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Abstract: Automated indoor environmental control is a research topic that is beginning to receive 
much attention in smart home automation. All machine learning models proposed to date for this 
purpose have relied on reinforcement learning using simple metrics of comfort as reward signals. 
Unfortunately, such indicators do not take into account individual preferences and other elements 
of human perception. This research explores an alternative (albeit closely related) paradigm called 
imitation learning. In the proposed architecture, machine learning models are trained with tabular 
data pertaining to environmental control activities of the real occupants of a residential unit. This 
eliminates the need for metrics that explicitly quantify human perception of comfort. Moreover, this 
article introduces the recently proposed deep attentive tabular neural network (TabNet) into smart 
home research by incorporating TabNet-based components within its overall framework. TabNet 
has consistently outperformed all other popular machine learning models in a variety of other ap-
plication domains, including gradient boosting, which was previously considered ideal for learning 
from tabular data. The results obtained herein strongly suggest that TabNet is the best choice for 
smart home applications. Simulations conducted using the proposed architecture demonstrate its 
effectiveness in reproducing the activity patterns of the home unit’s actual occupants. 

Keywords: comfort index; deep tabular learning; environmental control; imitation learning;  
reinforcement learning; PPV; PMV; smart home; TabNet 
 

1. Introduction 
The largest consumers of electricity in the US are residential units. In the year 2020, 

this sector alone accounted for approximately 40% of all electricity usage [1]. The average 
daily residential consumption of electricity is 12 kWh per person [2]. Therefore, effectively 
managing the usage of electricity in homes is vital to address global challenges around 
dwindling natural resources and climate change. 

Recent advancements in sensor systems, automatic control, and machine learning, 
along with the proliferation of the IoT, have made smart homes practically feasible today 
[3–5]. A smart home allows energy to be utilized in an optimal manner, thereby reducing 
total resource consumption. This feat is accomplished in an automated fashion without 
the need for any direct human involvement. Various kinds of indoor appliances in a smart 
home can be controlled in this manner (cf. [6,7]), such as lighting, refrigeration, PHEV 
charging, battery storage, water pumps, and interior environmental control. 

Environmental control in smart homes, primarily indoor temperature control, can be 
carried out while maintaining acceptable comfort levels for the home’s occupants. Con-
versely, comfort may be improved using automated scheduling without increasing en-
ergy consumption. A few recently published articles have aimed at making the second 
objective an attainable one. 
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An enabling tool of particular importance in this research direction is reinforcement 
learning. Reinforcement learning is an emerging machine learning paradigm that allows 
an algorithm to learn from experience (cf. [7]). In recent years, deep neural networks 
(DNNs) have emerged as the most popular machine learning models for a wide range of 
applications [8]. Consequently, research attention has been directed towards investigating 
deep reinforcement learning algorithms for smart home applications [9–12]. Deep rein-
forcement learning (DRL) algorithms that concentrate specifically on environmental con-
trol have begun to appear [13,14]. 

Recent research has proposed the use of reinforcement learning for indoor environ-
mental control in smart homes. A significant amount of published research focuses on 
temperature regulation by controlling the HVAC system [15–17]. However, other pub-
lished research focuses on controlling other equipment to manage the indoor temperature, 
such as the air conditioner alone [18], ventilation fan [19,20], underfloor heating [21], heat 
pumps [22], and the opening and closing of windows [23]. The main objective of such 
research is to minimize the energy cost while maintaining or increasing occupant [20]. 
However, only a few published articles focus on improving only occupant comfort [23,24]. 
It is worth mentioning that a substantial amount of such research considers indoor tem-
perature as the only determinant of occupant comfort. Only a limited amount of research 
takes into consideration air quality (i.e., CO2 concentration) and/or visual comfort (i.e., 
lighting) [25]. 

In [22] the authors were able to reduce energy consumption by 4–11% while keeping 
the thermal comfort within an acceptable limit. Other research works have accomplished 
similar levels of reduction while maintaining temperature within a predefined threshold. 
Although the predicted mean vote (PMV) has not been used as a measure of comfort, it is 
assumed that comfort is directly determined by temperature. In [12], the proposed algo-
rithm reduced the energy cost by 3.51% in winter and 4.05% in summer compared with 
the DDQN algorithm which achieving minimal comfort violation. In [24], comfort level 
was improved by about 15%; unfortunately, the associated energy cost increase was not 
addressed. In another article [23], the opening and closing of windows was controlled as 
a mean of improving thermal comfort and the air quality, without consuming electricity. 

Elsewhere [25], the energy cost of a commercial building was reduced by more than 
50% while maintaining comfort level by turning off the HVAC system and the lighting in 
the absence of any occupants. In another approach [26], a reinforcement learning agent 
exerted simultaneous control over the energy storage system and the HVAC system. The 
study reported a 17% increase in comfort and reduced power cost over a period of two 
months. A variant of a well known reinforcement learning approach (DDPG) was applied, 
with the RLlib library used to implement the learning agent and OpenAI Gym used for 
simulations. In [19], a reinforcement learning paradigm called double Q-learning was able 
to achieve a 10% reduction in the CO2 level and a 4–5% reduction in energy consumption 
while maintaining an acceptable PMV value. A total of 60 months of official climate data 
from Taipei were used to train the agent. 

The present research explores avenues to automate environmental control by lever-
aging the latest advancements in machine learning. More specifically, it applies deep atten-
tive tabular neural networks (TabNets) [27,28] for the twofold purposes of controlling the 
temperature settings within a smart home environment and predicting the temperature 
and humidity levels arising from it. It is the first among all known DNNs to outperform 
XGboost, the current best method to handle tabular data, for benchmark machine learning 
problems. Consequently, it is being investigated for a wide range of applications, such as 
the spread of COVID-19 [29], hyperspectral imagery [30], malware detection [31], and traf-
fic prediction [32]. TabNet is based on the popular attention mechanism in deep learning 
cf. [33]. 

All of the studies mentioned above focused on using reinforcement learning as a 
method to replace human based control. In fact, this is a severe limitation, as the percep-
tion of comfort varies considerably from one person to another and is dependent on 
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extraneous factors such as the occupants’ levels of physical activity and the time of day. 
In general, thermal comfort is nonlinear and not readily quantifiable. An earlier study [34] 
argued that thermal comfort measures are severely limited, as they do not consider hu-
man factors influencing comfort. In [35], the authors provided an overview of data collec-
tion and experimental research for assessing comfort levels under different climactic con-
ditions. Various factors influencing thermal comfort and reviews of such comfort models 
are addressed in [36], along with a neural network-based model of comfort. The need to 
integrate human physiological and behavioral factors for accurate assessment of comfort 
is highlighted in [37], in which the authors put forward a workflow for personalized 
HVAC control. A recent study [38] evaluated thermal comfort models using computa-
tional fluid mechanics. Lastly, a number of reasons for integrating human health factors 
into comfort assessment methods are posited in [39]. 

In order to circumvent the reliance of reinforcement learning on the need to quantify 
the physical sensation of comfort, this research takes an alternate route, applying imitation 
learning, a paradigm that is strongly connected to reinforcement learning, in order to sim-
ulate human behavior while maintaining energy consumption at the same level. In treat-
ing humans as ‘experts’, it eliminates the need to quantify occupant comfort during the 
learning process (which is only used as an assessment tool in this article). Recent research 
has investigated adopting imitation learning for several tasks, ranging from dexterous ro-
botics [40] to taxi driving [41]. Related energy applications include renewable energy shar-
ing [42], smart grid load modeling [43], optimal scheduling [44], HVAC control [45], and 
distribution service restoration [46]. 

The research contributions of this study lie in the following directions: 
(i) To the best of the authors’ knowledge, this is the only smart grid-related research that 

uses TabNets, a DNN based model that currently outperforms all known machine 
learning algorithms for tabular data, including XGboost (extreme gradient boosting). 

(ii) The research proposes the use of imitation learning, a learning paradigm that has 
seldom if ever been investigated in the context of smart home environmental control. 

(iii) By applying imitation learning, the controlling agent is able to learn directly from 
recorded real human activity, thereby obviating the need for ad hoc quantification of 
occupant comfort. 

(iv) TabNet models are explored in this research for four separate tasks, i.e., predicting 
indoor temperature and humidity and controlling the switch settings of heating and 
cooling equipment. 
In comparison with other machine learning models the results yielded by TabNet are 

very encouraging in terms of all four tasks assessed separately. Additionally, the proposed 
architecture consisting of four separate TabNet blocks is very effective in maintaining op-
timal comfort. 

The remainder of this article is organized in the following manner. Section 2 provides 
the necessary background on those aspects of deep learning used in this research, includ-
ing the layout of TabNet and an overview of imitation learning. Section 3 describes the 
overall architecture proposed in this article, consisting of four different TabNet blocks. 
Our simulation results are discussed in Section 4, and Section 5 concludes this article. 

2. Background 
A machine learning model receives inputs and produces outputs. Using a dataset of 

training samples, the model applies a learning algorithm to fine-tune its intrinsic param-
eters or weights, allowing it to acquire certain desirable performance characteristics. There 
are three broad classes of machine learning algorithms: (i) unsupervised learning, (ii) su-
pervised learning, and (iii) reinforcement learning. In unsupervised learning, the model 
discovers hidden patterns in the dataset. For instance, it can learn to group inputs into 
clusters, or split signal sequences into statistically independent components. Supervised 
learning involves the presence of a supervisor. The learning model is trained to map 
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inputs to their desired outputs (or targets). The model produces an output from each input 
training sample, while the supervisor provides the error, i.e., the difference between the 
model output and the desired value. Reinforcement learning is intermediate between the 
two classes; the supervisor is replaced by a critic, which provides reward feedback to the 
learning model that reflects the overall desirability of the latter’s output. 

2.1. Deep Attentive Tabular Networks 
TabNet consists of several functional DNN layers [28]. Before providing an overview 

of the layout of TabNet, an outline of each such layer is provided below. 
A fully connected (FC) layer consists of a layer of neurons that incorporate a set of 

trainable weights 𝐖 along with sigmoid nonlinearities 𝜎(∙). Supposing that the vector 
input to an FC is denoted as 𝐱, its corresponding output 𝐲 is provided by the following 
relationship: 𝐲 = 𝛔(𝐖𝐲).  (1)

Here, the mapping 𝛔(∙) represents an elementwise application of 𝜎(∙); thus, if 𝑥 is 
a scalar input, the output 𝑦 = 𝜎(𝑥) is provided by 𝜎(𝑥) = 11 + 𝑒 .   (2)

It must be noted that in this article symbols for scalar quantities appear in italics, 
whereas those for vectors appear in bold. 

TabNet contains layers of generalized linear units (GLUs). With 𝐱 representing the in-
put to a GLU layer, the output 𝐲 = 𝐆𝐋𝐔(𝐱) is 𝐲 = 𝐱 ∘ 𝛔(𝐱).  (3)

The operator ‘∘’ in the above relationship is the Hadamard product. The main ad-
vantage of using GLU layers in TabNet is to allow penetration into deeper layers without 
encountering exploding or imploding gradients. 

Another type of layer consists of rectified linear units (ReLu). If 𝐱 is the input vector 
to such a layer, its corresponding output 𝐲 is denoted as 𝐲 = 𝐑𝐞𝐋𝐮(𝐱), where 𝐑𝐞𝐋𝐮(∙) 
is the elementwise application of the 𝑅𝑒𝐿𝑢(∙) function: 𝑅𝑒𝐿𝑢(𝑥) = 𝑥, 𝑥 ≥ 00, 𝑥 < 0. (4)

Training samples in TabNet are divided into minibatches. A batch normalization (BN) 
layer contains neurons with linear activations, their only purpose being to perform ele-
mentwise normalization of their inputs. If ℬ is a minibatch and the vectors 𝐱 and 𝐲 de-
note the input and output of any BN layer, then 𝐲 = 𝐁𝐍(𝐱|ℬ), where 𝐁𝐍(∙) represents 
elementwise batch normalization. 

For each element 𝑥 of 𝐱, 𝐵𝑁(𝑥|ℬ) = 𝑥 − min∈ℬ 𝑥max∈ℬ 𝑥 − min∈ℬ 𝑥. (5)

The maximization and minimization operations are carried out over all sample ele-
ments in minibatch ℬ . In this manner each element of the vector 𝐲  is restricted to lie 
within the unit interval [0, 1]. 

Throughout the remainder of this article, 𝐱 is used to represent a vector input to 
TabNet such that 𝐱 ∈ ℝ , where 𝐷 is the input dimensionality. Although in general its 
output is a vector, the TabNet architecture used in this research outputs a scalar 𝑦. Op-
tionally, the 𝑛th sample input and output are indicated as 𝐱(𝑛) and 𝑦(𝑛). TabNet is de-
signed to mimic decision trees. It follows a multi-step architecture in which each sequen-
tial step is analogous to a decision box in a decision tree. Figure 1 illustrates the arrange-
ment of a step indexed 𝑖 in TabNet. Each step includes two transformer blocks, (i) an 
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attentive transformer and (ii) a feature transformer, with their layouts depicted in Figures 2 
and 3, respectively. 

 
Figure 1. TabNet Step. A single step, indexed 𝑖, in the overall multi-step TabNet layout. The path-
ways for each signal follow a different color. 

 
Figure 2. Attentive Transformer. The layout of the attentive transformer used in TabNet. The black 
circle marked ‘∘’ represents elementwise multiplication, while the dashed lines are paths leading 
from the previous time step 𝑖 − 1. 
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Figure 3. Feature Transformer. The layout of the feature transformer used in TabNet. It consists of 
four subunits, with each containing an FC, BN, and GLU; two of the subunits have Agg blocks as 
well. 

The attentive transformer at each step 𝑖 incorporates a SparseMax block that imple-
ments a sparse version of the well-known softmax function [47]. It produces a sparse vec-
tor 𝐦[𝑖] ∈ ℝ , labeled as the block mask. The mask is a sparse vector of probabilities that 
can be obtained in the following manner: 𝐦[𝑖] = argmax𝐦∈𝚫 ‖𝐦 − 𝐳‖ . (6)

In the above equation, 𝚫  is a subspace of probability simplices in 𝐷 dimensions 
with only 𝐷 < 𝐷 nonzero elements. In other words, the mask vector in Equation (6) is 
such that ‖𝐦[𝑖]‖ = 𝐷  and 𝟏 𝐦[𝑖] = 1. The vector 𝐳 in Equation (6) appearing above 
is obtained as follows: 𝐳 = 𝐩[𝑖 − 1] ∙ 𝐡 (𝐚[𝑖 − 1]). (7)

Ignoring the BN block, here the function 𝐡 (∙) is a trainable mapping accomplished 
by the immediately preceding FC layer, as in Equation (1). The FC layer has its own set of 
trainable weights, although for simplicity is has not been shown in the figure. 

The block priorScales used in the attentive transformer in step 𝑖 (Figure 1) is a vector 𝐩[𝑖]. It is used to scale down 𝐦[𝑖] using the masks 𝐦[𝑗] from all prior steps 𝑗 < 𝑖. With 𝜸 ≥ 𝟏 being a predetermined TabNet parameter vector, the mask is obtained as shown 
below: 

𝐩[𝑖] = (𝜸 − 𝐦[𝑗]). (8)

The product in the above equation is carried out in an elementwise fashion. The ra-
tionale behind this formulation can be explained in the following manner. If a scalar ele-
ment has been used extensively in some prior step 𝑗, the corresponding mask 𝑚[𝑗] will 
be close to one. The corresponding factor 𝛾 − 𝑚[𝑗] in Equation (8) will be small, meaning 
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that the same element is scaled downward. On the other hand, if the element stays rela-
tively unused, then 𝑝[𝑖] will be nearly equal to one, ergo likelier to be used in step 𝑖. 

The feature transform converts input vectors into more suitable representations. It 
consists of four separate sub-blocks, with each sub-block consisting of an FC layer fol-
lowed by a BN layer and then a GLU layer. The transformer applies normalization in the 
manner shown in Equation (5); however, it uses ghost normalization, where only a smaller 
set ℬ ⊂ ℬ of the minibatch ℬ is used for this purpose, meaning that 𝐲 = 𝐁𝐍(𝐱|ℬ ). Alt-
hough this slows down the training process, ghost normalization has been shown to yield 
better generalization properties [48]. 

The feature transformer splits the 𝐷 × 1 vector into two disjoint chunks with dimen-
sionalities 𝐷  and 𝐷  such that 𝐷 = 𝐷 + 𝐷 . This is achieved using the Split block. Ag-
gregation takes place at each block Agg. The final decision is determined as follows: 

𝐝 = 𝐑𝐞𝐋𝐮(𝐝[𝑖]).  (9)

The mapping 𝐑𝐞𝐋𝐮(∙) appearing above is performed elementwise, as in Equation 
(4). The quantity 𝑁  is the total number of steps in TabNet, which is obtained empiri-
cally based on the dataset. The overall layout of TabNet is shown in Figure 4 (in the figure, 
the term ‘step’ does not refer to algorithmic iterations; these steps are akin to physical 
blocks, with the terminology used in this article being borrowed from [28]). 

With the symbol 𝛉 representing the vector of all weight parameters of TabNet and 𝑓(∙)  being another nonlinearity representing the composition of the functions of each 
step, TabNet’s output can be expressed succinctly as 𝑦 = 𝑓(𝐱|𝛉).  (10)

 
Figure 4. TabNet Layout. The overall multi-step layout of TabNet. The colors of the signal pathways 
follow the same convention as in Figure 1. 

The training dataset is of the form 𝐱(𝑛), 𝑡(𝑛)|𝑛 ∈ 𝒩 , where 𝒩  is the set of indices 
of all training samples, 𝐱(𝑛) is the 𝑛th sample input, and 𝑡(𝑛) is the corresponding tar-
get output. The aim of the learning algorithm is to iteratively increment 𝛉 such that for 
every training sample the difference between the target and TabNet’s true output 𝑦(𝑛) =𝑓(𝐱(𝑛)|𝛉) is steadily reduced. The deviation between the outputs and the targets is quan-
tified in terms of the network’s loss. A regularization term is added to the loss, and the 
regularized loss is denoted as ℒ(𝛉|𝒩 ), whereupon the TabNet trained parameter is 𝛉 ≅ arginf𝛉 ℒ(𝛉 |𝒩 ). (11)
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For the purpose of training, the training samples in 𝒩  are divided into mutually 
disjoint minibatches. Supposing that ℬ is a minibatch and 𝜂 is the algorithm’s learning 
rate, each increment is applied iteratively in accordance with the rule shown below: 𝛉 ← 𝛉 − 𝜂 1|ℬ| ∇𝛉ℒ(𝛉|ℬ). (12)

In each epoch of the training algorithm, the parameter vector 𝛉 is incremented sep-
arately for every minibatch, meaning that the end of that epoch roughly marks a single 
gradient step with loss ℒ(𝛉|𝒩 ). As long as 𝜂 is sufficiently small, the loss ℒ(𝛉|𝒩 ) con-
tinues to decrease with each epoch. At the end of the epoch, 𝒩  is shuffled randomly and 
split into minibatches for the next epoch. 

The training algorithm is allowed to proceed for several such epochs. The termination 
criterion is determined with the help of another dataset 𝒩 , called the validation dataset; 
note that 𝒩 ⋂𝒩 = 𝜙. The algorithm is terminated when the loss ℒ(𝛉|𝒩 ) begins to rise. 
At this stage, 𝛉  is treated as the estimate of the network’s optimal parameter arginf𝛉 ℒ(𝛉 |𝒮). Here, 𝒮 represents the entire space of all real-world data, with |𝒮| → ∞. 
As long as the datasets 𝒩  and 𝒩  are sampled randomly from 𝒮 using the latter’s un-
derlying probability distribution, it can be shown that 𝛉 is the most likely estimate of the 
true optimum. Thereafter, TabNet can be deployed for its intended real-world application. 

2.2. Imitation Learning 
In reinforcement learning terminology, an agent is a learning entity that exerts control 

over a stochastic external environment by means of a sequence of actions over time [7]. The 
agent learns to improve the performance of its environment using reward signals that are 
derived from the latter. Rewards are quantitative metrics that indicate the immediate per-
formance of the environment (e.g., the occupant ‘s instantaneous comfort) [49,50]. The sets 𝕊 and 𝔸 are the state and action spaces, and may be either discrete or continuous. Signals 
are sampled at discrete regularly spaced time instants 𝑡, where 𝑡 ∈ 0,1, … , 𝑇  and 𝑇 is 
the time horizon. The current state 𝑠 ∈ 𝕊  of the environment is available to the agent 
through a vector of features, such as sensor measurements, which then implements an 
action 𝑎 ∈ 𝔸. The environment transitions to the next state 𝑠  and returns an immedi-
ate reward signal 𝑟 ≡ 𝑟(𝑠 , 𝑎 , 𝑠 ) , with 𝑟: 𝕊 × 𝔸 × 𝕊 → ℝ  denoting the environment’s 
reward function, which is unknown to the agent. The transition can be denoted concisely 
as 𝑠 ,⎯ 𝑠 . Actions taken by the agent are determined in accordance with a policy 𝜋, 
which is a probability distribution over actions in 𝔸 such that 𝑎 ~𝜋(𝑠 ). 

The value of any state 𝑠 ∈ 𝕊 under a policy 𝜋 is the expected sum of rewards when 
the environment is initialized to that state, i.e., 𝑣 (𝑠) ≜ 𝔼 [∑ 𝑟 |𝑠 = 𝑠]. Current deep 
reinforcement learning methods typically make use of samples that are stored in the re-
play buffer ℬ. These samples are of the form (𝑠 , 𝑎 ,𝑟 , 𝑠 ), where actions 𝑎 ~𝜋(𝑠 ) are 
carried out under policies 𝜋 designed to explore the unknown environment. The learn-
ing algorithm proceeds by drawing samples randomly from the buffer in minibatches. It 
aims to infer the optimal policy 𝜋∗(∙). Such a policy, which is not known a priori, is the one 
under which the values of every state 𝑠 in 𝕊 are at the maximum. Mathematically, the 
optimal policy is defined as 𝜋∗(𝑠) ≜ argmax 𝑣 (𝑠). (13)

Imitation learning aims to accomplish the reverse of reinforcement learning. The 
buffer ℬ contains samples that are obtained externally from an expert and without the 
agent’s involvement. Such an expert may represent an actual human being or multiple 
humans. It may be assumed that the expert applies the optimal policy 𝜋∗(∙). In such a 
case, the samples in the buffer are of the form (𝑠 , 𝑎∗,𝑠 ), with actions 𝑎∗~𝜋∗(𝑠 ). The 
differences between reinforcement learning and imitation learning are highlighted in Fig-
ure 5. 
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Figure 5. Reinforcement Learning vs. Imitation Learning. Illustration highlighting the difference 
between the reinforcement learning and imitation learning paradigms. Signal flow pathways in re-
inforcement learning (top) and in imitation learning (bottom). In reinforcement learning for indoor 
environmental control, the reward signal 𝑟  is based directly on comfort indices that may not be 
suitable. Imitation learning does not use 𝑟 , as the action 𝑎  is replaced with the optimal action 𝑎∗. 
This is possible because imitation learning makes explicit use of an expert, i.e., the home’s actual 
resident(s), whose prior history of actions reflect the true comfort level. 

A recent article [7] has provided a comprehensive exposition of reinforcement learn-
ing as well as an in-depth survey of its various smart home applications. 

3. Proposed Approach 
3.1. Policy Models 

As the dataset contains separate heating and cooling controls, two policy models are 
used in this research to represent agents for imitation learning. The models share a com-
mon input 𝐱 : 𝐱 = 𝑚 , 𝜏 , 𝑚 , 𝜏 .  (14)

The models are represented in functional form with the parameters 𝛉  (heating) and 𝛉  (cooling); the common subscript 𝜋 is used to distinguish them from the prediction 
models. This choice is motivated by the observations that in the reinforcement learning 
literature 𝛉 is often used to represent model parameters, such a neural network weights, 
while 𝜋 is used to denote policies. The function for the heating model is provided below: �̂� = 𝑓 𝐱 |𝛉 . (15)

Similarly, the corresponding function for the cooling model is �̂� = 𝑓(𝐱 |𝛉 ).  (16)

It must be noted that the quantities �̂�  and �̂�  (with the ‘hat’ ∙)̂ are merely the set-
tings that are recommended by the agent model. 
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Because the thermostat settings do not change in each time step, adjusting them at 
any instant 𝑡  to their recommended values is implemented in a probabilistic manner. 
Therefore, with the probability of switching to the recommended setting being 𝑝 , the 
heating setting at time instant 𝑡 is obtained as follows: 𝑠 = �̂� , with probability 𝑝𝑠 , otherwise . (17)

Similarly, the cooling setting at the same instant is 𝑠 = �̂� , with probability 𝑝𝑠 , otherwise .  (18)

The symbols �̂�  and �̂�  (with the ‘hat’ ∙)̂ in the above expressions are used to dis-
tinguish them from manually controlled settings available in the dataset. The schematic 
in Figure 6 shows the proposed architecture. The schematic shows a switch to regulate the 
vector 𝐬 , which is probabilistically determined based on the probability parameter 𝑝. 
Suppose that at a 15 min time interval 𝑡 − 1 the setting is 𝐬 . During this period, the 
control model proposes a new setting 𝐬 , which is its action. At the beginning of the next 
instant 𝑡, the setting vector 𝐬  is adjusted with a probability 𝑝 in accordance with the 
control action such that 𝐬 = 𝐬 . Otherwise, no change is made to the setting, which re-
mains the same as in the previous instant, whence 𝐬 = 𝐬 . 

 
Figure 6. Proposed Architecture. Schematic showing the architecture proposed in this research for 
indoor environmental control. The small boxes labeled 𝑧  represent time delays. The architecture 
includes four TabNets and a probabilistic switch. The layout depicts how the proposed architecture 
is configured during real-time usage. Each TabNet is trained separately with appropriate samples. 

3.2. Prediction Models 
The purpose of the environmental prediction models is to predict the future indoor 

temperature and humidity levels. This is because when the policy models 𝛉  and 𝛉  are 
used to replace human decisions, the actual recorded indoor temperature and humidity 
levels from the dataset can no longer be used. Because only single-step lookahead predic-
tions are required, two prediction models have been used with a common subscript 𝑝 for 
prediction, namely, 𝛉  (temperature) and 𝛉  (humidity). In addition to 𝐱  in Equation 
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(14), the inputs to these models are the vectors of the switching actions, obtained using 
Equations (17) and (18), as shown below: 𝐬 = 𝑠 , 𝑠 .  (19)

The predictions of the TabNet models can be expressed in functional form. The form 
corresponding to temperature prediction is shown below: τ = 𝑓 𝐱 , 𝐬 |𝛉 . (20)

The analogous expression for predicting humidity is 𝑚 = 𝑓 𝐱 , 𝐬 |𝛉 . (21)

3.3. Comfort Indices 
Human comfort level is determined by a combination of several factors, including 

the indoor temperature and humidity. As noted earlier, comfort is a human sensation that 
varies from one individual to another. Moreover, as it incorporates nonlinearities, linear 
quantification of comfort may not reflect the true occupant comfort. Consequently, quan-
tified comfort metrics are not used anywhere in this article to train the TabNet models, 
and are only used as a secondary evaluation tool. The two indices used here for secondary 
evaluation are (i) the predicted mean vote (PMV) and (ii) the predicted percentage of dissatisfied 
(PPD). Although PMV and PPD [49,50] are both numerical indices reflecting dissatisfac-
tion, they are nonetheless referred to as ‘comfort’ indices. 

PMV estimates the mean response of a large group of people in accordance with the 
ASHRAE thermal sensation scale. The index is an integer in the interval [−3, +3], with 
zero representing the highest satisfaction. The PMV at any time instant 𝑡 can be obtained 
in accordance with the following expression: 𝑃𝑀𝑉 = 𝛼𝜏 + 𝛽𝑚 + 𝛾.  (22)

In Equation (22), 𝛼, 𝛽, and 𝛾 are three constants with appropriate units; their re-
spective numerical values are provided in Table 1. It should be noted that these values, 
which are obtained from [50], are different for males, females, and mixed-gender occu-
pants. Secondary determinants of human comfort, such as clothing, etc., could not be in-
corporated into Equation (22), as they were not available in the dataset. 

Table 1. Numerical values of PMV and PPD constants 

Gender Female Male Mixed N/A 
Symbol 𝛼 𝛽 𝛾 𝛼 𝛽 𝛾 𝛼 𝛽 𝛾 𝐾 𝑐  𝑐  
Value 0.272 0.248 –7.245 0.220 0.233 –6.475 0.245 0.248 –6.673 95 0.2179 0.03353 

The PPD index estimates the percentage of a group of people who report dissatisfac-
tion, with zero reflecting maximum comfort. It can be obtained from PMV [50] in a 
straightforward manner, as shown below: 𝑃𝑃𝐷 = 100 − 𝐾𝑒  .  (23)

The numerical values of the three constants 𝐾, 𝑐 , and 𝑐  in Equation (23) are sup-
plied in Table 1. 

3.4. Evaluation Metrics 
The accuracy 𝐴 of a model was determined as the sum of the adjusted absolute dif-

ferences between real values and the corresponding TabNet output values: 
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𝐴 = 1𝑁 𝛿 .  (24)

In the above Equation (22), 𝑁 is the total number of samples (i.e., 𝑁 = |𝒩 | or 𝑁 =|𝒩 |, as the case may be), and 𝛿  is a Kronecker delta function defined as follows: 𝛿 = 1, |𝑥 − 𝑥 | − 𝜂𝑥 < 00, otherwise .  (25)

In Equation (25), 𝜂 is the error tolerance, 𝑥  is the TabNet output at time instant 𝑡, 
and 𝑥  is the corresponding true value. The symbol 𝑥 denotes any one of 𝑠 , 𝑠 , 𝑚 , 
and 𝜏 . The values assigned to the error tolerance 𝜂 were 𝜂 = 0.005 for the prediction 
models and 𝜂 = 0.05 for the policy models. This error margin was incorporated to cir-
cumvent the degree of inherent randomness when the settings are under human control. 
Thus, a difference of less than 5% between the model’s recommended heater setting and 
the real human adjustment in the dataset was not considered to be inaccurate. Although 𝐴 in Equation (24) was primarily adopted to assess the performance of the policy models 𝛉 , it was used as a secondary performance metric for the prediction models 𝛉  as well, 
albeit with a lower tolerance. 

The mean square error 𝐸 between 𝑥  and its predicted value 𝑥  is 

𝐸 = 1𝑁 (𝑥 − 𝑥 ) .  (26)

As before, in Equation (26) above 𝑥 ∈ 𝑠 , 𝑠 , 𝑚 , 𝜏 . The primary purpose of this 
metric is to gauge the performance of the prediction models 𝛉 . Furthermore, the error 𝐸 
is used in conjunction with the policy models 𝛉  as an additional metric for performance 
evaluation. 

4. Results 
4.1. Data Preprocessing 

The dataset used in this research takes the form of time series samples. The time series 
contains outside (external) and indoor (internal) temperatures 𝜏  and 𝜏 , correspond-
ing humidity levels 𝑚  and 𝑚 , and separate thermostat settings for heating and cool-
ing 𝑠  and 𝑠 . The subscripts 𝑡 appearing in all these quantities refer to discrete time 
instances with 𝑡 ∈ 1, … , 𝑇 , where 𝑇 is the length of a sample training. The temperatures 
are specified in °F (degrees Farhenheit) and the humidity levels as percentages, with 0% 
and 100% representing no water content and full saturation, respectively. The initial da-
taset included various other fields that were not required in this research. 

Two separate settings (𝑠  and 𝑠 ) are used here only because that was the case in the 
dataset. We hypothesize that this is a residence-specific artifact. Depending on the sce-
nario, a single thermostat setting variable may be used, leading to a simpler architecture 
with only a single policy model. 

The samples in the dataset were collected at regularly spaced intervals of 15 min, 
meaning that the lapsed time between any two consecutive instants 𝑡 and 𝑡 + 1 was 15 
min. Although time instances over whole days of 24 h were available for multiple months, 
only time intervals from 6:00 a.m.–8:00 a.m. and from 6:00 p.m.–8:00 p.m. during work-
days were used, as these were the intervals during which the data consistently showed 
that the settings were adjusted often, indicating the presence of occupants. Accordingly, 
the time length was 𝑇 = 12. Weekends and holidays were discarded, as there was no con-
sistent pattern of activity. Samples during the months of September and October were 
selected, as it was during these periods that the temperature settings were most frequently 
adjusted in both increasing and decreasing directions. 

The two-hour periods were then divided into two categories, (i) active and (ii) inactive. 
Periods during which any switching activity could be observed were regarded as active 
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periods, while those with no such activity were treated as inactive periods. Table 2 shows 
the total number of samples present in each category and the percentage of times the ther-
mostat settings for heating 𝑠  and cooling 𝑠  were adjusted. 

Table 2. Samples in dataset 

Period Setting No. of Samples Changed Fixed 

Active 
Heating 

47,247 
09.04% 90.96 % 

Cooling 02.66% 97.34% 
Inactive - 19,887 0 100% 

4.2. Training 
To train the policy models (𝛉 ), the same set of four fields, 𝜏 , 𝑚 , 𝜏 , and 𝑚 , 

i.e., the inside and outside temperatures and humidity levels, were treated as inputs. The 
heater setting 𝑠  and the cooler setting 𝑠  were the targets (i.e., desired outputs) for 𝛉  
and 𝛉 . Only samples from the active periods were used during model training. Of these 
samples, 80% was used explicitly for training, yielding a total of 4269 samples in 𝒩  for 𝛉  and 1258 such samples for 𝛉 . The remaining 20% of samples was set aside in order 
to evaluate the policy models’ performances in 𝒩 . Figure 7 show the steady reduction in 
the mean square errors 𝐸 with increasing iterations for both policy models. 

In order to train the prediction models (𝛉 ), four fields from the dataset, namely, 𝜏 , 𝑚 , 𝜏 , and 𝑚 , made up one set of inputs, while the temperature 𝑠  and humidity 
level 𝑠  made up the other. Because the purpose of these models was to predict the inter-
nal temperature and humidity after a single time step of 15 min, the values 𝜏  and 𝑚  
were the targets (i.e., desired outputs), corresponding to the temperature and humidity 
prediction models, 𝛉  and 𝛉 . The samples were divided into training and validation 
sets consisting of 80% and 20% of the total, respectively. The steady convergence of the 
mean square error 𝐸 as training progressed is shown in Figure 8. 

 
Figure 7. Policy Model Training. Plots showing logarithms of mean squared errors 𝐸 with respect 
to training samples (dashed blue) and validation samples (solid red) as a function of training itera-
tion for 𝛉  (left) and 𝛉  (right). 

 



Energies 2023, 16, 5091 14 of 19 
 

 

Figure 8. Prediction Model Training. Plots showing logarithms of the mean squared error 𝐸 with 
respect to training samples (dashed blue) and validation samples (solid red) as a function of training 
iterations for 𝛉  (left) and 𝛉  (right). 

4.3. Model Comparison 
The four TabNet components of the proposed model shown earlier in Figure 6 were 

evaluated in terms of their accuracy 𝐴 and mean squared error 𝐸. Simulations were car-
ried out to compare the performance levels of the proposed TabNet models with seven of 
the most commonly used machine learning algorithms for regression: (i) deep neural net-
work, (ii) K-nearest neighbors, (iii) decision tree, (iv) random forest, (v) adaBoost, (vi) gra-
dient boosting, and (vii) support vector regression. Pytorch implementations of these re-
gression models are available online [51]. As each component of the proposed architecture 
was separately investigated, these are referred to as open loop simulations. 

The performances of the policy models 𝛉  and 𝛉  as per Equations (23) and (25) are 
provided in Table 3, while those of the prediction models 𝛉  and 𝛉  are shown in Table 
4. The accuracy 𝐴 and the mean squared error 𝐸 obtained from TabNet and the other 
learning models listed above are shown in both tables. The best performance in each of 
the eight cases (four models × two measures) is highlighted in bold. 

Table 3. Performances of policy models 

Regressor 

Policy Models (𝛉𝝅) * 
Heating Setting (𝒔𝐡) Cooling Setting (𝒔𝐜) 

Accuracy  
(𝑨) 

MS Error  
(𝑬) 

Accuracy  
(𝑨) 

MS Error  
(𝑬) 

TabNet (proposed) 86.18 8.6 98.41 2.5 
Deep Neural Net 81.91 10.5 95.37 4.4 

K Nearest Neighbor 76.81 12.7 93.65 3.3 
Decision Tree 76.80 20.4 87.30 6.3 

Random Forest 84.54 10.3 96.03 2.8 
AdaBoost 70.25 11.7 96.83 3.2 

Gradient Boosting 85.71 9.2 96.83 2.7 
Support Vector Reg. 76.58 18.1 95.24 4.9 

* The best performance is highlighted separately for each performance metric in bold font. 

Table 4. Performances of prediction models. 

Regressor 

Prediction Models (𝛉𝐩) * 
Humidity (𝒎𝐢𝐧𝐭) Temperature (𝝉𝐢𝐧𝐭) 

Accuracy  
(𝑨) 

MS Error  
(𝑬) 

Accuracy  
(𝑨) 

MS Error  
(𝑬) 

TabNet (proposed) 75.19 0.17 64.16 0.59 
Deep Neural Net 67.88 0.37 33.82 1.44 

K Nearest Neighbor 33.06 1.27 29.24 1.97 
Decision Tree 57.76 0.54 38.62 1.59 

Random Forest 70.83 0.34 56.58 0.73 
AdaBoost 32.24 0.61 47.02 0.89 

Gradient Boosting 72.08 0.29 63.07 0.60 
Support Vector Reg. 44.95 0.46 48.29 1.18 

* The best performance is highlighted separately for each metric in bold font. 

It can be seen that TabNet outperforms all other models for all four tasks and in terms 
of both the 𝐴  and 𝐸  metrics. In addition, it can be observed that gradient boosting 
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performs better in both policy models than the other six models used for comparison. This 
observation is not surprising, as gradient boosting [52] was considered the model of choice 
for dealing with tabular data before TabNet was proposed. 

Having clearly established the efficacy of the TabNet components in the proposed 
architecture, the purpose of the next study was to test the efficacy of the overall architec-
ture. Closed loop simulations were conducted where the proposed architecture was imple-
mented in its entirety, as depicted in Figure 6. All four TabNet components were allowed 
to operate in tandem. Under these circumstances, the heating and cooling settings were 
controlled by the policy TabNets 𝛉  and 𝛉 , and the values available in the dataset could 
no longer be used. Ergo, the inputs to 𝛉  and 𝛉  were determined in accordance with 
Equations (15)–(18). 

4.4. Comfort 
The PMV indices were obtained for female, male, and mixed-gender occupants for 

various values of the switching probability 𝑝, as shown in Figure 9. A steady improve-
ment in the comfort (i.e., drop in PMV) can be seen as 𝑝 is increased from 𝑝 = 0 to 𝑝 =1 in increments of ∆𝑝 = 0.01. The maximum comfort level is attained when the settings 
are adjusted every 15 min, i.e., when 𝑝 = 1. Figure 10 shows the analogous PPV indices. 
Due to its direct relationship with PMV, the plots in Figure 10 look very similar to those 
in Figure 9. 

Furthermore, it can be observed that both indices have the lowest values when PMV 
was calculated for female occupant(s), followed by mixed gender occupants, and are high-
est for male occupant(s). This relationship was met regardless of the switching probability. 
Moreover, it can be seen that the gender-based differences are numerically very signifi-
cant. This observation strongly indicates that the source of the dataset was from a home 
unit with one or more female occupants, and that training the proposed TabNet-based 
architecture on such data resulted in its fine-tuning to maximize female comfort. 

 
Figure 9. PMV vs. Probability. PMV with increasing switching probability 𝑝  for females (left), 
males (middle), and mixed-gender groups (right). 

 
Figure 10. PPV vs. Probability. PPV with increasing switching probability 𝑝  for females (left), 
males (middle), and mixed-gender groups (right). 
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5. Conclusions 
Two major inferences can be drawn from this research. First, the results obtained 

from the open loop simulations conclusively establish the effectiveness of TabNet for han-
dling smart home environment-related tabular data for prediction and control tasks. De-
spite their superior performance with other types of data, conventional deep neural net-
works have not been able to outperform gradient boosting for tabular data [27,28]. This 
study corroborates nearly identical research findings that have been reported within the 
past year, all of which indicate that TabNet is better equipped than gradient boosting for 
similarly structured data in other applications. Gradient boosting has been used in similar 
applications to lower energy costs [53]. This investigation, as well as other similar efforts 
in smart home environment control, stand to benefit directly from the findings of the pre-
sent research. 

Second, this study illustrates that the proposed TabNet-based architecture can be 
trained using imitation learning to automate environmental control in home interiors. In 
contrast to reinforcement learning [7], the proposed approach obviates the need to use 
generic comfort indices. PMV and PPD [50], which are drawn using binary votes of large 
mixed-gender groups of individuals, are useful in designing ventilation, air conditioning, 
and other systems in buildings and homes as well as in establishing construction stand-
ards for large scale use; however, they are not meant to measure a specific individuals’ 
perceptions of comfort. Proper quantification of the actual comfort sensation felt by either 
individual occupants or families living in home units requires individual real-time moni-
toring of the occupants’ instantaneous physiological responses [54,55]. Because such in-
vasive procedures are impractical for daily use, imitation learning more suitable for smart 
home automation than reinforcement learning [7]. 

In the absence of any direct information on the pricing policy or estimates of what 
the indoor temperature would be without any heating or cooling at each instant, it is im-
possible to determine how the probability 𝑝 of a given setting change affects energy con-
sumption. However, it can safely be assumed that a real home occupant would not change 
the settings every 15 min even if she/he wanted to. Adjusting the probability parameter 𝑝 
using the proposed method helps to maximize comfort while avoiding adversely effects 
on energy consumption costs. 

During actual installation in any smart home, the TabNet models in the proposed 
architecture can be personalized using pre-recorded histories of manual temperature set-
ting adjustments specific to the unit. Alternatively, pretrained models can be fine-tuned 
online for the occupants’ individualized comfort using real-time data streams of the occu-
pants’ activity patterns. Such training can be achieved in a manner similar to that pro-
posed for XGboost in [56]. 
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