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Abstract: Electricity peak load forecasting plays an important role in electricity generation capacity
planning to ensure reliable power supplies. To achieve high forecast accuracy, multiple machine
learning models have been implemented to forecast the monthly peak load in Thailand over the
past few years, yielding promising results. One approach to further improve forecast accuracy is to
effectively select the most accurate forecast value for each period from among the forecast values
generated by these models. This article presents a novel reinforcement learning approach using
the double deep Q-network (Double DQN), which acts as a model selector from a pool of available
models. The monthly electricity peak load data of Thailand from 2004 to 2017 are used to demonstrate
the effectiveness of the proposed method. A hyperparameter tuning methodology using a fractional
factorial design is implemented to significantly reduce the number of required experimental runs.
The results indicate that the proposed selection model using Double DQN outperforms all tested
individual machine learning models in terms of mean square error.

Keywords: double deep Q-network; electricity peak load; forecasting; machine learning; reinforcement
learning; time series; artificial neural network; support vector regression; deep belief network

1. Introduction

In the past two decades, global electricity consumption has witnessed a gradual
increase almost every year according to the International Energy Agency (IEA) [1]. Elec-
tricity is crucial to both economic aspects and social service activities [2]. Notably, in
Thailand, the annual electricity consumption grew by 190% from 100,000 GWh in 2002 to
190,000 GWh in 2021. Consequently, the nationwide peak electricity consumption also
doubled, starting from around 16,000 MW in 2002 and reaching 30,000 MW in 2021 [3].
This surge in peak electricity consumption has a significant impact on the tactical and
daily demand planning of electricity generators, necessitating the preparation of additional
capacity and buffers to prevent shortages. Improving peak consumption forecasting to
minimize redundancy can be an efficient approach to reducing electricity surcharges and
resource expense investment [4,5].

Accurate demand prediction is a vital step in electricity planning, ensuring the careful
allocation of additional capacity in response to increasing demand or reducing produc-
tion when consumption declines. A well-planned approach not only assists in reduc-
ing generation costs but also prevents power interruptions. Consequently, utility com-
panies have developed and implemented various methods to enhance their electricity
forecasting accuracy. However, the fluctuating nature of electricity usage patterns signif-
icantly affects forecast accuracy, consequently impacting capacity planning and energy
resource utilization.

Accurate forecasting is crucial not only in electricity planning but also in various
other domains [6], including stock price prediction [7], equipment battery forecasting [8,9],
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and energy forecasting [10], among others. To improve forecast accuracy, several studies
have employed various forecasting techniques, ranging from traditional methods to more
sophisticated machine learning models and their ensembles [11–14]. However, each model
has its own advantages and drawbacks, with some better suited for capturing sharp spikes
in demand patterns but less accurate in handling common fluctuation patterns, and vice
versa. Relying on a single forecast model or using multiple models independently is not as
effective as incorporating the results from multiple models [15].

In tackling real-world problems, it is not uncommon to encounter complexities that
surpass the capabilities of a single model to adequately describe and handle forecasting
tasks. Recognizing this challenge, researchers and practitioners have turned to ensemble
approaches as a viable alternative to conventional modeling techniques. By combining
different sources of uncertainties, ensemble models offer a promising solution. The resulting
ensemble models exhibit higher levels of accuracy and enhanced reliability [16,17].

In recent years, the application of reinforcement learning (RL) techniques in forecasting
and optimization has attracted attention. Wang et al. [18] introduced deep reinforcement
learning for driverless autonomous vehicle tasks and energy planning. Aljohani et al. [19,20]
proposed a real-time, data-driven framework using the Double Deep Q-learning Network
(Double DQN) and SARSA algorithm for optimizing electric vehicle (EV) routing to min-
imize energy consumption. Perera et al. [21] presented a data-driven approach using
reinforcement learning to optimize the design of distributed energy systems. Ren et al. [22]
proposed a new forecasting-based optimization method that incorporates a dueling-based
deep reinforcement learning approach to enhance the accuracy of temperature prediction
in household energy management systems. Dabbaghjamanesh et al. [23] utilized the Q-
learning model to predict the charging station loads. The results show that the proposed
method outperforms conventional artificial intelligence techniques and accurately forecasts
the plug-in hybrid EV loads under different charging scenarios.

Reinforcement learning algorithms have proven their effectiveness in learning optimal
decision-making policies through trial-and-error interactions and continuously receiving
feedback from the environment to maximize long-term rewards. This makes reinforcement
learning particularly well-suited for learning intricate patterns in dynamic environments.
In the context of ensemble models, reinforcement learning excels in analyzing and integrat-
ing different forecasting models, capturing the strengths of each model to enhance overall
outcomes. The utilization of reinforcement learning in combining existing forecasting ap-
proaches has been demonstrated in prior studies, such as Liu et al. [24] and Chien et al. [25],
where deep reinforcement learning models were employed to achieve improved forecast-
ing performance. By integrating reinforcement learning into the ensemble framework,
the capabilities of existing forecasting methods can be harnessed, resulting in enhanced
decision-making and more accurate predictions.

This article proposes an approach that utilizes reinforcement learning with the Double
DQN to automatically select the most suitable model from a model pool, delivering the most
accurate forecast each month. The proposed approach takes advantage of the strengths of
individual models and offers superior forecasting performance. To illustrate the capability
of the proposed approach, the real electricity peak load from the Electricity Generating
Authority of Thailand (EGAT) is used as a case study. EGAT, a state-owned enterprise,
is responsible for generating, procuring, selling, and transmitting electric energy to two
electric energy distributors across the country. One of EGAT’s strategic decisions involves
capacity planning for electricity generation, wherein accurate forecasting of the peak unit
load on a monthly basis is essential for preparing the necessary capacity and resources to
meet the growing demand for electric energy. Each month, EGAT determines the number
of power plants to operate and the amount of electricity to reserve from privately owned
power plants based on forecasts of the peak electricity demand for the following month.

In the field of electricity peak forecasting, there is a research gap regarding the ex-
ploration of advanced machine learning techniques, particularly the application of re-
inforcement learning, such as the Double DQN, in forecasting. While various machine
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learning methods have been employed in this field, the utilization of reinforcement learning
techniques remains limited. Additionally, there is a scarcity of research that investigates
the use of reinforcement learning as an ensemble model in electricity peak forecasting, as
observed in the studies conducted by Pugliese [6]. Although reinforcement learning has
been proposed since the 1950s, its practical application in electricity forecasting has not
been widely explored until recently. However, with the development of deep learning,
reinforcement learning has gained more attention. Given these circumstances, there is a
significant opportunity to develop a novel ensemble model based on reinforcement learning
to enhance the accuracy and effectiveness of electricity peak forecasting, bridging the gap
between traditional forecasting methods and cutting-edge machine learning techniques.

Contributions of this article to the field of forecast selection and hyperparameter
tuning can be summarized as follows. (1) A novel method based on the Double DQN is
proposed for forecasting model selection. Since there is no single model that consistently
performs the best in every period, this article addresses this challenge by proposing a
model selection method for choosing the most accurate forecast value in each period from
among multiple models. (2) This paper demonstrates the use of a fractional factorial design
technique for hyperparameter tuning for the Double DQN. Traditional exhaustive methods,
such as grid search, can be computationally expensive since they require a large number
of runs to explore the hyperparameter space [25]. The implemented fractional factorial
design can significantly reduce the number of required runs for hyperparameter tuning.
This reduction in computational burden effectively reduces the overall computational
time, making hyperparameter tuning more efficient and practical. (3) The effectiveness of
the Double DQN is shown using real data of electricity peak load for the entire country
of Thailand. The results illustrate that the utilization of the Double DQN outperforms
individual models in terms of forecast accuracy. This empirical evidence underscores the
practical significance and applicability of the Double DQN in the field of electricity peak
load forecasting. In summary, this paper contributes novel methods for forecasting model
selection and hyperparameter tuning utilizing the capabilities of the Double DQN. The
proposed techniques offer improved forecast accuracy, reduced computation time, and
present empirical evidence of their effectiveness using real-world data.

The remaining sections of this paper are organized as follows. Section 2 provides
background information and discusses related works. Section 3 describes the machine learn-
ing methods utilized in this study and presents the framework of the proposed approach.
Section 4 presents the computational experiments conducted for the case study and presents
their results. Section 5 concludes the paper by summarizing the findings, discussing any
limitations encountered, and proposing possible directions for future research.

2. Background and Related Works
2.1. Electricity Demand Forecating

Electricity consumption in Thailand has increased continually during the past few
decades due to the growth of industrialization [26]. Therefore, electricity demand forecast-
ing plays an essential role in utility companies as it provides insights into the requirements
for operating power systems and facility planning. Utility companies have used a variety
of approaches to estimate future electricity demand, such as linear and non-linear regres-
sion analysis, computer intelligence, and statistical analysis [27–31]. Statistical forecasting
techniques usually involve building forecasting models that contain several economic and
demographic factors [32]. Owing to the development of big data and computing advance-
ments, traditional methods are gradually falling behind the favorable intelligence-based
models in terms of prediction accuracy [33]. Recently, researchers have tried to harness
the strength of various machine learning (ML) techniques by hybridizing different ML
techniques or ML techniques with traditional forecasting techniques to improve model
accuracy. Saxena et al. [34] developed a composite among the three models, artificial
neural network (ANN), autoregressive integrated moving average (ARIMA), and logis-
tic regression, to evaluate the peak load days in a billing period. Liao [35] proposed a
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concept of a wavelet neural network algorithm that promises a faster convergence and
avoids local optimum. The output from the network is then amended by the fuzzy expert
system to provide the final air-condition load forecasting. Fan et al. [36] introduced a novel
method hybridizing several machine learning algorithms in estimating the short-term load
of electricity consumption and suggested some regulations on economic development.

2.2. Reinforcement Learning

Reinforcement learning was studied by many scientists in the 1950s through various
threads, mainly including trial and error, optimal control, and temporal difference. By
the 1980s, influenced by Klopf’s work in combining trial-and-error learning and temporal-
difference learning together, Sutton and Barton developed this idea further and laid the
foundation for modern reinforcement learning [37].

A reinforcement learning system consists of an environment and an agent interacting
inside a predefined space (see Figure 1). Environment represents the initial definitions of
the problem: a set of actions and a set of states that together determine the space size of
the environment, as well as a set of reward values: movement energy, an ultimate goal,
and obstacles. The agent is either a learner, a mover, or a solver of the initial problem by
taking action and receiving a reward. In reinforcement learning, given a predetermined
environment, an agent inside interacts with the surroundings by choosing an action in
accordance with a specific situation. An action that may provide a higher probability of
achieving the specified final goal will grant the agent more rewards. On the other hand,
actions that hinder the agent from its ultimate destination will be regarded as punishment
or penalty. In this case, after a process of trial and error, the right actions accumulate
more rewards whereas bad ones deduct those by penalties. In other words, various
actions and scenarios should be tried to help the agent sense the environment and estimate
a reliable reward.
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The agent’s learning process will be driven based on a set of parameters: discount
rate, learning rate, and explore decay rate. The discount rate, whose value is between zero
and one, determines the agent’s interest in future rewards. If the discount rate is close
to zero, the agent prefers those actions that bring a high, immediate reward. Conversely,
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when the discount rate moves toward one, the agent will evaluate the action based on the
total potential reward it may receive by performing that action. The learning rate, in a
relatively similar concept to that of a neural network, controls the magnitude of change
in every estimation update on each state-action pair [38]. Another important parameter
in reinforcement learning is the explore decay rate, which balances the exploration and
exploitation phases.

The exploration period largely contributes to the agent’s environment comprehension
through a sufficient trial and error process. From the accumulated experience, the agent
manages to recognize actions with high long-term rewards by repeatedly choosing the cor-
rect actions in most of the states [37]. Learning without labeled data is also the mechanism
that distinguishes reinforcement learning from supervised learning.

One of the most widely applicable reinforcement learning algorithms is conventional
Q-learning, which is a well-known off-policy method proposed by Watkins (1989) [39]. In
Q-learning, the discrete value of a state-action pair is stored in a matrix called Q-table that
is updated during the training process. However, implementing Q-learning becomes more
challenging due to the memory and computational complexity as the state-action dimension
increases. To address this issue, the deep Q-network (DQN), which is a combination of
conventional Q-learning and deep learning, was introduced by Mnih et al. [40] in 2013.
Instead of filling Q-value in the Q-table, the DQN estimates the value by applying the
stochastic gradient descent method (SGD) throughout its multi-perceptron layers. Due
to its computational advantage, the DQN algorithm has been widely implemented in
various applications, such as decoding text sequences [41], playing chess [42], and traffic
light control [43]. Nevertheless, researchers soon realized that the DQN experienced a
significant overestimation for the Q-value, hence, double Q-learning and the Double DQN
were introduced [44,45]. The idea of both double Q-learning and the Double DQN was
to separate the action selection and action evaluation, intended to reduce over-optimistic
value estimation. While double Q-learning employs two independent neural networks
simultaneously and calculates the average Q-value, the Double DQN trains mainly by
one network and periodically updates weight and bias from this network to the second
network. The train network is updated at every step and performs action selection, whereas
the so-called target network remains unchanged during every certain period and is used to
evaluate future estimation. The model using the Double DQN has a faster convergence
than deep Q-learning, resulting in a more stable and reliable learning model [45].

Despite its early introduction in the 1950s, reinforcement learning was rarely applied
to solve practical problems because of the massive calculation. Owing to the development
of computational power and deep learning, more researchers have applied RL to improve
their prediction models. Liu et al. [24] used three different neural network models to predict
wind speeds and then applied the RL method to produce composite predicted values. In
that study, RL adjusted the weights assigned to the outcomes from three deep networks,
long short-term memory (LSTM), deep belief network (DBN), and echo state network (ESN),
to achieve the final prediction result. However, an initial weight matrix of three methods is
required, which, given a large number of data points, can result in excessive computational
resource requirements when using RL. Meanwhile, Chien et al. [25] decided to build a
selection framework to automatically choose a predictive model for diverse products of a
semiconductor distributor. Similar to Liu et al. [24], historical data was analyzed to identify
demand patterns, and then a variety of predictions from different methods were applied
to the demand for each product. Finally, the results from those models and the inventory
were input into the deep Q-network training to decide the appropriate forecasting model
for each respective product.

3. Methods

This study presents a novel approach adapted from the study of Chien et al. [25],
which proposed a reinforcement learning algorithm to select suitable forecasting models for
semiconductor product forecasting. We employed a Double DQN to select an appropriate
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forecasting model from a pool of models for each time period, using the mean squared error
(MSE) as the evaluation metric. To reduce computational efforts, the fractional factorial
design technique was used to tune the hyperparameters of the RL algorithm. Initially,
three machine learning models, the artificial neural network, support vector regression,
and deep belief network, were developed to predict monthly peak electricity consumption.
These models’ predictions serve as inputs for the Double DQN, where an agent learns
to recommend an accurate prediction model for each time period. To demonstrate the
efficiency of this approach, the models were trained and tested using a real-world dataset
containing monthly peak electricity consumption in Thailand from 2004 to 2017. The
empirical analysis aims to demonstrate the practical applicability and performance of the
proposed methodology.

3.1. Forecasting Models
3.1.1. Artificial Neural Network (ANN)

An artificial neural network (ANN) is a machine learning algorithm that emulates the
behavior of biological neural networks in receiving and transmitting information [46]. In
this article, one of the simplest ANN models, called single hidden layer feedforward neural
network (SLFN) [47], was used to predict the monthly peak electricity consumption in
Thailand. The architecture of SLFN is formed by three types of layers: input layer, hidden
layer, and output layer. Nodes between layers are fully connected with each other. The
structure of SLFN is illustrated in Figure 2.

Energies 2023, 16, x FOR PEER REVIEW 6 of 20 
 

 

appropriate forecasting model from a pool of models for each time period, using the mean 
squared error (MSE) as the evaluation metric. To reduce computational efforts, the frac-
tional factorial design technique was used to tune the hyperparameters of the RL algo-
rithm. Initially, three machine learning models, the artificial neural network, support vec-
tor regression, and deep belief network, were developed to predict monthly peak electric-
ity consumption. These models’ predictions serve as inputs for the Double DQN, where 
an agent learns to recommend an accurate prediction model for each time period. To 
demonstrate the efficiency of this approach, the models were trained and tested using a 
real-world dataset containing monthly peak electricity consumption in Thailand from 
2004 to 2017. The empirical analysis aims to demonstrate the practical applicability and 
performance of the proposed methodology. 

3.1. Forecasting Models 
3.1.1. Artificial Neural Network (ANN) 

An artificial neural network (ANN) is a machine learning algorithm that emulates 
the behavior of biological neural networks in receiving and transmitting information [46]. 
In this article, one of the simplest ANN models, called single hidden layer feedforward 
neural network (SLFN) [47], was used to predict the monthly peak electricity consumption 
in Thailand. The architecture of SLFN is formed by three types of layers: input layer, hid-
den layer, and output layer. Nodes between layers are fully connected with each other. 
The structure of SLFN is illustrated in Figure 2. 

 
Figure 2. Structure of a single hidden layer feedforward neural network (SLFN) [47]. 

The mathematical equation of the SLFN is shown below: 

𝑦 = 𝛽 𝑓 𝑤 𝑥 + 𝑏  (1)

where 𝑥  is the input of input node i, 𝑤  is the weight from input node i to hidden node 
j, and 𝑏  is the bias of the hidden node j. 𝑓  is the activation function of hidden node j. 𝛽  
is the weight from the hidden node j to the output node. n and m are the numbers of input 
node and hidden node, respectively. 

Figure 2. Structure of a single hidden layer feedforward neural network (SLFN) [47].



Energies 2023, 16, 5099 7 of 20

The mathematical equation of the SLFN is shown below:

y =
m

∑
j=1

β j f j

(
n

∑
i=1

wijxi + bj

)
(1)

where xi is the input of input node i, wij is the weight from input node i to hidden node j,
and bj is the bias of the hidden node j. f j is the activation function of hidden node j. β j is
the weight from the hidden node j to the output node. n and m are the numbers of input
node and hidden node, respectively.

3.1.2. Support Vector Regression (SVR)

A support vector regression (SVR) [48], which is variant of support vector machine
(SVM) [49], aims to find the narrowest ε-intensive tube while minimizing the prediction
error for regression problems. SVR has a tolerance for data points inside the ε-intensive
tube; thus, its advantages are robustness and generalization of the model while maintaining
a high prediction accuracy. The hyperplane of SVR is formulated as seen in Equation (2):

y = f (x) = wTx + b (2)

The input data are converted into the kernel space using a transformation function
ϕ(x). The SVR problem is formulated as an optimization problem:

Min
1
2
||w||2 + C∑N

i=1 ξi + ξ∗i (3)

subject to:
yi − wT ϕ(x i

)
≤ ε + ξ∗i i = 1, 2 . . . , N

wT ϕ(x i
)
− yi ≤ ε + ξi i = 1, 2 . . . , N

ξi, ξ∗i ≥ 0 i = 1, 2 . . . , N

where ||w||2 is the modulus of vector w to the hyperplane surface; ξi and ξ∗i are the slack
variables; C is a constant used to put the weight error minimization, which also indicates
how many points can be tolerated outside the tube; and N is the total number of the data
set [48].

3.1.3. Deep Belief Network (DBN)

A deep belief network (DBN) is a multi-layer perceptron (MLP) model composed of
multiple restricted Boltzmann machines (RBM) [50]. The structure of a DBN is shown in
Figure 3.

Each RBM includes two layers, called the visual layer and the hidden layer, which,
respectively, act as the input and output layers in the conventional neuron network. The
output layer of each RBM model performs as the input layer for the next model in sequence.
The RBM is used to learn the pattern and recognize the probability distribution of the input
value, which allows it to sample and generate new data. This feature is utilized in DBN,
where RBM learns to initialize the weights and bias for each pair of layers in order to speed
up the training process.

The RBM is derived from the Boltzmann distribution, which is an essential probability
function used in statistical mechanics to determine the probability of a system in a particular
state by an energy function, E(v,h). According to the Boltzmann distribution, states with
lower energy have a higher probability of being taken. Training RBM is an optimization
process to minimize the energy function [50]. At this point, the energy function in the
Boltzmann distribution is analogous to a loss function in other machine learning algorithms,
where a high loss function value indicates that the weights and bias vary widely, and
the loss function value decreases as the values of weights and bias stabilize in certain
ranges. For this reason, RBM is also called an energy-base model. The energy function is
formulated below:
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E(v, h) = −∑n
i ∑m

j wijvihj −∑n
i bivi −∑m

j bjhj (4)

where vi and hj are the values of visual nodes and hidden nodes, wij is the weight between
the visual node i and the hidden node j, bi is the bias of visual node i in the visible layer, bj
is the bias of the visual node j in the hidden layer, n is the number of visible layers, and m
is the number of hidden layers.
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The connection between the energy function and the probability of visual layer v and
hidden layer h, p(v, h), are defined as follow [50]:

p(v, h) = Z−1e−E(v,h) (5)

where E(v, h) is the energy function and Z is the normalization constant so that the summa-
tion of the probabilities p(v, h) from all visual and hidden layers is one.

Z = ∑
v,h

e−E(v,h)

The probability function in an RBM considers the energy function and is used to
determine the weight updates during training. To calculate the probability of a particular
set of weights between the visible layer and hidden layer, the value of each node in the
visible layer and hidden layer are set to either 1 or 0. The probability that the value of
a node hj in the hidden layer is equal to 1, given the value of the visible layer nodes, is
computed as follows:

p
(
hj = 1|v

)
= sigm

(
bj + ∑n

i wijvi

)
(6)
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Similarly, given the hidden layer, the probability of node vi in the visual layer equal to
1 is computed as follows:

p(vi = 1|h) = sigm
(

bi + ∑m
j wijhj

)
(7)

Given the values of all nodes in the visible layer, the probability of the hidden layer
in Equation (6) can be computed, and vice versa for Equation (7). All of the units in one
layer are simultaneously updated depending on the current states of the units in the other
layer. This process is repeated until the model is stable with low energy, resulting in a
high likelihood of specific weight and bias values. In general, DBN accelerates the training
time and requires a small amount of label data, which makes it outperform other machine
learning models.

3.2. Double Deep Q-Network in Model Selection

After the forecasting results are generated independently by the three ML models (i.e.,
ANN, SVR, and DBN), the Double DQN is used to choose an appropriate model among the
three ML models for each month’s prediction. The entire process is illustrated in Figure 4.
Each of the deep Q-networks in this article contains two hidden layers. The first hidden
layer consists of ten neurons and the second hidden layer consists of nine neurons. The
structure of the deep Q-networks is obtained from our preliminary testing. The goal of
the Double DQN is to find the model that minimizes the error, measured in terms of mean
squared error. For the Double DQN, the environment is defined as all data points in the
training set and the state is the set of previous actual demand, seasonal index, month,
year, number of days in a month, number of holidays, and demand trends of the previous
three months.

A state S of the environment at time t is define as St, which is associated with a data
point in the data set and is described in the Training Set block in Figure 4:

St = {dt−3, dt−2, dt−1, SIt, mt, yt, kt, ht, lt−1, lt−2} (8)

dt−1: Actual demand in month t− 1
dt−2: Actual demand in month t− 2
dt−3: Actual demand in month t− 3
dt: Actual demand
SIt: Seasonal index at month mt
mt : Month index
yt : Year index
kt : Number of days in month mt
ht : Number of holidays in month mt
lt : Demand trend, lt−1 = dt−2 − dt−1

The set of actions A in each state contains choosing one of the three forecasting models.
This set of actions is the same in every state in the environment.

A = {ai} = {a1, a2, a3} (9)

a1 : ANN model
a2 : SVR model
a3 : DBN model
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After the selection, the agent takes one step forward to the next state, i.e., next month.
When starting at a specific month, the agent has to follow the time direction; moving
backward is not allowed.

By estimating a reasonable Q-value for each prediction method in different states
using the online Q-network (Q), the agent aims to maximize its total reward. Specifically,
the online Q-network (Q) is updated at every step and used to select the best forecasting
model each month by comparing its Q-value. The target Q-network updates weight
and bias from the online Q-network (Q) every pre-specified update target period. The
update period is obtained by observing results from empirical experience. This process
is illustrated in Figure 4, where the Q-network updates the weights and bias from the
experience replay, then the target Q-network is periodically updated by the Q-network,
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while in the experience replay, the target Q-network is used to calculate the Q-value of
the next state. The experience replay will be explained in the following paragraphs. The
Q-value of the agent at the state st taking action at is iteratively updated by the formula
from the Bellman equation [37]:

Q(st, at)← r(st, at) + γQ̂
(
st+1, argmaxaQ(st+1, a, θt), θ−t

)
(10)

γ : discounted rate for future rewards
r(s, a) : reward function taking action a at state s
θ : weight and bias of online Q− network
θ− : weight and bias of target Q− network

The reward function takes the navigation role in the agent’s learning path. Using a
proper reward strategy reduces the probability of falling into a local optimum solution and
quickens the convergence speed. In forecasting problems, it is common to give rewards
based on prediction errors such as square error or absolute error. However, in the model
selection problem, a reward function needs to consider all the predicted values of the
three models. At a certain month, one forecasting model might substantially outperform
others. The agent should receive more rewards in those critical selections. In this paper,
the reward function based on the performance difference of the selected forecast values is
presented as follows.

r(st, at) = [e b(t)− ea(t)]− [ea(t)− ew(t)] (11)

ea(t) : square error of choosing action a of timestep t
eb(t) : minimum square error of timestep t
ew(t) : maximum square error of timestep t

From Equation (11), choosing the best prediction value from Model 3 results in a
positive reward of ew(t)− eb(t). On the other hand, choosing the worst prediction value
from Model 1, the agent obtains the negative reward of eb(t)− ew(t).

The experience replay is an important technique in the Double DQN. The functional
purpose of this technique is to break the correlation of sequential data and ensure the
sample is independent and identically distributed. In the experience replay, the agent’s
experiences are saved as tuples and appended in the replay memory. Each tuple Tt includes
the environment state t, action taken at state t, reward from state-action pair t, and the
environment of the next state.

Tt = {st, at, r(st, at), st+1} (12)

The experience replay also helps to justify the estimation of future value using the
predicted values from the target Q-network, which prevents the agent from optimistic
overestimation. It is required that the agent passes through at least a number of data points
equal to a batch size to initialize the experience replay.

In this study, a stopping condition was added once the agent was eligible for the
experience replay to reduce the training time. The prediction error from agent actions in
each step is stored for accumulated MSE calculation. A threshold was set as the maximum
MSE that can be accepted for this study. If the accumulated MSE is greater than the
threshold, the results from the current online Q-network are used to compute the mean
squared error for the whole training set to compare with the threshold again.

The diagram in Figure 4 illustrates the training process of the Double DQN, which
involves tuning ten hyperparameters of reinforcement learning using the fractional factorial
design technique. The training set consists of states, each of which contains various features,
such as previous actual demand, seasonal index, month, year, number of days in a month,
number of holidays, and demand trends of the previous three periods. To initiate training,
the agent randomly selects a state and proceeds without the ability to go back to the
previous period. At the beginning of the training process, when the exploration rate
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(epsilon) is high, the agent explores different forecasting models by randomly selecting from
a pool of three machine learning models. As the agent gains experience and knowledge, a
lower epsilon value promotes exploitation, focusing on actions that have yielded higher
long-term rewards. The agent is more likely to choose the forecasting method with the
maximum Q-value.

After taking an action, the real-time MSE between the predicted and actual values is
calculated and stored. The reward for the chosen action is determined by comparing the
squared error of the selected method with the most accurate and least accurate methods
among the three forecasting models. The state, the chosen forecasting method, the reward,
and the next state are recorded in a tuple (Tt) and stored in the agent’s memory for exper-
iment replay. The capacity of the agent’s memory is a hyperparameter, called “Memory
size,” which is also tuned using the fractional factorial design technique.

During the training process, the agent randomly samples a mini-batch, equal to the
batch size, from its memory. For each experience in the mini-batch, the Q-value is updated
using the Bellman equation, and the weights and biases of the Q-network are updated
accordingly. The Q-value of the next state is calculated using the target Q-network (a
separate duplicate of the online Q-network), which is periodically updated based on the
tuned “Update target” hyperparameter.

After the experiment replay process, both the real-time MSE and the MSE of the
entire training set are compared to a threshold, which represents the specified maximum
acceptable MSE. The MSE of the entire training set is calculated by using the current online
Q-network to select forecasting models and compute the MSE. If both MSE values exceed
the threshold, the agent proceeds to the next step in the training set. Otherwise, the agent
starts a new epoch using the current weights and biases of the Q-network. After the final
epoch, the weights and biases of the Q-network that result in the best MSE on the entire
training set are saved as the final model of the training process.

3.3. Hyperparameter Tuning of the Double DQN

Hyperparameter tuning is crucial for machine learning techniques since it can improve
model performance when changing the model structure is costly and time-consuming.
There are different approaches to tuning hyperparameters. One of the most preferred by
researchers is called grid search, which tries all possible combinations of hyperparame-
ters [51]. However, this technique requires an exhaustive search operation if the number of
hyperparameters is large. In this study, the fractional factorial design was used to tune a
set of hyperparameters affecting the Double DQN model performance with an acceptable
computational time required. The considered hyperparameters in this study include batch
size, update target period, epoch, gamma, learning rate, memory size, activation function,
metrics inside the neural network, and optimizer. The range of each hyperparameter of the
Double DQN is shown in Table 1.

Table 1. Levels of hyperparameters of Double DQN for fractional factorial design.

Hyperparameter Low High

Batch size 12 36
Update target 50 154

Epoch 500 1000
Gamma 0.1 0.9

Learning rate 0.001 0.01
Memory size 10,000 100,000

Activation dSiLU ReLU6
Metric (NNs) mape mse

Optimizer SGD Rectified Adam

The batch size determines the number of data points fetched from memory during
the experience replay. The range value of batch size is based on a trade-off between
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computational time and prediction accuracy, as a large batch size has faster training time
but poor generalization, and vice versa [52]. The update target controls the relative length
of the period, after which the target Q-network replicates the parameter configuration of
the Q-network (Q). Memory size determines the number of tuples that can be stored in
the replay memory with the rule that the newer memory replaces the oldest memory. In
this study, two state-of-the-art activation functions, rectified linear unit 6 (ReLU6) and
sigmoid-weighted linear units (dSiLU), are compared [53,54]. For optimizers, rectified
Adam and stochastic gradient descent (SGD) were potential candidates. Rectified Adam
inherits Adam’s performance speed while improving the robustness of the training phase,
whereas SGD has the advantage in prediction quality, particularly the test set accuracy [55].
The metric (NNs) indicates the measurement of the accuracy of the neural network’s
internal estimation, which does not refer to the prediction error between predicted and
actual demand.

Using the fractional factorial design, a total of 2k−p runs with some center runs are
generated, where k represent the number of hyperparameters as presented in Table 1 and
p indicates the fraction of the full factorial. After the Double DQN model is trained with
the generated hyperparameter settings according to the fractional factorial, a statistical
analysis was carried out to identify the sets of hyperparameters that yield the best MSE.
Based on the obtained set of hyperparameters, the Double DQN model is re-run five times
for confirmation purposes. The final Double DQN model is selected based on the best
performance in the test set.

4. Computational Experiment
4.1. Problem Definition and Data Description

As the state enterprise is responsible for electricity generation and procurement in
Thailand, the Electricity Generating Authority of Thailand (EGAT) requires effective plan-
ning to efficiently supply the nation with electricity and utilize resources. In practice, the
enterprise needs to forecast the peak unit load that occurs within each month. The purpose
is to determine the number of power plants to operate and consider purchasing from other
private utility companies to handle the surge in electricity demand. Therefore, the accurate
estimation of future peak load requirements is crucial, particularly during the budgeting
and capacity planning period for the entire year.

Initially, three individual machine learning (ML) models, ANN, SVR, and DBN, have
been applied to forecast monthly peak load. The results from these models are compared
in terms of MSE, as shown in Table 2. Note that the train set contains 13 years of monthly
peak load data from 2004 to 2016, and the test set contains one year of data from 2017.

Table 2. Individual models’ MSE of the train and test sets.

Model Train Set Test Set

ANN 0.3234 0.2235
SVR 0.2049 0.2793
DBN 0.2433 0.2349

In addition, descriptive statistics of the input data for the Double DQN, including
actual peak load and predictions from the three individual models ANN, SVR, and DBN,
are presented in the Table 3. The range of prediction values from ANN is within that of the
actual peak load. SVR provides a wider range of prediction values compared to ANN, yet
remains mostly within the actual peak load’s range. DBN seems to have a similar range to
the actual peak load, but with lower values.
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Table 3. Descriptive statistics of the monthly peak electricity load dataset.

Statistics Actual ANN SVR DBN

Mean 22.730 22.751 22.733 22.716
Standard Deviation 2.841 2.739 2.805 2.833

Minimum 16.832 16.911 16.021 15.587
Maximum 29.619 27.759 28.278 28.223

Count 166 166 166 166

The better forecasting performance of SVR in the training set did not yield the same
level of performance for the test set, which could be due to overfitting issues during the
training phase. Specifically, forecast values from SVR for the electricity peak in 2017 are
farther away from the actual peak data compared to ANN or DBN. Conversely, ANN
produced the forecast values closest to the actual peak in terms of MSE in the test set,
while its training performance was not exceptional, which could be explained by the
generalization during the training period. Overall, DBN maintained an average level of
accuracy in both the training and test phases, which was preferable since the model seemed
to effectively utilize the learning into practice.

Figure 5 illustrates the monthly peak load forecast values of the three ML models
in 2017 as the test set. In addition, Table 4 shows the prediction performance in terms of
square errors from the three ML models. From Figure 5 and Table 4, it can be seen that
there is no individual ML model that consistently performs the best every month. Instead,
different ML models take turns being the most accurate each month. Among the entire 12
months in the test set, ANN produces the best forecast values in five months (March, April,
June, July, and November), SVR in three months (February, May, and September), and DBN
in four months (January, August, October, and December). Hence, this result implies that
selecting the best ML model each month can improve forecasting accuracy. On the other
hand, selecting the wrong ML model may lead to either excessive resource allocation or
unwanted shortage. For example, in March 2017, choosing DBN or SVR prediction values
will result in a significant difference from the actual demand.
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Table 4. Squared error matrix in test set period.

Month ANN DBN SVR Best

1 0.077368 0.020398 0.046541 DBN
2 0.033131 0.083550 0.031629 SVR
3 0.003492 0.202959 0.185422 ANN
4 0.008032 0.306052 0.369696 ANN
5 1.013412 0.551232 0.522766 SVR
6 0.227243 0.345885 0.655994 ANN
7 0.365921 0.367927 0.594713 ANN
8 0.077666 0.020292 0.055713 DBN
9 0.739481 0.702982 0.610702 SVR
10 0.272907 0.067148 0.267841 DBN
11 0.000085 0.013642 0.000499 ANN
12 0.000222 0.000216 0.010544 DBN

Best forecast 5 times 4 times 3 times

However, the forecasting accuracy of ML models is unknown for future prediction. In
practicality, the selection of the best ML model requires knowledge of the characteristics
of the electricity demand in each month, which is complex and uncertain throughout the
entire year. Moreover, this knowledge should be revised in response to changes in the
pattern of electricity demand. Therefore, this study attempts to achieve this task using the
reinforcement learning algorithm.

4.2. Hyperparameter Setting

For a machine learning algorithm, its hyperparameters need to be properly set to
obtain a good performance. A widely used approach is the grid search. With grid search,
lower and upper bounds, as well as step size, are specified for each hyperparameter.
Then, all possible combinations of hyperparameter values are tested. Nevertheless, using
grid search is computationally time-consuming or even infeasible if there are too many
hyperparameters to adjust. This is also the case for the RL algorithm implemented in this
paper, which has nine hyperparameters.

To manage the number of runs for hyperparameter tuning, this study implements the
fractional factorial design, a technique derived from the principles of experimental design.

One advantage of the fractional factorial design over grid search is that it requires
a much smaller number of runs while still being reasonably effective in selecting the
appropriate hyperparameter values. The fractional factorial design involves two levels for
each hyperparameter. The nine hyperparameters of RL, along with their corresponding
levels, are provided in Table 1.

Among the nine hyperparameters, which are treated as experimental factors, six of
them are numerical factors, while the remaining three are categorical factors. A standard
29−5 resolution III design is generated for this study. The design encompasses 16 dis-
tinct hyperparameter settings, which is considered an acceptable number of experiments
to conduct. In addition, eight runs at center points are included, where the numerical
hyperparameters are set at the midpoint between their lower and upper bounds.

It is important to note that there are eight center points due to the presence of three
categorical hyperparameters. Thus, the center points for the six numerical hyperparameters
are tested for each of the eight (23) possible combinations of categorical hyperparameters.
This yields a total of 24 experiments or hyperparameter settings to be run. Hyperparameter
values of these experimental settings can be found in Table 5. Each setting is performed
only once, and the MSE values of the test set are recorded as the performance measure for
later optimization.
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Table 5. The 24 hyperparameter settings by fractional factorial design.

Setting Batch
Size

Update
Target Epoch Gamma Learning

Rate
Memory

Size
Activation
Function Optimizer Metric

1 24 75 600 0.5 0.0055 55,000 ReLU6 SGD MAPE
2 36 50 700 0.9 0.001 10,000 dSiLU SGD MSE
3 12 50 700 0.1 0.01 100,000 dSiLU SGD MSE
4 12 100 700 0.1 0.001 10,000 dSiLU RAdam MAPE
5 24 75 600 0.5 0.0055 55,000 ReLU6 RAdam MAPE
6 24 75 600 0.5 0.0055 55,000 dSiLU RAdam MAPE
7 36 50 500 0.9 0.01 100,000 ReLU6 SGD MAPE
8 12 50 700 0.9 0.01 10,000 ReLU6 RAdam MAPE
9 12 50 500 0.9 0.001 100,000 dSiLU RAdam MSE

10 36 50 700 0.1 0.001 100,000 ReLU6 RAdam MAPE
11 36 50 500 0.1 0.01 10,000 dSiLU RAdam MSE
12 36 100 500 0.9 0.001 10,000 ReLU6 RAdam MSE
13 24 75 600 0.5 0.0055 55,000 ReLU6 SGD MSE
14 12 50 500 0.1 0.001 10,000 ReLU6 SGD MAPE
15 24 75 600 0.5 0.0055 55,000 dSiLU RAdam MSE
16 36 100 500 0.1 0.001 100,000 dSiLU SGD MAPE
17 36 100 700 0.9 0.01 100,000 dSiLU RAdam MAPE
18 12 100 500 0.9 0.01 10,000 dSiLU SGD MAPE
19 36 100 700 0.1 0.01 10,000 ReLU6 SGD MSE
20 24 75 600 0.5 0.0055 55,000 dSiLU SGD MAPE
21 24 75 600 0.5 0.0055 55,000 dSiLU SGD MSE
22 12 100 700 0.9 0.001 100,000 ReLU6 SGD MSE
23 12 100 500 0.1 0.01 100,000 ReLU6 RAdam MSE
24 24 75 600 0.5 0.0055 55,000 ReLU6 RAdam MSE

4.3. Result and Comparison
4.3.1. Result

The MSE of the electricity peak load forecast in 2017 was analyzed to evaluate the
effectiveness of the RL algorithm. By comparing the MSEs of the test sets obtained from
three individual ML models, ANN, DBN, and SVR, one can establish the performance
boundaries for using the Double DQN to select monthly forecast values from these models.
The worst possible performance of the Double DQN would involve selecting the worst
forecast value (among the three values) each month, resulting in an MSE of 0.3427 for the
test set. Conversely, the best possible performance would be achieved if the Double DQN
selects the best forecast value in each month, resulting in an MSE of 0.1565 for the test set.
Based on the MSE values of the individual models, a poorly tuned Double DQN would
perform worse than SVR, with an MSE of 0.2793. On the other hand, a well-tuned DQN
would outperform ANN, with an MSE of 0.2235. In other words, to demonstrate that the
tuned DQN can outperform the individual models, the target MSE falls between 0.1565
and 0.2235. The performance boundaries of the Double DQN are presented in Table 6.

Table 6. Performance boundary of Double DQN on the test set.

Approach MSE

Worst possible selection 0.3427
SVR 0.2793
DBN 0.2349
ANN 0.2235

Target MSE of the Double DQN [0.1565, 0.2235]
Best possible selection 0.1565

After conducting all 24 runs based on the fractional factorial design, promising results
emerged, demonstrating improved forecast accuracy in certain settings. Consequently,
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the MSE values obtained from these 24 runs were analyzed using analysis of variance
(ANOVA), with MSE serving as the response variable and the nine hyperparameters acting
as experimental factors. The main effects and two-factor interactions of the hyperparame-
ters were evaluated at the significant level of 5%. The resulting statistical model was further
examined using a response optimizer to obtain an optimal hyperparameter configuration.
The recommended hyperparameter setting from the response optimizer, as presented in
Table 7, was then incorporated back into the Double DQN structure for an additional five
confirmation runs, aiming to validate the performance of the tuned Double DQN. The
results from these five confirmation runs are provided in Table 8.

Table 7. Recommended settings from response optimization on MSE of the test set.

Hyperparameter Best-Found MSE as Response

Batch size 36
Update target 50

Epoch 700
Gamma 0.9

Learning rate 0.01
Memory size 100,000

Activation ReLU6
Metric (NNs) MSE

Optimizer SGD

Table 8. MSE summary from five confirmation runs.

Confirmation Run Best-Found MSE as Response

1 0.1727
2 0.1849
3 0.1701
4 0.1819
5 0.1655

Average 0.1750

Based on the data presented in Table 8, the tuned Double DQN demonstrates promis-
ing results, exhibiting an average MSE of 0.1750 in the test set, with the best MSE achieved
at 0.1655. All five confirmation runs conducted with this hyperparameter setting showcase
improved forecast accuracy compared to that of the ANN, which yields an MSE of 0.2235.

4.3.2. Performance Comparison of the Double DQN with Other Ensemble Models

To properly evaluate the performance of the proposed Double DQN model, an analysis
was conducted to compare the MSE of the test set from the proposed model with those
obtained from implementing two other ensemble models, adapted from Okoli et al. [56]
and Liu et al. [24].

In Okoli et al. (2018), an averaging technique was implemented to incorporate multiple
prediction models, treating each individual prediction equally. That is, each model in the pool
was assigned the same weight of importance. Applying this method to the forecast values from
ANN, SVR, and DBN, the MSE of the test set was 0.2289. Compared to individual models, the
averaging technique outperforms the individual SVR and DBN in terms of MSE, yet performs
worse than the individual ANN.

In addition, Liu et al. (2020) employed a weighted average ensemble model utilizing the
conventional Q-learning method. The core concept behind this approach was to determine
the optimal combination of weights for individual models that could be applied to predict all
data points, whose similar concept can later be found in the research of Anand et al. [57] about
brain tumor diagnosis. After implementing the weighted average approach to the test set of
this article, this ensemble model achieves the best MSE, 0.2132, which outperforms all three
individual models.
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However, in comparison, the proposed Double DQN model, which achieves an MSE
of 0.1750 in the test set, significantly outperformed both of the above approaches (Table 9).
Additionally, the predictions from the proposed Double DQN are much closer to the best
possible selection’s MSE at 0.1565. This significant improvement in performance underscores
the effectiveness of the Double DQN model.

Table 9. Performance comparison of the proposed Double DQN on the test set.

Approach MSE

Worst possible selection 0.3427
SVR 0.2793
DBN 0.2349

Model average 0.2289
ANN 0.2235

Weighted average 0.2132
Double DQN 0.1750

Best possible selection 0.1565

5. Conclusions

This article proposes a model selection method based on the Double DQN for electricity
peak load forecasting. The purpose is to choose the most appropriate forecast values from
individual machine learning models, ANN, SVR, and DBN, to achieve better forecast accuracy
over individual models. The Double DQN contains 10 hyperparameters that need to be properly
set. While traditional methods, such as grid search, are inefficient for this task, an efficient
approach to hyperparameter tuning based on the fractional factorial design is implemented to
reduce the computational effort required for tuning. The proposed Double DQN and fractional
factorial design for hyperparameter tuning are tested using real data of an electricity peak load
of Thailand. In addition, the model is compared with two other ensemble models from the
literature. Empirical results indicate the effectiveness of the Double DQN in outperforming
individual models and two other ensemble models in terms of MSE, affirming its practical
significance in electricity peak load forecasting.

Future research directions include further modifications of the structure of the Double
DQN model to speed up the training phase, developing a new reward strategy for the Double
DQN that prioritizes selecting forecast values that are higher than the actual peak load to ensure
sufficient power supply and applying the proposed method to forecast the total electricity
consumption instead of peak load. Additionally, the findings regarding the performance of
the Double DQN can be further strengthened by expanding the pool of forecasting models
to include other time series forecasting models (e.g., ARIMA) and deep learning models (e.g.,
LSTM, GRU). Potentially, the Double DQN model can be applied to electricity peak load data
for other countries or other datasets sharing similar characteristics.
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