessary sealing due to the lower requirements for the
DSSCs would also directly increase the recyclability. In addition, a stronger focus on a
directly well-recyclable construction of the DSSC would be advisable.
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