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Abstract: Traditional strategies for model predictive direct speed control of permanent-magnet
synchronous motors are known to be vulnerable to voltage errors. In this paper, we present a novel
approach that compensates for voltage errors arising from inverter nonlinearity and bus voltage
uncertainties, while remaining unaffected by parameter errors. Initially, we conducted a detailed
analysis to assess the impact of inverter nonlinearity and bus voltage uncertainties. Subsequently,
we proposed a voltage error compensation strategy based on bus voltage identification. Using this
strategy, the identified voltage error is effectively compensated within candidate voltage vectors.
To validate the effectiveness of our proposed method, we conducted comprehensive experiments.
The results demonstrate notable improvements compared with traditional model predictive control.
Specifically, our method successfully reduces the total harmonic distortion of phase currents from
23.2% and 49.6% to 11.6% and 13.9%, respectively. Additionally, it accurately identifies voltage errors,
even in the presence of parameter errors. Overall, our proposed method presents a robust and reliable
solution for addressing voltage errors, thereby enhancing the performance and stability of the system.

Keywords: model predictive control; inverter nonlinearity; voltage error compensation; permanentmagnet
synchronous motors

1. Introduction

Permanent-magnet synchronous motors (PMSMs) are compact and efficient electric motors
that use permanent magnets to create a magnetic field [1,2]. With precise speed control and high
torque density, PMSMs find extensive usage across various applications, including renewable
energy systems, industrial automation, electric vehicles, and robotics [3,4]. The control strategies
of PMSMs play a crucial role in achieving accurate and efficient motor operation. Various
control techniques, such as field-oriented control (FOC) and direct torque control (DTC), are
employed to regulate the speed and torque of PMSMs [5]. These strategies utilize advanced
algorithms, such as PI control [6], sliding mode control [7], model predictive control (MPC) [8],
feedback loops, and mathematical models, to optimize motor performance, improve energy
efficiency, and ensure smooth operation.

In recent years, MPC has become a widely adopted control strategy in PMSM drive
systems [9,10]. MPC utilizes a mathematical model of the motor under consideration and
considers constraints to generate optimal control actions. MPC offers several advantages,
including fast and accurate response, robustness against disturbances, and ability to handle
nonlinearities and constraints [11]. Among numerous MPC strategies, the model predictive
direct speed control (MPDSC) strategy stands out as a highly promising approach [12–14]. It
integrates the speed loop and the current loop into a unified control loop, thereby combining
the advantages of MPC and direct speed control (DSC). This strategy enables simultaneous
regulation of speed and current in PMSMs, resulting in improved dynamic response and
control performance [15].

Previous research on the MPDSC strategy reveals that the control performance of
this strategy is directly affected by the accuracy of the mathematical model proposed for
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a PMSM. The parameters of a PMSM can be obtained through either offline or online
identification strategies [16], while variables such as current, speed, and load torque are
measured and estimated in real time using corresponding sensors and observers [17].
Hence, the primary focus of this paper is to investigate the influence of voltage errors
on MPDSC.

Voltage error in motor control mainly refers to the deviation between the theoretical
voltages calculated by an algorithm and the actual voltages applied to a PMSM [18]. The
formation of voltage error is primarily attributed to the nonlinearity of the inverter, which
encompasses factors such as the dead-time effect [19], signal delay [20], and parasitic
capacitance [21]. For conventional control strategies with modulation, voltage error arising
from the nonlinearity of the inverter leads to the occurrence of harmonic combinations
at specific frequencies [22]. Various compensation methods are employed to mitigate the
effects caused by these harmonics [23,24]. In [25], through the minimization of the harmonic
component of the current in the dq-axis, an accurate compensation factor is determined.
In [26], the authors employ such harmonics to compensate for voltage errors resulting
from the effects of dead time. In [27], the proposed approach employs a disturbance
observer for real-time estimation of the disturbance voltages generated by dead time. The
estimated disturbance voltages are subsequently utilized to compensate for the dead-time
effects by adjusting the voltage references. The authors of [28] introduce a novel offline
neural network approach that takes into account the impact of parasitic capacitance to
accurately identify the nonlinearity of the inverter. The proposed method successfully
achieves the decoupling of dead-time voltage and resistance voltage through the utilization
of the identified results obtained from the neural network. In the study conducted by
the authors of [29], an enhanced linear dead-time compensation method is introduced,
which focuses on improving the resistance observer. The authors of [30] proposed a low-
complexity MPC algorithm that incorporates dead-time compensation. By introducing
an additional voltage vector on the voltage vector plane, the harmonic voltage vector
induced by dead time is effectively suppressed. In [31], the authors propose an innovative
compensation strategy based on adaptive linear learning to mitigate the dead-time issue
in PMSM drives. This strategy involves the utilization of a self-tuning adaptive harmonic
current decomposer, which applies the recursive least squares (RLS) algorithm to extract
the sixth harmonic current component in the synchronous reference frame. Subsequently, a
PI controller is employed to compensate for the direct-axis voltage. The study conducted
by the authors of [32] focuses on analyzing the nonlinearity of the controller resulting
from voltage distortion caused by dead time during PMSM operation. To improve control
stability, an extended Kalman filter (EKF) is employed to predict the distorted output
voltage. In [33], a novel dead-time compensation method is introduced, which utilizes
a fractional-order proportional–integral (FOPI) controller to mitigate voltage errors. To
address the dead-time effects, an enhanced particle swarm optimization algorithm is
utilized for parameter design in the FOPI controller, resulting in accelerated convergence
speed compared to other optimization algorithms.

However, for finite-control-set MPDSC (FCS-MPDSC), the switching states are directly
obtained from the cost function, and therefore, the use of a modulator is usually unneces-
sary [34]. The switching states applied at each sampling instant may not change, and the
effects caused by inverter nonlinearity are not continuous [35–37]. It is also not possible to
analyze inverter nonlinearity in the same way as control strategies involving modulators.
The authors of [38] discuss the impact of dead time on MPC and analyze the formation
process of the equivalent voltage vector. Their method distinguishes between beneficial
and nonbeneficial equivalent voltage vectors and introduces an optimized MPC approach
that adjusts the timing of dead time to enhance performance. Similarly, an enhanced MPC
scheme is introduced to mitigate the adverse impact of dead time on control performance by
considering it as a dead-time-equivalent voltage vector and optimizing its utilization [39].
In [40], a voltage space vector compensation method is presented to mitigate the current
distortion caused by the introduction of dead time. In [41], the authors provide a thorough
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analysis of the dead-time effect, introduce a voltage deviation term, and present a modified
MPC approach with vector error compensation.

From the above studies, it can be observed that for FCS-MPC, voltage errors arising
from the nonlinearity of the inverter are often addressed using the equivalent voltage
vector method. However, based on the basic voltage vectors, their values are dependent
on the bus voltage. When the bus voltage fluctuates or the accurate bus voltage cannot be
obtained, significant voltage errors can occur [42]. Since FCS-MPC directly utilizes voltage
vectors for delay compensation and future-state prediction, inaccurate bus voltage can
have a significant impact. Existing FCS-MPC methods rarely consider the prediction error
caused by inaccurate bus voltage separately; instead, they treat it as a part of the overall
disturbance, along with parameter variations, external disturbances, and other errors,
and observe and compensate for the overall disturbance [43,44]. In addition, adaptive
and fuzzy control have been introduced to compensate for the effects of uncertain factors.
The authors of [45] present a novel design for a one-degree-of-freedom device aimed at
assisting paralyzed patients, which incorporates adaptive and fuzzy control techniques,
thus introducing a new concept that utilizes hydraulic actuators. However, for further
research such as research on sensorless control [46] and parameter identification [47],
accurate voltage values are required. Therefore, it is necessary to conduct a detailed study
on the inaccuracy of bus voltages.

In this study, a voltage-error-compensation-based MPDSC strategy is proposed. This
paper first provides a brief introduction to the modified MPDSC strategy, followed by an
analysis of the causes of voltage error and its impact on MPDSC. It then presents a bus
voltage identification strategy based on recursive least squares (RLS) to achieve voltage
error compensation. The primary contributions of this study are as follows:

(1) The trapezoidal method in discretizing the motor motion equation is utilized to
address the need for additional speed prediction in single-loop control, thereby en-
hancing the accuracy of discretization.

(2) By considering both inverter nonlinearity and bus voltage fluctuations, the analysis
of voltage error reveals that the voltage error in MPDSC can be attributed to bus
voltage error.

(3) A bus voltage identification strategy based on RLS is proposed, which enables voltage error
compensation in MPDSC and exhibits robustness against motor parameter variations.

2. Modified FCS-MPDSC
2.1. Model of PMSM

A surface PMSM is used as an example, but the proposed method also applies to an
interior PMSM. The dq-axis continuous mathematical model of surface PMSM [9,15,16] is
as follows: {

did
dt = − Rs

L id + ωeiq +
ud
L

diq
dt = − Rs

L iq −ωeid +
uq
L −

ψ f
L ωe

(1)

Te =
3
2

pψ f iq (2)

J
dωe

dt
= p(Te − Tl)− Fωe (3)

where ud, uq, id, and iq represent the voltages and currents in the dq-axis; ωe, Te, and Tl are
the electrical angular velocity, electromagnetic torque, and load torque; Rs, L, and ψf are the
motor stator resistance, inductance, and permanent magnet flux linkage; and p, J, and F are
the number of pole pairs, moment of inertia, and friction coefficient.
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The three-phase voltage that can be output [9,15,16] is as follows:

Uabc =

Ua
Ub
Uc

 =
Udc

3

 2 −1 −1
−1 2 −1
−1 −1 2

Sa
Sb
Sc

 (4)

where Uabc =
[
Ua Ub Uc

]T is the terminal phase voltage;
[
Sa Sb Sc

]T is the switch
status; and Udc is the bus voltage.

By applying the Clark transformation to Equation (4), the voltage vector in the αβ

coordinate system [9,15,16] can be derived as follows:[
uα

uβ

]
=

[
2
3 − 1

3 − 1
3

0
√

3
3 −

√
3

3

]
Uabc (5)

Using the Park transformation [9,15,16], candidate voltage vectors can be obtained for
each of the eight sets of dq-axes as follows:[

ud
uq

]
=

[
cosθe sinθe
−sinθe cosθe

][
uα

uβ

]
(6)

where θe is the electrical angle.

2.2. Modified FCS-MPDSC

The forward Euler discrete method [43] was employed in this study with a sam-
pling time of Ts. Using this method, the continuous mathematical model of the motor is
discretized to obtain a discrete mathematical model: id(k + 1) =

(
1− RsTs

L

)
id(k) + Tsiq(k)ωe(k) + Ts

L ud(k)

iq(k + 1) =
(

1− RsTs
L

)
iq(k)− Tsid(k)ωe(k)−

ψ f Ts
L ωe(k) + Ts

L uq(k)
(7)

ωe(k + 1) =
pTs

J
(Te(k)− Tl) +

(
1− FTs

J

)
ωe(k) (8)

where k and k + 1 represent the current and the next moment.
According to Formula (6), there are only eight combinations of candidate voltage

vectors, ud(k) and uq(k), at moment k. Consequently, the predicted values at moment
k + 1 can be derived using Formulas (7) and (8). Subsequently, the cost function, g [12],
can be employed to determine the optimal voltage vector. The cost function serves as a
criterion for evaluating the performance of different voltage vectors and selecting the one
that minimizes the objective. By applying the cost function, the control algorithm can make
informed decisions to choose the voltage vector that leads to the desired system behavior
and achieves the desired control objectives:

g = λ1(i∗d − id(k + 1))2 + λ2(Tl − Te(k + 1))2 + λ3(ω
∗
e −ωe(k + 2))2 + glimit (9)

where λ1, λ2, and λ3 are the weight factors, and glimit is the motor current constraint item,
the purpose of which is to protect the currents from exceeding the maximum current Imax
of the motor. Its calculation is as follows:

glimit =

in f
√
(id(k + 1))2 +

(
iq(k + 1)

)2
> Imax

0
√
(id(k + 1))2 +

(
iq(k + 1)

)2 ≤ Imax

(10)

It is worth noting that ωe(k + 2) at moment k + 2 needs to be predicted because
ωe(k + 1) at moment k + 1 is independent of ud(k) and uq(k), so the accuracy of the
discretizing equation in (8) affects the performance of the system [14]. To improve the
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accuracy of discretization and to tackle the challenge of predicting at the moment k + 2, the
trapezoidal method [48] was utilized to discretize the equation of motion. The trapezoidal
method was chosen for its ability to provide more accurate predictions by considering the
average of the state variables at two adjacent time steps, resulting in improved accuracy
and stability in the numerical solution. By incorporating the trapezoidal method, the
discretization process accounts for the dynamics of the system and enhances the reliability
of the predicted value at moment k + 1:

ωe(k + 1) = ωe(k) + Ts
2
( .
ωe(k) +

.
ωe(k + 1)

)
.

ωe(k) =
p
J (Te(k)− Tl) +

F
J ωe(k)

.
ωe(k + 1) = p

J (Te(k + 1)− Tl) +
F
J ωe(k + 1)

(11)

Simultaneously, to mitigate the impact resulting from system delay, a commonly
adopted approach is the utilization of a one-step delay compensation method [38]. Taking
moment k as an example, the system carries out the optimal voltage vector calculated
at moment k−1 to predict the current and speed values at moment k + 1 according to
Formula (7) and Formula (11). Next, the predicted value at moment k + 2 is computed, and
the optimal voltage vector is subsequently output to the motor at moment k + 1.

Figure 1 illustrates the structure of the proposed FCS-MPDSC.
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3. Voltage Error Compensation

The accuracy of the mathematical model used directly impacts the performance of
FCS-MPDSC. In a PMSM mathematical model, the current and speed are measured by
sensors, and the parameters can be determined in advance, but there are few motor drive
systems that measure candidate voltage vectors.

Therefore, this study investigated factors that contribute to voltage errors and explored
their implications for FCS-MPDSC. Subsequently, a voltage error compensation method
based on bus voltage identification is proposed to mitigate the influence of voltage errors.
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3.1. Voltage Error Analysis

Typically, there exists a discrepancy between the theoretical voltage value calculated
by an algorithm and the actual voltage applied to a motor, and one of the reasons for this
discrepancy is the nonlinearity of the inverter. As shown in Formula (12), the nonlinearity
of the inverter introduces errors in the candidate voltage vectors, ud(k) and uq(k). Existing
studies have found that when using traditional PWM modulation technology, the nonlin-
earity of the inverter is mainly caused by problems such as the dead-time effect and switch
tube signal delay, and its dq-axis voltage errors are determined according to Formula (13):{

ud_real(k) = ud(k) + ∆ud_errorinver(k)
uq_real(k) = uq(k) + ∆uq_errorinver(k)

(12)

{
∆ud_errorinver(k) = UdeadDd
∆uq_errorinver(k) = UdeadDq

(13)

where ud_real(k) and uq_real(k) are the actual values; ∆ud_errorinver(k) and ∆uq_errorinver(k) are
the voltage errors due to inverter nonlinearity; Udead is the magnitude of the voltage error;
and Dd and Dq are the coefficients related to the electrical angle and the current direction.

In addition, it can be seen from Formula (6) that the candidate voltage vectors are
related to Udc. When Udc fluctuates or the exact value of Udc cannot be obtained, the
candidate voltage vectors will also have errors:{

ud_real(k) = ud(k) + ∆ud_errorinver(k) + ∆ud_errorbus(k)
uq_real(k) = uq(k) + ∆uq_errorinver(k) + ∆uq_errorbus(k)

(14)

where ∆ud_errorbus(k) and ∆uq_errorbus(k) are the voltage errors caused by bus voltage uncer-
tainties. The actual value of the bus voltage is Ûdc = Udc + ∆Udc, and ∆Udc is the error of
the bus voltage. The voltage errors of each voltage vector under the αβ-axis are shown in
Table 1.

Table 1. The errors of voltage vectors.

Voltage Vector Voltage Value

Vector 1
[
0 0

]
Vector 2

[
2∆Udc/3 0

]
Vector 3

[
∆Udc/3 ∆Udc/

√
3
]

Vector 4
[
−∆Udc/3 ∆Udc/

√
3
]

Vector 5
[
−2∆Udc/3 0

]
Vector 6

[
−∆Udc/3 −∆Udc/

√
3
]

Vector 7
[
∆Udc/3 −∆Udc/

√
3
]

Vector 8
[
0 0

]
3.2. Voltage Error Impact on FCS-MPDSC

While FCS-MPDSC exhibits a degree of robustness to voltage vector errors, meaning
it only needs to identify the optimal voltage vector rather than accurately calculate the
output voltage value, significant voltage errors can still impact the selection of the optimal
voltage vector. Additionally, the one-step delay compensation method further amplifies
the influence of voltage errors on the predicted value, as illustrated in Figure 2.

Unlike traditional PWM modulation technology, FCS-MPDSC does not have a dead
zone in each sampling period. It is only when the switch states of two adjacent sampling
moments are different that the system can set a dead zone. In Figure 3, the voltage vectors
Vector 2 and Vector 4 are taken as examples. When the state of the a-bridge arm changes
from 1 to 0, and the state of the b-bridge arm changes from 0 to 1, the system will set
a dead zone, and the time is Tdead. When the state of the c-bridge arm is always 0, the
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system does not need to set a dead zone. The specific switching signal situation is shown
in Figure 3a. During the period Tdead, the diodes corresponding to each phase current
direction are activated, as depicted in Figure 3b. Hence, the voltage error resulting from
inverter nonlinearity can be treated as an equivalent voltage vector, which is also among
the eight fundamental voltage vectors. Figure 3c illustrates the equivalent voltage vectors
for various combinations of phase currents.
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As for the bus voltage error, because it exists in the six effective voltage vectors, its
influence is more obvious for FCS-MPDSC.

3.3. Voltage Error Compensation Based on Bus Voltage Identification

To address the impact of voltage errors on FCS-MPC, this paper presents a voltage error
compensation method based on bus voltage identification, which effectively compensates
for voltage errors resulting from both inverter nonlinearity and bus voltage uncertainties.
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Firstly, considering the voltage error resulting from inverter nonlinearity, it can be
considered as an equivalent voltage vector applied during Tdead. The equivalent voltage
vector and the candidate voltage vector are combined to form a compensatory candidate
voltage vector, which is expressed as follows: uα_com(k) =

1−Tdead
Ts

uα(k) +
Tdead

Ts
uα_equ(k)

uβ_com(k) =
1−Tdead

Ts
uβ(k) +

Tdead
Ts

uβ_equ(k)
(15)

where uα_equ(k) and uβ_equ(k) are the equivalent voltage vectors. Therefore, the voltage
error generated by inverter nonlinearity will also be composed of basic voltage vectors.
Based on the analysis in Section 3.1, it is evident that the basic voltage vectors are mainly
caused by the bus voltage error. Therefore, the compensation for voltage errors caused
by inverter nonlinearity and bus voltage fluctuations can be achieved by identifying the
bus voltage.

In this study, the recursive least squares (RLS) method was employed to estimate the
bus voltage Ûdc. As depicted in Figure 4, due to the application of only one voltage vector
in each sampling period, the proposed FCS-MPDSC is unable to achieve zero-error control.
Consequently, in two consecutive sampling periods, the rate of change in the motor current
is non-zero, leading to variations in the motor’s states.
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From Formula (15), the actual value of the dq-axis voltage can be obtained considering
inverter nonlinearity and the error of the bus voltage as follows:{

ud_real(k) = f k
d (θe(k))Ûdc

uq_real(k) = f k
q (θe(k))Ûdc

(16)

where f k
d (θe(k)) and f k

q (θe(k)) are the voltage coefficients, which are determined by the
optimal voltage vector and the equivalent voltage vector at moment k.

Taking the change rate of the motor current as a known variable and considering the
parameter errors, the equation for the dq-axis voltage can be reformulated as follows: 0 = −id(k)R̂s +

(
iq(k)ωe(k)− did

dt (k)
)

L̂ + f k
d (θe(k))Ûdc

0 = −iq(k)R̂s −
(

id(k)ωe(k) +
diq
dt (k)

)
L̂−ωe(k)ψ̂ f + f k

q (θe(k))Ûdc
(17)

where R̂s, L̂, and ψ̂ f are the actual parameters of PMSM.
Therefore, in addition to Ûdc, there are three unknowns, namely R̂s, L̂, and ψ̂ f , but the

equation set has a general solution where four unknowns are all zero. Considering that
ψ̂ f can be obtained from the mechanical equation, it can be taken as a known quantity ψ f .
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Since only the q-axis voltage equation contains the term of ψ f , the RLS method is applied to
solve for Ûdc, R̂s, and L̂ using only the q-axis equation. The modified equation is as follows:

ωe(k)ψ f = −iq(k)R̂s −
(

id(k)ωe(k) +
diq
dt

(k)
)

L̂ + f k
q (θe(k))Ûdc (18)

Since three unknowns need to be solved, this study exploited the non-zero change
rate of the motor current in FCS-MPC and combined the measured values of the past three
moments to construct three equations with different coefficients to realize the bus voltage
estimation based on RLS. Taking k moment as an example, by storing the state of the motor
at moments k − 3, k − 2, and k − 1, the equations are as follows:

ωe(k− 3)ψ f = −iq(k− 3)R̂s −
(

id(k− 3)ωe(k− 3) + diq
dt (k− 3)

)
L̂ + f k

q (θe(k− 3))Ûdc

ωe(k− 2)ψ f = −iq(k− 2)R̂s −
(

id(k− 2)ωe(k− 2) + diq
dt (k− 2)

)
L̂ + f k

q (θe(k− 2))Ûdc

ωe(k− 1)ψ f = −iq(k− 1)R̂s −
(

id(k− 1)ωe(k− 1) + diq
dt (k− 1)

)
L̂ + f k

q (θe(k− 1))Ûdc

(19)

The state matrices of RLS are as follows:

y(k) =
[

ωe(k− 3)ψ f ωe(k− 2)ψ f ωe(k− 1)ψ f
]T (20)

θ(k) =
[

R̂s(k) L̂(k) Ûdc(k)
]T (21)

ϕ(k) =


−iq(k− 3) −id(k− 3)ωe(k− 3)− diq

dt (k− 3) f k−2
q (θe(k− 3))

−iq(k− 2) −id(k− 2)ωe(k− 2)− diq
dt (k− 2) f k−2

q (θe(k− 2))

−iq(k− 1) −id(k− 1)ωe(k− 1)− diq
dt (k− 1) f k−1

q (θe(k− 1))


T

(22)

e(k) = y(k)−ϕT(k)θ(k) (23)

The RLS equations are as follows:

K(k) = P(k− 1)ϕ(k)
[
λI +ϕT(k)P(k− 1)ϕ(k)

]−1
(24)

P(k) =
[
I−K(k)θT(k)

]
λ−1P(k− 1) (25)

θ(k) = θ(k− 1) + K(k)e(k) (26)

Figure 5 illustrates the flowchart of bus voltage identification based on RLS.
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Figure 5. The flowchart of bus voltage identification based on RLS.

This strategy first calculates the equivalent dead-zone voltage vector, which is zero
if the switch state does not change. Then, according to the current, speed measurements,
and voltage vector coefficients of the past three moments, the state matrices y and ϕ of RLS
are updated, the correction coefficient matrices K and P are calculated, and, finally, the
corrected estimated parameter θ is output. After obtaining the estimated value of the bus
voltage, this study adopted the voltage feedforward compensation strategy to correct the
voltage vector error, and its control principle is shown in Figure 6.
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4. Experimental Results

The experimental setup is depicted in Figure 7. The controller uses TI’s DSP evaluation
board LAUNCHXL-F28379D, the drivers use GaN-based BOOSTXL-3PhGaNInv, and the
PMSMs are Teknic’s M-2310P-LN-04K. The parameters are presented in Table 2.

To verify the proposed voltage error compensation strategy, this study compared
an FCS-MPDSC without voltage compensation (FCS-MPDSC without VC) [13], a FCS-
MPDSC with centralized disturbance compensation (FCS-MPDSC with CDC) [43], and the
proposed FCS-MPDSC with bus voltage compensation. The FCS-MPDSC without VC is
the traditional strategy without any voltage compensation method. The FCS-MPDSC with
CDC observes and compensates for voltage errors and parameter errors using centralized
disturbance terms. In this study, all three strategies were utilized to conduct motor control
experiments under the influence of inverter nonlinearity, bus voltage errors, and parameter
errors. The experimental results were then numerically compared with the results obtained
using the three strategies. In the experiment, the dq-axis current data were the output
given by the DAC that comes with DSPF28379D, and these data were collected using an
oscilloscope together with the phase current waveforms; the rotational speed data were
collected using the software of Magtrol through the speed sensor.
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Table 2. Parameters of PMSM.

Parameters Values

p 4
Rs 0.36 Ω
L 0.2 mH
ψf 0.0064 Wb

Udc 24 V

In this study, we primarily compared the experimental results of the different control
strategies using two metrics. The first metric is the steady-state error of the speed response,
which is calculated using the following formula:

∆n = nre f − naverage (27)

where nre f is the velocity reference value, and naverage is the average value of the speed
steady-state response. In this study, the speed reference value was set to 1000 r/min. The
average value of the speed steady-state response was obtained using the mean function
in MATLAB.

The second metric is the total harmonic distortion (THD), which is calculated using
the following formula:

ValueTHD =

√√√√ (I2)
2 + (I3)

2 + (I4)
2 + · · ·+ (In)

2

(I1)
2 (28)

where I1 is the root mean square (RMS) value of the fundamental component of the phase
current, and In are the RMS values of the harmonic components of the phase current. In
this study, the fundamental frequency of the phase current was set to 66.667 Hz. The RMS
values of the various frequency components of the phase current were obtained using the
FFT function in MATLAB.

4.1. Inverter Nonlinearity

The motor system was given the following reference values: a speed reference value
of 1000 r/min, a load torque of 0.2 Nm, and a dead time of 1 µs.

The experimental results of the three control strategies after the motor had reached a
steady state are presented in Figures 8–10. In Figures 8a, 9a and 10a, without compensation
for the voltage error caused by inverter nonlinearity, a small steady-state error in speed
occurs, which is approximately 10 r/min. However, both the FCS-MPDSC with CDC
and the proposed FCS-MPDSC exhibit almost no steady-state error. Figures 8b, 9b and
10b display the dq-axis currents for the three control strategies. Compared to the current
waveforms under the FCS-MPDSC without VC, both the FCS-MPDSC with CDC and the
proposed FCS-MPDSC reduce current fluctuations. Figures 8c,d, 9c,d and 10c,d illustrate
the waveforms of phase currents ia and ib, as well as the fast Fourier transform (FFT)
results of ia. The total harmonic distortion (THD) of phase current ia is 23.2% under the
FCS-MPDSC without VC, while the THD of current ia is reduced to 10.1% and 11.6% under
the FCS-MPDSC with CDC and the proposed FCS-MPDSC, respectively. These results
demonstrate that the proposed FCS-MPDSC can compensate for the voltage error caused
by inverter nonlinearity, similar to the effect achieved by the FCS-MPDSC with CDC.



Energies 2023, 16, 5128 13 of 21Energies 2023, 16, x FOR PEER REVIEW 14 of 22 
 

 

 

−5

 
(a) (b) 

−10

  
(c) (d) 

Figure 8. Inverter nonlinearity under FCS-MPDSC without VC: (a) mechanical velocity; (b) dq-axis 
currents; (c) phase currents; and (d) harmonic spectrum of phase current. 

 

−5

 
(a) (b) 

−10

  
(c) (d) 

Figure 9. Inverter nonlinearity under FCS-MPDSC with CDC: (a) mechanical velocity; (b) dq-axis 
currents; (c) phase currents; and (d) harmonic spectrum of phase current. 

  

Figure 8. Inverter nonlinearity under FCS-MPDSC without VC: (a) mechanical velocity; (b) dq-axis
currents; (c) phase currents; and (d) harmonic spectrum of phase current.

Energies 2023, 16, x FOR PEER REVIEW 14 of 22 
 

 

 

−5

 
(a) (b) 

−10

  
(c) (d) 

Figure 8. Inverter nonlinearity under FCS-MPDSC without VC: (a) mechanical velocity; (b) dq-axis 
currents; (c) phase currents; and (d) harmonic spectrum of phase current. 

 

−5

 
(a) (b) 

−10

  
(c) (d) 

Figure 9. Inverter nonlinearity under FCS-MPDSC with CDC: (a) mechanical velocity; (b) dq-axis 
currents; (c) phase currents; and (d) harmonic spectrum of phase current. 

  

Figure 9. Inverter nonlinearity under FCS-MPDSC with CDC: (a) mechanical velocity; (b) dq-axis
currents; (c) phase currents; and (d) harmonic spectrum of phase current.



Energies 2023, 16, 5128 14 of 21Energies 2023, 16, x FOR PEER REVIEW 15 of 22 
 

 

 

−5

 
(a) (b) 

−10

  
(c) (d) 

Figure 10. Inverter nonlinearity under proposed FCS-MPDSC: (a) mechanical velocity; (b) dq-axis 
currents; (c) phase currents; and (d) harmonic spectrum of phase current. 

4.2. Bus Voltage Error 
In this experiment, the motor was set to operate under the same conditions as those 

with inverter nonlinearity, but there was a 5V error in the bus voltage value. The experi-
mental waveforms for the three control strategies are presented in Figures 11–13. As 
shown in Figures 11a, 12a and 13a, the bus voltage error leads to a steady-state error of 
approximately 40 r/min in speed under FCS-MPDSC without VC. However, both the FCS-
MPDSC with CDC and the proposed FCS-MPDSC maintain the motor speed effectively. 
Figures 11b–d, 12b–d and 13b–d display the motor’s dq-axis currents, phase currents, and 
FFT results. The bus voltage error significantly affects the motor’s current under the FCS-
MPDSC without VC. The dq-axis current fluctuation becomes larger than when only deal-
ing with voltage error caused by inverter nonlinearity, and the THD of the phase current 
reaches 49.6%. In this scenario, both the FCS-MPDSC with CDC and the proposed FCS-
MPDSC effectively mitigate the influence of bus voltage errors. The THD of the phase 
current is reduced to 11.9% under the FCS-MPDSC with CDC, while it is reduced to 13.9% 
under the proposed FCS-MPDSC. These results demonstrate that when the parameters 
are accurate, the proposed FCS-MPDSC can effectively suppress voltage errors, achieving 
a similar suppression effect as the FCS-MPDSC with CDC. 

 

−5

 
(a) (b) 

Figure 10. Inverter nonlinearity under proposed FCS-MPDSC: (a) mechanical velocity; (b) dq-axis
currents; (c) phase currents; and (d) harmonic spectrum of phase current.

4.2. Bus Voltage Error

In this experiment, the motor was set to operate under the same conditions as those
with inverter nonlinearity, but there was a 5V error in the bus voltage value. The experimen-
tal waveforms for the three control strategies are presented in Figures 11–13. As shown in
Figures 11a, 12a and 13a, the bus voltage error leads to a steady-state error of approximately
40 r/min in speed under FCS-MPDSC without VC. However, both the FCS-MPDSC with
CDC and the proposed FCS-MPDSC maintain the motor speed effectively. Figures 11b–d,
12b–d and 13b–d display the motor’s dq-axis currents, phase currents, and FFT results. The
bus voltage error significantly affects the motor’s current under the FCS-MPDSC without
VC. The dq-axis current fluctuation becomes larger than when only dealing with voltage
error caused by inverter nonlinearity, and the THD of the phase current reaches 49.6%. In
this scenario, both the FCS-MPDSC with CDC and the proposed FCS-MPDSC effectively
mitigate the influence of bus voltage errors. The THD of the phase current is reduced to
11.9% under the FCS-MPDSC with CDC, while it is reduced to 13.9% under the proposed
FCS-MPDSC. These results demonstrate that when the parameters are accurate, the pro-
posed FCS-MPDSC can effectively suppress voltage errors, achieving a similar suppression
effect as the FCS-MPDSC with CDC.
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currents; (c) phase currents; and (d) harmonic spectrum of phase current.



Energies 2023, 16, 5128 16 of 21

Energies 2023, 16, x FOR PEER REVIEW 16 of 22 
 

 

−10

  
(c) (d) 

Figure 11. Bus voltage error under FCS-MPDSC without VC: (a) mechanical velocity; (b) dq-axis 
currents; (c) phase currents; and (d) harmonic spectrum of phase current. 

 

−5

 
(a) (b) 

−10

  
(c) (d) 

Figure 12. Bus voltage error under FCS-MPDSC with CDC: (a) mechanical velocity; (b) dq-axis cur-
rents; (c) phase currents; and (d) harmonic spectrum of phase current. 

 

−5

 
(a) (b) 

−10

  
(c) (d) 

Figure 13. Bus voltage error under proposed FCS-MPDSC: (a) mechanical velocity; (b) dq-axis
currents; (c) phase currents; and (d) harmonic spectrum of phase current.

4.3. Parameter Errors

Next, we investigated not only the voltage error resulting from inverter nonlinear-
ity and bus voltage uncertainty, but also errors in the parameters. The motor was set
to operate under the same conditions as in the previous experiment, with the motor’s
parameters assumed to be twice their actual values. The experimental results are presented
in Figures 14–16. Figure 14a shows that due to the introduction of parameter errors, the
steady-state error in speed further increases to 70 r/min under the FCS-MPDSC without
VC. In Figure 15a, the FCS-MPDSC with CDC is still capable of controlling the motor
speed effectively. However, the proposed FCS-MPDSC cannot compensate for parameter
errors, resulting in a steady-state speed error of 30 r/min, as shown in Figure 16a. The
current experimental results depicted in Figure 14b–d, Figures 15b–d and 16b–d indicate
that the THD of ia under the FCS-MPDSC without VC rises to 65.9%. In contrast, the THD
of ia under the FCS-MPDSC with CDC remains at 14.1%, while the THD of ia under the
proposed FCS-MPDSC reaches 27.1%. However, the bus voltage error observation strategy
based on RLS can accurately observe the actual bus voltage value, as shown in Figure 16e.

Table 3 presents a comprehensive summary of all of the metrics obtained from the
experimental results using the three different strategies. The experimental results validate
the effectiveness of our proposed strategy. The strategy successfully mitigates the adverse
effects of voltage errors, leading to improved speed-tracking accuracy and reduced THD in
phase currents. Specifically, our method achieves a significant reduction in THD, lowering
it from 23.2% (with inverter nonlinearity) and 49.6% (with bus voltage error) to 11.6%
and 13.9%, respectively. Although the proposed FCS-MPDSC cannot suppress parameter
errors, it can obtain precise voltage values, which is beneficial for further research on other
algorithms, such as parameter identification and efficiency calculation.
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Table 3. Experimental results using different strategies.

FCS-MPDSC
without VC

FCS-MPDSC
with CDC

Proposed
FCS-MPDSC

Speed Error THD of Phase Current Speed Error THD of Phase Current Speed Error THD of Phase Current

Inverter Nonlinearity 10 r/min 23.2% 0 10.1% 0 11.6%
Bus Voltage Error 40 r/min 49.6% 0 11.9% 0 13.9%
Parameter Errors 70 r/min 65.9% 0 14.1% 30 r/min 27.1%

Table 4 provides the percentage magnitude of the fifth- and seventh-harmonic com-
ponents of the phase current under the three different strategies. It is evident that the
proposed FCS-MPDSC successfully mitigates the amplitude of the harmonic components
in the phase current caused by voltage errors. The amplitudes of the fifth harmonic and the
seventh harmonic decrease from 2.9% and 2.7% (with inverter nonlinearity), and from 7.6%
and 6.0% (with bus voltage error), to 1.4% and 1.7%, and to 1.5% and 1.9%, respectively.
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Table 4. Experimental results using different strategies.

FCS-MPDSC
without VC

FCS-MPDSC
with CDC

Proposed
FCS-MPDSC

5th 7th 5th 7th 5th 7th

Inverter Nonlinearity 2.9% 2.7% 1.0% 1.3% 1.4% 1.7%
Bus Voltage Error 7.6% 6.0% 1.2% 1.6% 1.5% 1.9%
Parameter Errors 10.1% 8.3% 1.7% 2.2% 3.4% 3.2%

5. Conclusions

In conclusion, this study proposes a voltage-error-compensation-based model predic-
tive direct speed control (MPDSC) strategy for addressing the impact of voltage errors in
PMSM systems. Through a comprehensive analysis of voltage errors arising from inverter
nonlinearity and bus voltage uncertainties, we identified that these errors can be effectively
compensated using bus voltage identification. To achieve this, we designed an identifica-
tion strategy based on recursive least squares (RLS) and the current rate of change. The
experimental results validate the effectiveness of our proposed strategy. The strategy suc-
cessfully mitigates the adverse effects of voltage errors, leading to improved speed-tracking
accuracy and reduced total harmonic distortion (THD) in phase currents. Specifically, our
method achieves a significant reduction in THD, lowering it from 23.2% (with inverter
nonlinearity) and 49.6% (with bus voltage error) to 11.6% and 13.9%, respectively. Among
them, the amplitude of the fifth harmonic and the seventh harmonic decreases from 2.9%
and 2.7% (with inverter nonlinearity), and from 7.6% and 6.0% (with bus voltage error), to
1.4% and 1.7%, and to 1.5% and 1.9%, respectively. Furthermore, an important advantage
of our strategy is its identification of precise voltage values with parameter errors. This
capability enhances the stability and performance of the MPDSC system. In summary,
our voltage-error-compensation-based MPDSC strategy offers a promising solution for
addressing voltage errors in PMSM systems. It effectively improves speed-tracking accu-
racy, reduces THD in phase currents, and exhibits robustness against parameter errors. The
experimental results provide strong evidence of the effectiveness and practicality of our
proposed strategy.
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