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Abstract: The rapid development of digital technologies and solutions is disrupting the energy
sector. In this regard, digitalization is a facilitator and enabler for integrating renewable energies,
management and operation. Among these, advanced monitoring techniques and artificial intelligence
may be applied in solar PV plants to improve their operation and efficiency and detect potential
malfunctions at an early stage. This paper proposes a Digital Twin DT concept, mainly focused on
O&M, to obtain more information about the system by using several artificial intelligence boxes.
Furthermore, it includes the development of several machine learning (ML) algorithms capable of
reproducing the expected behavior of the solar PV plant and detecting the malfunctioning of different
components. In this regard, this allows for reducing downtime and optimizing asset management.
In this paper, different ML techniques are used and compared to optimize the selected methods
for enhanced response. The paper presents all stages of the developed Digital Twin, including ML
model development with an accuracy of 98.3% of the whole DT, and finally, a communication and
visualization platform. The different responses and comparisons have been made using a model
based on MATLAB/Simulink using different cases and system conditions.

Keywords: Digital Twin; PV system; solar plant; machine learning; O&M systems

1. Introduction

Energy consumption is continually increasing globally, in parallel with the advance-
ment of science and technology. To maintain a modern and appropriate technology level,
nations must improve and sustain their energy resources. Today’s principal challenge
facing the energy sector is maintaining the balance between supply and demand. Fur-
thermore, as the world population grows, the per capita consumption rate also increases,
driven by technological advancements [1]. Thus, there exists a direct correlation between
an individual’s daily consumption rate in a country and the level of development of
that country.

Energy resources are classified based on their consumption and convertibility. They
are classified as renewable or non-renewable energy sources and primary or secondary
energy sources. Non-renewable energy sources are finite, unchanging and discontinuous
in nature and include fossil fuels such as oil, natural gas and coal. On the other hand,
renewable energy resources can be replenished over time and are available for a prolonged
period, including solar, wind, geothermal, biomass and hydro-power [2].

The economic feasibility and popularity of solar energy are increasing daily. However,
regular solar energy monitoring is essential to ensure high efficiency and prevent problems.
The importance of research in this field is directly related to the increase in the solar energy
market share. The global solar energy market, which was valued at USD 86 billion in
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2015, is projected to reach USD 422 billion by the end of 2022 [3]. It is estimated that
approximately 2% of photovoltaic panels will fail after 11–12 years [4], and losses from
dust collection (contamination) can be greater than losses from cell disruption. Therefore,
the regular production monitoring and reporting of possible losses are essential to ensure
early diagnosis and regular maintenance.

In the article by Rahman et al. [5], Artificial Neural Network (ANN) systems were
explored for predicting renewable energy generation from solar, turbine and hydro-power
sources. Similarly, Zheng et al. [6] utilized particle swarm optimization combined with long-
short-term memory techniques to predict energy output from photovoltaic (PV) systems.

Various methodologies are reported in the literature for predicting the energy gen-
erated by photovoltaic systems. For example, some studies [7–9] have employed neural
network techniques to make predictions of energy output. Additionally, a similar analysis
has been applied to forecasting the temperature of photovoltaic modules. In addition,
some of them focus [10,11] on the feature selection because it is believed that if it can be
configured well, ML models can predict solar power better.

However, due to the non-linear and chaotic nature of solar power plants, the choice
of prediction models must be made carefully. Therefore, this research decided to use the
three most popular machine learning algorithms, and some of these models can work with
few features while others prefer to have a larger set of variables. This is important because
every stage type and feature amount will differ.

These articles describe the use of Digital Twin (DT) technology in various renewable
energy systems. In [12], modules were designed to store, map and process data from a
solar power plant to develop life-cycle management with DT. In [13], the authors designed
an architecture, mathematical model and big data analytic engine to monitor the state of
solar panels using DT. In [14], the authors proposed using DT for optimum control, virtual
modeling and pre-diagnosis in production processes. In [15], it was suggested to use DT to
monitor decentralized renewable energy sources in the electricity grid. In [16], the authors
used DT to observe wind turbine fatigue failure and evaluate alternative processes for a
floating wind turbine.

The articles reviewed in this study propose the use of Digital Twin (DT) technology to
monitor and optimize various aspects of solar and wind power plants. The studies involve
designing modules to collect and process data, creating virtual models of the physical
systems and implementing AI algorithms and big data analytics to improve performance.

The implementation of Digital Twin (DT) technology faces a challenge in detecting
errors or abnormalities, as it requires waiting for the entire cycle to complete, which
slows down the system and reduces sensitivity. To overcome this, the authors suggest
dividing the power plant into subsystems and using multiple models, each representing
a specific component of the solar PV. This different idea provides detailed insights into
the performance and health of individual components, enabling the identification of
potential failures or degradation. Compared to the standard unique model version, this
new approach, with three Digital twins (DT) inside one system, provides a comprehen-
sive understanding of the overall power plant, facilitating proactive maintenance and
optimizing performance.

Considering the aforementioned factors, this study aims to achieve the production
and error detection of the system with machine learning models while creating the Digital
Twins of the photovoltaic systems and transferring them to the virtual system. In summary,
the paper’s key contributions are focused on the development of an innovative DT for
solar PV, which is based on the development of a DT of different components, allowing
identification of the faulty component, which can be easily integrated into an online-based
platform for real-time monitoring of a real SCADA system. The study is structured as
follows: in Section 2, the methods used in this study and their working methods are
explained. Section 3 is used to compare the results. Finally, Section 4 shows the conclusion.
Although the paper provides results, the presented values come from simulations and lack
real data due to the access restrictions of real environments.
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2. Generalities on Machine Learning

Three different machine-learning algorithms were used in this research. Since our data
are non-linear and based on time series, linear-based models would not perform well, so
they were eliminated. These three regression models are Deep Neural Networks (DNN),
Random Forest (RF) and CatBoost.

2.1. Random Forest Regression

Random Forest is a supervised machine learning technique that uses the group learn-
ing approach to perform classification and regression. Random Forest is built on the
wisdom of crowds, which posits that a huge proportion of statistically independent models
functioning together as a panel will outperform any constituent models individually [17,18].
This is because trees support each other by safeguarding one another from their faults.
When creating branches, every tree pulls a representative selection from the raw data
set, introducing an element of chance that avoids the fitting problem. A Random Forest
regression model is effective and precise. It often outperforms many problems, including
those with non-linear connections. However, there is no interpretability; over-fitting is
readily possible, and the user must pick the number of trees to include in the model [19].

In a Random Forest regression, the final prediction for a new input x is typically made
by averaging the predictions of the individual trees in the forest. Each tree i in the forest
predicts x based on its own decision rules, represented by the function fi(x). The final
prediction for x is the average of all the trees’ predictions [20,21]:

ypred(x) =
1
N

N

∑
i=1

fi(x) (1)

This equation represents the final prediction for a new input x. It is the average of the
predictions made by each tree i in the forest, where N is the number of trees in the forest
and fi(x) represents the decision rules (or function) of the tree i that predict x (Figure 1).

Figure 1. Random Forest architecture.

2.2. Deep Neural Network Regression

The algorithm consists of four steps: forward propagation, backpropagation to the
output layer, backpropagation to the hidden layer and a weight updating process. In this



Energies 2023, 16, 5044 4 of 17

section, we present the main equations of the backpropagation algorithm with gradient
descent for a three-layer neural network with a sigmoid activation function to relate it to
the proposed hardware implementation [22,23]. In the forward propagation step, the dot
product of input matrix X and weighted connections between the input layer and hidden
layer w12 is calculated and passed through the sigmoid activation function: Yh = σ(Xw12),
where Yh is an output of the hidden layer. The forward propagation step is repeated in
all the neural network layers. The output of the three-layer network Yo is calculated as
Yo = σ(Yhw23), where w23 is the matrix representing the weighted connections between
the hidden and output layers [24]. The backpropagation algorithm uses the cost function
defined in Equation (2) for the calculation of the derivative of the error concerning the
weight change. In Equation (2), E is an error, N is the number of neurons in the layer, ytarget
is an ideal output and yreal is the obtained output after the forward propagation [25].

Our DNN has five layers (one input layer, four hidden layers and one output layer)
and the following parameters (Figure 2):

Figure 2. Deep Neural Network architecture.

Input layer: 6 neurons, represented by the column vector x. First 3 hidden layers:
256 neurons each, represented by the column vectors h(1), h(2), h(3). Fourth hidden layer:
512 neurons, represented by the column vector h(4). Fifth hidden layer: 256 neurons,
represented by the column vector h(5). Output layer: 1 neuron, represented by the scalar y.
The forward pass of the network would then be calculated as follows:

h(1) = relu
(

W(1) · x + b(1)
)

h(2) = relu
(

W(2) · h(1) + b(2)
)

h(3) = relu
(

W(3) · h(2) + b(3)
)

h(4) = relu
(

W(4) · h(3) + b(4)
)

h(5) = relu
(

W(5) · h(4) + b(5)
)
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y = W(6) · h(5) + b(6) (2)

where relu is the rectified linear unit (ReLU) activation function.
The backpropagation algorithm would then be used to update the weights and biases

in order to minimize the error between the predicted output y and the true output ytrue
using the mean squared error (MSE) as the loss function [26]:

E =
1
2
(y− ytrue)

2 (3)

The gradients of the error function concerning each weight and bias in the network
can be calculated using the chain rule.

Once the gradients have been calculated, the weights and biases can be updated using
the Adam optimization algorithm [27], which is a variant of stochastic gradient descent
that uses moving averages of the gradients and second moments to adjust the learning
rate adaptively:

m(t) ← β1m(t−1) + (1− β1)
∂E

∂W(5)

v(t) ← β2v(t−1) + (1− β2)

(
∂E

∂W(5)

)2

m(t)
hat ←

m(t)

1− βt
1

v(t)
hat ←

v(t)

1− βt
2

W(5) ← W(5) − α
mhat(t)√
vhat(t) + ε

(4)

where beta1 and beta2 are the decay rates for the moving averages, alpha is the learning
rate, and epsilon is a small constant to prevent division by zero.

This process is repeated for the weights and biases in the other layers of the network.

2.3. Catboost Regression

CatBoost is a gradient-boosting library that uses decision trees as the base model. It is
specifically designed to handle categorical variables and also includes some other features
such as handling missing values and built-in cross-validation [28].

Like many other gradient-boosting libraries, CatBoost builds the model by training a
sequence of decision trees. Each tree is trained on the residuals of the previous trees, where
the residual is the difference between the true target value and the predicted value of the
previous trees [29].

The mathematical expression for a single decision tree in CatBoost is determined by the
specific algorithm used to construct the tree. However, in general, a decision tree is a series
of simple decisions (or “splits”) based on the values of the input features [30]. For example,
a decision tree might split on the value of an input feature X and make different predictions
depending on whether X is greater than or less than a certain threshold.

A CatBoost model is an ensemble of multiple decision trees, and the final prediction is
made by summing the predictions of the individual trees (Figure 3).

The mathematical expression of the CatBoost regression model is given as follows:

ypred(x) =
T

∑
i=1

wihi(x) (5)
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where T is the number of trees in the model, wi is the weight assigned to the i-th tree, and
hi(x) is the prediction made by the i-th tree. The weights are learned during the training
process and are used to adjust the contribution of each tree to the final prediction.

Figure 3. Flowchart of the Catboost regression.

CatBoost also uses some techniques that help to handle categorical features better than
regular gradient-boosted decision trees (GBDT), such as handling the categorical features
themselves and using permutation-based feature importance [31].

3. Methodology of Digital Twin

The fundamental objective of the DT concept is to enable real-time monitoring and
detailed analysis of a solar panel system through a virtual model (Figure 4). With data
from the real PV plant, the trained model can predict the system’s behavior using one of
the already explained machine learning methods. With all of this, the results from the
ML model and the ones from the real plant can be compared to determine if there is any
deviation and warn the responsible party to take countermeasures.
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Figure 4. Digital Twin for solar plant architecture.

All the data can come from different sources, such as different IoT devices. The unique
condition is to have a time stamp and the minimum data to make a correlation between all
the inputs. This approach simplifies the process by consolidating all necessary information
on a single platform and obviates the necessity for intricate and burdensome systems that
entail an abundance of data. The details of the internal architecture are depicted in Figure 5.
The platform uses docker to split the components into small modules that are easy to
manage and maintain. To interact with the external elements and to receive the data, we
created a REST API supported by the FasAPI framework. The machine learning element
component uses the framework sckitlearn and keras. It uses the Redis database to receive
the orders to perform prediction or re-training. To store the data, it uses Influx DB—a tool
capable of managing time series data efficiently and sufficiently fast to hold all the needed
data. Finally, the tool called Grafana can be used to visualize the data from the different
sources and also the Digital Twin.

The methodology used to obtain the results follows four different steps. First, the
weather data are collected from the PVGIS system for several years. The second step is
to use a part of the obtained data to run the power plant model using Matlab/Simulink
and obtain the experimental data as if the plant was a real plant. Then, the model uses the
generated data to train the ML models. Finally, after all these steps, the DT is run using the
same plant model again, but in this case, the weather data that have not been used from
the previous steps are used. In this study, there were no data from a real plant, so the two
initial steps were needed. All these steps used docker to build containers, which are Influx
DB, grafana, Redis, ML models and FastAPI.
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Figure 5. Digital Twin internal architecture.

4. Results

In Figure 6, there is a comparison between the original concept of DT, where there is a
unique model of the system to predict the whole system, and the proposed concept of a
“box of boxes”, where it has the same inputs and outputs but also has other intermediate
variables that provide more information about the twin system.

Figure 6. General diagram comparing the regular DT with the new proposed concept of a box
of boxes.
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The data used for these results are generated using a Matlab/Simulink model of a
solar system with 150 kW of power as a real installation (Figure 7) [32]. In addition, the
weather input data from PVGIS for two years are used to evaluate the first part as training
and the second for evaluation [33]. An installation with fixed panels at 30 degrees has
been used to evaluate this research. The idea of this concept is to have a DT designed for a
specific installation. If it changes—for example, the slope of the panels or the system tracks
the sun—then the models have to be retrained with the data of this new configuration.

Figure 7. The Matlab/Simulink model used in this work to generate the data.

Solar energy plants consist of many complex parts, and they work intertwined with
each other; with the proposed design in this study (Figure 8), we aim to reduce the
complexity by examining the whole system in three parts separately from each other.
However, on the other hand, the whole system is like a chain reaction, and it is desired to
emphasize that there is a natural bond between them.

Figure 8. This graph describes the input variables used to train machine learning algorithms and the
corresponding outputs they aim to predict.

This study utilized various variables for training and estimating algorithms based on
examining solar panel systems and identifying key system characteristics. The relationships
and connections between these variables were thoroughly analyzed to optimize the data
structure for optimal results (Figure 8).
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4.1. Machine Learning

This section explains, for each part of the system of a PV plant, the results obtained
comparing the three chosen machine-learning methods, evaluating the performance of each
in the three different situations. In this study, we collected data for a period of two years,
with data points recorded every hour. This resulted in a dataset containing 17,544 rows
for each parameter measured. The large amount of data collected allowed for a thorough
analysis of trends and patterns in the measured parameters over time. In this research
study, a data partitioning approach was employed, whereby 30% of the available data were
reserved for testing purposes, while the remaining 70% were partitioned into training and
validation sets. Specifically, 80% of the data were allocated to the training set, and the
remaining 20% were designated as the validation set.

4.1.1. Pv Panel Part

The solar panel component is the central focus of this study. It is heavily dependent
on various input variables and requires preprocessing for estimation, except for electricity
generation. Furthermore, given that its performance is affected by weather conditions and
environmental factors, it requires continuous monitoring and protection.

The first stage of this study focuses on the direct effect of various types of radiation
and temperature on solar panel performance. If Figure 9 is examined, there is a linear
relationship between power generation and irradiation types and temperature. In contrast,
this link is not as clear as the others in Hsun, which specifies the height of the sun (degrees).
While it is stated in the literature that wind speed (WS10m) does not has a significant
impact, this study found that these variables still have an effect. This effect comes indirectly
because, with the wind, the panels can be covered with sand or vice versa.

Figure 9. The correlation matrix of the variables used in this research.

Figure 10 compares real electrical energy output with projections given by several
machine learning algorithms. To evaluate the performance of our model, we selected
four random days for testing in each season. Specifically, the selected days were 1
January, 7 March, 3 June and 3 September. The data collection for these testing days began
at 3 am and continued until 4 am the next day, providing a sufficient amount of data to
test the model’s accuracy and generalizability. It is evident from the comparison that the
current generation graph (represented in blue) and the prediction graph (represented in



Energies 2023, 16, 5044 11 of 17

red) exhibit a high degree of similarity for all days analyzed using the different methods.
This implies that the machine learning techniques’ predictions capture the trends in
the data. Among the different methods used, it is noteworthy that the only method
whose estimates are below the peak values of the actual data for each observed day is
the Catboost method.

CatBoost does not perform as well as RF or DNN, but it is the fastest algorithm to train
and predict, but the error rate cannot be considered acceptable. DNN and RF gave perfect
results, but still it is hard to say which one performed better from these images. As a result,
the prediction error must be calculated to measure the forecasts’ accuracy. The RMSE and
MAE values for the comparative approaches are shown in Table 1.

Table 1. Values of error measures for validating the compared techniques.

DNN RF CatBoost

RMSE 0.8 6.10 12.20
MAE 0.2 3.06 8.80

Figure 10. Comparison between the actual production results with the predictions made by
ML models.

As depicted in the aforementioned Table 1, the Root Mean Squared Error (RMSE) and
Mean Absolute Error (MAE) values for each of the proposed machine learning techniques
are minimal, indicating that the estimation for the test dataset is satisfactory. Both metrics
indicate that the DNN model yields the least prediction error. Conversely, the Catboost
method yields the highest RMSE and MAE values. Despite the slight variations in the
errors obtained for all methods, they are of a similar magnitude. This can be attributed to
the lack of significant variations in the meteorological conditions of the location under test.

4.1.2. DC–DC Converter Part

Unlike PV panels, DC–DC converters exhibit nonlinear behavior and are dynamic
systems that may adapt quickly to changes in the system. The semiconductor devices
utilized in the converter, as well as the nonlinear phenomena generated by parasitic capaci-
tances and inductances in the system, are principally responsible for this non-linearity [34].
As a result, DC–DC converters are intrinsically nonlinear, making accurate modeling by
machine learning techniques difficult. Furthermore, because of the semiconductor archi-
tectures utilized, the quick reaction time of DC–DC converters offers extra challenges for
machine learning algorithms with large gaps between sample periods [35]. To address
this challenge, the machine learning algorithm employs a MIMO (Multiple Input Multiple
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Output) architecture, which allows for a more detailed analysis of the system by estimating
both current and voltage as output.

Figure 11 reveals that the predictive performance of all DC current models is excellent,
and this is not an easy task, considering that the current values fluctuate sporadically from
0 to 250 amps. However, these good results make it difficult to decide on one of them, so it
is necessary to check the voltage estimation results in Figure 12.

Figure 11. Comparison between the actual current values of the DC–DC part with the predictions
made by ML models.

Figure 12. Comparison between the actual voltage value of the DC–DC part with the predictions
made by ML models.

In Figure 12, the situation is completely different, because the voltage values only
range from 499 V to 501 V, and most are clustered above 500 V. ML models have difficulty
predicting these stable movements. As shown in the graph, DNN usually makes predictions
above or below the true value, while CatBoost was unable to accurately predict the upper
and lower values, and the average remained around 500 V, so the graph shows that RF
predicted with the best accuracy.
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It can be confirmed with the help of Table 2 when comparing the model in terms of
MAE and RMSE that RF had the best numbers, while DNN showed the worst. This may
lead to the idea that tree-based models give better results because they cannot go beyond
the maximum and minimum values shown in the training data.

Table 2. Values of error measures for validating the compared techniques.

DNN RF CatBoost

RMSE 2.58 0.59 1.25
MAE 1.68 0.17 0.67

4.1.3. Grid Part

In this section, variables from the DC part have been used as input (Figure 8), and we
have tried to determine whether there is any loss in the system due to extra resistors, some
cables or malfunctions of some electronic devices, but it should be noted here that ML
models cannot say anything about the type or cause of the loss but only show the damage
these losses caused to the system.

When looking at Figure 13, it is clear that all the models give very good results.
To see which one performs better, a graph can usually give us an idea, but here again,
all the points are on top of each other, which means that a perfect fit has been reached.
This raises the question of whether there is an over-fitting or not, but to avoid this, the
used data were shuffled to different months and different hours of the day and night.
Moreover, as explained from the PV part, the environmental weather conditions of the
test place are pretty stable for the whole year, so predicting the grid part is also quite a
straightforward process.

Figure 13. Hourly comparison of actual grid Power data against the estimation made using vari-
ous techniques.

Figure 13 shows that all the models predict the same values, so it is necessary to check
Table 3 to see the details and decide which one is the best algorithm. Thus, based on the
RMSE and MSE, we can choose one model to use for the grid part.

It is evident that all models exhibit excellent performance, with Mean Squared Error
(MSE) or Root Mean Squared Error (RMSE) values below one. Therefore, it is justifiable
to select a model based on its categorization. Here, three criteria were used to make the
decision: the size, speed and complexity of the model. Since Catboost was the winner of
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these criteria, it was preferred as the main model, while the RF model showed the best
performance in terms of error rates.

Table 3. Values of error measures for validating the compared techniques.

DNN RF CatBoost

RMSE 0.19 0.02 0.3
MAE 0.10 0.01 0.2

4.2. Digital Twin

Integrating Digital Twin technology and Internet of Things (IoT) devices is a promising
approach for the real-time monitoring and analysis of power grid systems. Utilizing
a Digital Twin concept, a virtual replica of the physical system allows for a seamless
connection between IoT devices and data analytics, enabling rapid assessment and real-
time decision-making based on reliable data.

One example of such an application is the use of Digital Twin technology in predicting
the electricity production of a solar power plant to the grid. These predictions from the
system can be used to compare with the plant, the real twin, to increase any deviation from
the expected results, increasing the system’s reliability.

Figure 14 depicts the Grafana charts that allow for real-time system examination and
alerting. The top graph shows the prediction of machine learning applied to the electricity
passing through the grid. The central dashboard displays the error rate between the
estimated and actual power. This study uses a tolerance rate of 20% as an example, and if
the error rate exceeds this threshold, the system sends an error to the user. The bottom
portion of the figures also displays the types of irradiation, with data obtained and sent
to the system via IoT devices. This aspect of the system can be further supported with
additional sensors to facilitate monitoring.

The idea to split the model into small models starts with the thesis that if there is a
deviation from the Digital Twin, something is not correct, but there is no more information.
Dividing the system into small pieces allows us to see the location of the issue and facilitates
decision making. However, this method needs more data not only for the training but
also for monitoring. It needs the status of intermediate points of the system and forces
digitalization, adding more sensors to the parts of the system that require more information.

Figure 14. Dashboard in Grafana with model input data with grid part.
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5. Conclusions

The paper has presented an innovative concept of an AI-based Digital Twin as a “box
of black boxes”. This innovative concept is different from the previous research in this
field. Instead of focusing on one big model, the authors designed a concept like a puzzle,
creating small parts and connecting them. This research culminated in the development
of three unique AI models, each representing a different component of the overall solar
PV power plant system with a global accuracy of 98.3%. These models allow for gathering
complex and granular insights into the detection and evaluation of possible faults or
performance deterioration inside specific components that are part of the overall system.
The investigation included an in-depth assessment of each model using three machine-
learning algorithms to discover the most appropriate approaches. Notably, the findings
revealed that the performance of various strategies differed depending on the individual
system components with the investigation’s distinct traits and qualities.

Further steps of this research are to test this development in a real field and apply this
concept to another energy generation system where there is the need to create a DT, such as
wind turbines and other renewable resource systems. Furthermore, in future work, there
is the need to not only use the error and its variations to consider a good fit, but also, the
amount of data and time for the training could be important depending on the application.
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Abbreviations
The following abbreviations are used in this manuscript:

PV Photovoltaic
DC Direct current
AC Alternating current
MAE Mean absolute error
MSE Mean square error
RMAE Root mean absolute error
RF Random forrest
DNN Deep neural network
KW Kilowatt
GW Gigawatt
DT Digital Twin
IoT Internet of Things
MIMO Multiple Input Multiple Output
AI Artificial intelligence
MLP Multi layer perceptron
ML Machine learning
O&M Operation and maintenance
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