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Abstract: This study investigates the relationship between clean and dirty energy markets, specifically
focusing on clean energy stock indexes and their potential as hedging assets and safe havens during
periods of global economic uncertainty. The research analyzes five clean energy indexes and four dirty
energy indexes from May 2018 to May 2023, considering events such as the global pandemic and the
Russian invasion of Ukraine. The main objective is to examine the causal relationship among different
stock indexes pertaining to dirty and clean energy by using the Granger causality test (VAR Granger
Causality/Block Exogeneity Wald Test) to determine whether clean energy indexes can predict future
prices of dirty energy indexes. However, the findings reveal that clean and dirty energy indexes do
not exhibit hedging characteristics or serve as safe havens during times of economic uncertainty,
rejecting the research question. These results have important implications for investment strategies,
as assets lacking safe haven characteristics may not preserve portfolio efficiency in uncertain times.
The study’s insights provide valuable guidance for investors, policymakers, and participants in
energy financial markets. It highlights the need to adapt investment approaches and seek alternative
options to navigate uncertain economic conditions effectively.
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1. Introduction

Throughout the last two centuries, the use of dirty energy sources, namely coal, oil,
and gas, has been instrumental in fostering economic growth and industrial advancement.
Nevertheless, this model has made a considerable contribution to climate change and
various environmental predicaments, prompting mounting apprehensions regarding its
sustainability. The increasing worldwide attention towards mitigating carbon emissions
and the shift towards sustainable energy sources have resulted in substantial funding for
renewable energy technologies such as solar, wind, hydro, and geothermal. The emergence
of clean energy has been identified as a pivotal sector that propels economic growth in
numerous countries. The WilderHill Clean Energy Index was instituted in 2004 with the aim
of overseeing the advancement of the clean energy industry. The present index monitors the
progress of open-source enterprises that are engaged in the creation and manufacturing of
sustainable energy solutions, including but not limited to solar panels, wind turbines, and
biofuels. The index is widely acknowledged as the main benchmark for evaluating the clean
energy industry and has emerged as a crucial instrument for investors seeking to allocate
resources to this fast-growing domain. The scope includes entities of varying magnitudes,
ranging from nascent startups to expansive multinational corporations, and includes a wide
range of clean energy technologies and services. Notwithstanding certain challenges, such
as uncertainties in the political and regulatory spheres and the intermittent nature of certain
renewable energy sources, the clean energy industry is persistently growing, powered by
decreasing expenses and increasing market interest. The WilderHill Clean Energy Index
has exhibited substantial progress over the last ten years, as evidenced by its impressive
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gains. The adoption of sustainable energy sources is of the utmost importance in addressing
the effects of climate change and establishing a viable path toward sustainability [1–3].

Additionally, in recent years, a number of additional indexes pertaining to clean energy
have surfaced. The financial markets for clean energy have provided investors with the
chance to synchronize their financial objectives with climate goals. Amidst the global focus
on mitigating climate risks and transitioning towards a carbon-resistant economy, investors
have shown considerable interest in clean energy investments. This trend is observed as
policymakers worldwide prioritize the reduction of carbon emissions [4,5].

Presently, the clean energy sector is among the fastest-expanding segments of the energy
industry. According to recent statistical data, the clean energy industry demonstrated a
yearly growth rate of 5% during the period of 2009 to 2019, in contrast to the annual growth
rate of 1.7% observed in the non-renewable energy sector. Consequently, a significant
amount of capital is being reallocated from traditional energy sources towards clean energy.
An instance of noteworthy growth can be observed in the clean energy sector’s global
investments, which increased from USD 120.1 billion to USD 363.3 billion during the period
from 2009 to 2019. Despite the COVID-19 pandemic, there was a 2% rise in investments
in clean energy. The surge in demand for environmentally friendly energy sources has
resulted in heightened attention from market players toward clean energy stock investments
(Bloomberg New Energy Finance, 2019).

Although the clean energy sector has experienced remarkable expansion, conven-
tional fossil fuels continue to dominate as the primary source of energy on a global scale.
Furthermore, clean energy sources are frequently regarded as substitutes for polluting
energy sources, thereby implying that the advancement and endurance of the clean energy
industry are inextricably linked to conventional energy markets. Furthermore, the notion
of decarbonization is experiencing increasing momentum on a global scale, particularly
in the wake of the Paris climate accord of 2015 and the 26th Conference of the Parties
(COP26). Efforts have been made by regulatory bodies, corporations, financial institutions,
and investors to substitute dirty energy with clean energy alternatives. According to a
number of experts, it is widely believed that the attainment of the desired progress at
COP26 hinges significantly on the investment in clean energy [6–8].

The extant literature on the markets for dirty and clean energy reveals the existence of
two predominant perspectives. The initial perspective places emphasis on the replacement
of conventional energy sources with cleaner alternatives [9–12]. The prior theory posits
that an increase in oil prices incentivizes energy investors to transition towards renewable
energy sources, thereby resulting in a surge in the adoption of clean energy. The transition
ultimately leads to a rise in the profits of the renewable energy industry, culminating in
a robust showing of clean energy stocks in the capital markets. The second perspective,
known as the dissociation hypothesis, posits that clean energy and conventional energy
function within distinct markets and are not amenable to direct comparison [13–15].

The present study makes a valuable contribution to the existing body of literature in
several respects. Prior research has primarily focused on examining the links between the
crude oil market and clean energy stocks in the context of the relationship between dirty
and clean energy markets [16]. Insufficient consideration has been given to understanding
the links between clean energy initiatives and fossil fuels, including but not limited to
natural gas and diesel. This research expands upon the existing literature by investigating
the transitions between markets for both environmentally harmful and environmentally
friendly energy sources. This study presents a broad sample of fossil fuel markets, including
Brent Crude Spot, WTI, FTSE 350 Oil, Gas & Coal, and Euro Stoxx Oil & Gas, alongside
clean energy indexes such as Nasdaq Clean Edge Green Energy, WilderHill Clean Energy,
S&P Global Clean Energy, iShares Global Clean Energy ETF, and Clean Energy Fuels. The
purpose of this analysis is to investigate whether clean energy indexes may act as a hedge
and safe haven for dirty energy stock indexes. This study represents a pioneering effort
in documenting the influence of the events of 2020 and 2022 on the structural dynamics
and correlations between markets for dirty and clean energy. The authors [17–19] have
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conducted a thorough investigation into the impact of the outbreak on energy prices and
energy stock markets. However, the effects of the 2020 and 2022 events on the correlation
between clean energy reserves and dirty energy have yet to be examined. The study
employs a time–frequency approach to examine the linkages between the markets for
dirty and clean energy. Specifically, the sample will be partitioned into two subperiods.
Between 3 May 2018, and 31 December 2019, the designation “Tranquil” was employed.
Subsequently, from 1 January 2020 to 2 May 2023, the designation “Stress” was utilized,
encompassing the events of both 2020 and 2022.

The present paper is structured in the following manner: Section 2 provides an
overview of the relevant literature pertaining to the subject matter. Section 3 gives a detailed
description of the data and the econometric techniques employed in the investigation.
Section 4 presents a depiction of the empirical results. Section 5 comprises an overview
and a discussion that are closely interconnected. Section 6 of the paper outlines the main
conclusions drawn from the research, while Section 7 discusses the practical implications
of the study.

2. Literature Review

The shift towards a carbon-resilient economy has garnered significant attention from
both academic circles and various stakeholders, including investors and financial institu-
tions, in the past few decades. The process of transition entails a shift from conventional
carbon-intensive energy sources, such as coal and oil, to cleaner and more sustainable
alternatives, such as solar and wind energy. The Paris climate accord, ratified in 2015, has
been a significant catalyst for this transition, as it established the objective of restricting
the increase in global temperatures to below 2 degrees Celsius from pre-industrial levels,
with the aim of capping the rise at 1.5 degrees. Attainment of this objective necessitates
substantial curtailment of greenhouse gas emissions, particularly those emanating from
the energy domain. COP26, held in November 2021, represented a pivotal juncture in the
worldwide endeavor to address the issue of climate change. One of the primary obstacles
to this transition pertains to the imperative of striking a balance between the immediate
economic advantages of conventional energy sources and their enduring environmental
consequences. In recent times, there has been a notable increase in consciousness among
multiple companies and investors regarding the risks associated with investments in coal-
intensive industries. This is primarily due to the anticipated rise in the cost of carbon
emissions in the future, which is expected to render such investments less appealing. Si-
multaneously, the shift towards sustainable energy sources presents notable prospects,
particularly in domains such as sustainable energy, energy efficiency, and eco-friendly
transportation. The mentioned industries are anticipated to experience noteworthy ex-
pansion in the forthcoming years, owing to the escalating requirement for sustainable
energy. In general, the shift towards a carbon-resilient economy is a multifaceted and
demanding undertaking, yet it is increasingly acknowledged to be crucial in tackling the
worldwide predicament of climate change. With the upcoming COP26 and beyond, there is
an increasing impetus to expedite the transition toward sustainable practices, and investors
are poised to assume a pivotal function in propelling this transformation [20,21].

The authors [22], argue that an increase in traditional energy prices and/or the imple-
mentation of a carbon emissions fee would incentivize the allocation of financial resources
towards clean energy companies. The authors underscore the independent impact of oil
prices and technology stock prices on the stock prices of clean energy firms. The author [23]
conducted an analysis to examine the relationships among oil prices, clean energy stock
prices, and technology stock prices. The findings suggest the occurrence of a structural
modification towards the conclusion of 2007, coinciding with a notable escalation in oil
costs. The authors’ findings reveal a positive relation between clean energy prices and oil
prices subsequent to structural breaks, which differs from prior research. There appears to
be parallelism in the market reaction to the stock prices of clean energy and technology.
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Recent research has shown that the performance of clean energy stock markets can be
substantially influenced by political and climate-related occurrences. The study conducted
by [14] revealed that the implementation of clean energy initiatives can be affected by
political uncertainty and climate-related occurrences, such as extreme weather events.
The authors of [24] posit that clean energy initiatives have recently emerged as a novel
investment categorization, with clean energy enterprises garnering substantial interest from
financial industry participants. The proliferation of clean energy funds and investment
products accessible to investors is indicative of this trend. Investing in clean energy stocks
presents an opportunity for investors to allocate their investments towards companies that
are leading the way in the shift towards a low-carbon economy. Investing in clean energy
stocks presents an opportunity for investors to allocate their funds towards companies that
are leading the way in the shift towards a low-carbon economy. The mentioned enterprises
are engaged in the advancement and manufacture of clean energy developments, including
photovoltaic cells and wind power generators, and are favorably situated to reap the
rewards of the escalating call for eco-friendly energy sources.

The global objective of transitioning to clean energy sources has become increasingly
significant in light of mounting apprehensions regarding climate change and the imperative
to curtail carbon emissions. The clean energy sector has garnered considerable interest
from scholars, investors, and policymakers in the past few years. The majority of academic
investigations in this domain have prioritized examining the relationship between crude
oil prices and clean energy stocks while overlooking the potential shocks that may arise
between the market for clean energy and other markets for non-renewable energy stocks.
Exploring the relationship between indexes of clean and dirty energy is of paramount
importance in knowing the intricacies of the energy market. This analysis can offer valuable
insights into investment prospects and risks within this domain. The term “dirty energy
stock indexes” pertains to corporations that engage in the production or extraction of
energy from non-renewable resources, such as coal, oil, and gas. Conversely, “clean energy
stocks” refer to companies that generate renewable energy through means such as wind,
solar, and hydropower. The current literature lacks a theoretical framework regarding the
relationship between clean energy indexes and dirty energy. Addressing this void can yield
significant insights into the prospects for integration and diversification between these
markets. The goal of this research topic is to make an academic contribution by analyzing
short-term co-movements between indexes for both clean and dirty energy.

Studies Related to the Links between Clean and Dirty Energies

In recent years, there has been a growing interest in understanding the relationship be-
tween dirty and clean energy, especially in the context of occurrences such as the COVID-19
pandemic in 2020 and the volatility of energy markets in 2022. The identification of renew-
able energy sources as a critical element in tackling energy and climate change concerns has
been established. The advancement of renewable energy sources is frequently constrained
by the traditional prices associated with fossil fuels. Therefore, it is essential to explore
the interconnections between these two energy sources in order to foster the expansion of
renewable energy and accomplish sustainable energy objectives.

The authors [9] conducted an empirical investigation into the relationship between the
prices of alternative energy stocks, technology equities, oil, and interest rates. The study
conducted by the authors demonstrates the impact of technology stock prices and oil
prices on the price of alternative energy companies’ stocks, as evidenced by the Granger
causality test. In [12], the authors investigated the interactive relationships between crude
oil prices and the performance of alternative energy companies, revealing that from late
2006 onwards, the performance of alternative energy companies has been considerably
influenced by fluctuations in oil prices.

The authors [10,11], as well as [25], conducted research on the synchronization trends
between oil prices, technology, financial variables, and clean energy indexes. According
to [10], the stock prices of alternative energy companies are subject to the influence of
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technology companies’ stock prices, oil prices, and short-term interest rates. As noted
by [11], there is evidence to suggest that crude oil prices are not the main driver of the
stock market performance of renewable energy companies, both in the short and long term.
This finding implies that there is a disconnection between the alternative energy sector and
the conventional energy market. The authors in [25] assert that the carbon market has the
power to explain the movements in the stock prices of clean energy companies, while the
stock prices of clean power companies also exert an impact on the carbon market.

As stated by [26], there exists a weak connection between oil markets and renewable
energy markets, suggesting that shocks in oil prices have a limited impact on the devel-
opment of the renewable energy industry. On the other hand, the author [8] investigated
the shocks between clean energy indexes and cryptocurrencies, taking into account their
respective energy consumption levels. The authors discovered that clean energy is a more
reliable safe haven for “dirty” cryptocurrencies than for “clean” ones, particularly during
periods of uncertainty.

In a more recent study, [19] investigated the impact of fossil energy market shocks
on clean energy stock markets during the COVID-19 pandemic. The authors discovered
that the crash in crude oil prices led to significant shocks in the clean energy market.
Meanwhile, the declaration of COVID-19 as a global pandemic caused an increase in the
prices of natural gas and renewable energy sources following a substantial crash. In [14],
the authors conducted an analysis of the spillovers of volatility among the renewable
energy, oil, and technology stock markets spanning from 2004 to 2020. The study revealed
that the oil and clean energy markets exhibit a bidirectional spillover effect, with the oil
market acting as the main receiver of volatility.

The authors of [27], conducted a study on the impact of shocks between renewable
energy prices and clean energy on the stock prices of the green economy. The study
analyzed data from December 2010 to July 2021 and revealed that negative shocks were
more prevalent than positive shocks in the renewable and clean power generation markets.
The study revealed that the prices associated with the generation of renewable energy have a
significant influence, either positively or negatively, on the stock prices of markets operating
within the green economy. The author [6] conducted a study on the co-movements between
clean energy and dirty energy stocks, both before and during the COVID-19 pandemic.
The study used an extensive range of dirty energy stocks, including crude oil, heating oil,
diesel, gasoline, and natural gas, while clean energy stocks were represented by the S&P
Global Clean Energy Index and WilderHill Clean Energy Index. The findings suggest that
there are feeble shocks between the stocks of clean energy and dirty energy indexes in both
the short and long term. Significantly, there exists a notable dissociation trend between the
markets for clean and dirty energy. Furthermore, the results demonstrate that the clean
energy market remained largely insulated from the effects of the COVID-19 pandemic in
2020, highlighting the advantages of diversifying portfolios across both clean and dirty
energy markets.

Several macroeconomic studies, including the work by [28], have examined the efforts
of EU member states, specifically Poland and Lithuania, to shift towards renewable energy
sources. One of the principal findings is that individuals in the nations examined have ex-
hibited an increasing commitment to the energy transition by means of their energy-related
decisions. This fact acts as a sign of heightened awareness and responsibility with regard
to the use of sustainable energy sources. Moreover, the governmental efforts and initiatives
implemented in the studied countries have demonstrated efficacy and suitableness in
achieving the determined objectives for sustainable development. Furthermore, the results
derived by the authors underscore the significance of promoting the shift toward environ-
mentally friendly sources of energy, not solely from an ecological perspective but also from
an economic standpoint. Within the European Union, the prioritization of transitioning
towards a more environmentally sustainable reality is of utmost importance, given the
ambitious objectives aimed at mitigating greenhouse gas emissions. The study highlights
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the promising advancements in Poland and Lithuania, which serve as a positive indication
that the energy transition can be accomplished and viable in diverse national settings.

The significance of examining the interconnections between clean and dirty energy
indexes has been underscored by recent occurrences in 2020 and 2022. Recent research
indicates that there is a weak linkage between these two types of energy in the short
term. However, there is a possibility of significant co-movements in the long term. The
interconnections between fossil energy markets and clean energy stock markets call for
an in-depth understanding of the potential impact that shocks in the former may have on
the latter. Lastly, understanding the relationship between clean and dirty energy actions is
crucial to improving the progress of renewable energy and attaining sustainable energy
objectives, particularly in light of worldwide predicaments such as climate change and
pandemics.

3. Materials and Methods
3.1. Materials

The daily price index constitutes the data used for the study. The study includes a
total of 9 energy indexes consisting of 4 indexes related to dirty energy, namely Brent Crude
Spot, WTI, FTSE 350 Oil, Gas & Coal, Euro Stoxx Oil & Gas, and 5 indexes related to clean
energy, namely Nasdaq Clean Edge Green Energy, WilderHill Clean Energy, S&P Global
Clean Energy, iShares Global Clean Energy ETF, and Clean Energy Fuels (see Table 1).

Table 1. A summary of the indexes used in this study.

Clean Energy Indexes Description

Clean Energy Fuels
The index indicates the stock prices pertaining to companies that operate in the
clean energy markets, with a particular emphasis on alternative fuel sources and
sustainable energy solutions.

iShares Global Clean Energy ETF The index is an exchange-traded fund that is designed to track the financial
performance of global clean energy companies.

Nasdaq Clean Edge Green Energy The index focuses on the stock prices of corporations operating in the green energy
industry that are officially registered on the Nasdaq stock exchange.

S&P Global Clean Energy The index refers to the performance of global clean energy corporations and
constitutes an element of the S&P Dow Jones Indexes.

WilderHill Clean Energy The purpose of this index is to accurately represent the performance of United
States clean energy companies.

Dirty Energy Indexes Description

Brent Crude Spot The index represents the spot price of Brent Crude, a crucial benchmark for
worldwide oil prices.

Euro Stoxx Oil & Gas The index monitors the operational efficiency and financial performance of oil and
gas corporations operating within the Eurozone.

FTSE 350 Oil, Gas & Coal The index includes companies based in the UK and serves as a metric for
evaluating the performance of the oil, gas, and coal industries.

WTI The West Texas Intermediate (WTI) crude oil price index is a significant benchmark
used for the determination of oil prices.

Source: Own elaboration.

The temporal scope of this study covers a period spanning from 3 May 2018 to 2 May
2023. To enhance the robustness of the findings, the sample was partitioned into two
distinct subperiods: a tranquil period characterized by apparent stability in the international
financial markets and a stress period marked by events of high complexity for the global
economy, including the COVID-19 pandemic, the oil price war between OPEP members
(Russia and Saudi Arabia), and the armed conflict between Russia and Ukraine in 2022. The
data were obtained via the Thomson Reuters Eikon platform and is expressed in US dollars.
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The decision was made to use a series of returns instead of a price series based on an
examination of the behavior of the clean and dirty energy markets. According to [29,30],
investors tend to prioritize information regarding the profitability of a specific asset or asset
portfolio. Furthermore, the series of returns exhibit statistical characteristics that aid in
their analysis and comprehension, with emphasis on stationarity, denoting that the mean
and variance remain relatively constant over time. The aforementioned characteristic holds
significance in the context of implementing econometric models, as it enables investors
to acquire more valuable insights pertaining to the conduct of assets that are frequently
absent in price series.

rt = ln Pt − ln Pt−1 (1)

where rt is the return on day t, and Pt and Pt−1 are the closing prices of the series at periods
t and t− 1, respectively.

3.2. Methods

The present study was conducted at different stages. Initially, the sample was charac-
terized through the use of the main measures of descriptive statistics and the [31] adherence
test, which assumes the null hypothesis of data normality. In order to verify the stationarity
assumption of the data, specifically whether the series follows a white noise process charac-
terized by a mean of 0 and constant variance, we will employ panel unit root tests from [32],
with Fisher chi-square transformation, and the [33] test, which posit identical hypothe-
ses (H0 = unitroot). To validate the results, we will use the [34] test, which proposes an
opposing null hypothesis (H0 = stationarity). The concurrent application of the tests will
facilitate a more rigorous evaluation of the time series’ stationarity. The augmented Dickey–
Fuller (ADF) test is a commonly employed tool in the evaluation of financial time series. It
encompasses multiple variants, including the ADF Fisher chi-square and ADF Choi Z-stat
tests. The ADF Fisher chi-square test is a version that employs a test statistic derived from
the difference between the estimated and hypothetical coefficient values in the regression
model. The ADF Choi Z-stat version uses a distinct methodology whereby the statistical
values are obtained from the maximum likelihood estimation of the autoregressive model.
Both iterations are used to evaluate the existence or non-existence of a unit root within the
time series. Furthermore, the [34] test relies on the estimation of the regression coefficient
between differences in series and a set of instrumental variables, which are employed to
detect the presence of a deterministic trend in time series. In addition, residue stability tests
have been employed to validate the presence of disturbances in variance for both the clean
and dirty energy stock indexes. This test enables the identification of significant changes in
variance over the sample period while considering the occurrences in 2020 and 2022.

The research question will be addressed through the use of the Granger VAR (vector
autoregressive) causality econometric model. This model is founded on the examination of
the causal relationship among variables within a time series framework that encompasses
multiple variables. The Granger causality principle, as applied in a vector autoregressive
(VAR) framework, posits that the predictive accuracy of a particular variable can be en-
hanced by incorporating its past values, provided that the variable is deemed to be the
causal factor, or “Granger cause”, of another variable. The Granger causality test enables
the evaluation of the magnitude and direction of causal relationships among the variables.
Typically, the following steps are pursued when implementing the application: Initially,
it is necessary to ascertain the suitable lag sequence for the vector autoregression (VAR)
model, which will denote the number of past periods used for predicting the current value
of the variables. The criteria for selecting the lag order in a vector autoregression model are
commonly referred to as “VAR Lag Order Selection Criteria” in academic literature. Subse-
quently, the parameters of the vector autoregressive (VAR) model ought to be estimated
through the use of the minimum ordinary squares (OLS) and/or maximum likelihood
estimation (MLE) techniques. The VAR residual serial correlation LM test is employed
to determine whether the residues exhibit temporal autocorrelation. To acquire a more
comprehensive understanding, it is recommended to study the works of [35,36].
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4. Results
4.1. Descriptive Statistics

Figure 1 displays the evolution, in daily returns, of two distinct energy stock indexes,
namely, the dirty and clean energy indexes. The indexes included in the analysis are Brent
Crude Spot, Clean Energy Fuels, Euro Stoxx Oil & Gas, FTSE 350 Oil, Gas & Coal, iShares
Global Clean Energy ETF, Nasdaq Clean Edge Green Energy, S&P Global Clean Energy,
Saudi Arabian Oil, WilderHill Clean Energy, and WTI. The period considered for the
analysis covers 3 May 2018, to 2 May 2023. Based on graphical analysis, it can be inferred
that the mean return exhibits a certain degree of stability, as indicated by its proximity to
zero. However, the data exhibits notable fluctuations, indicating the volatility to which
these markets have been exposed, particularly during the initial months of 2020, a period
that coincided with the repercussions of the COVID-19 pandemic on the global economy.
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Figure 1. Evolution, returns, of the financial markets under study during the period from 3 May 2018
to 2 May 2023.

Table 2 displays a summary of the main descriptive statistical measures, in daily
returns, for the time series of the dirty and clean indexes, namely, Brent Crude Spot, Clean
Energy Fuels, Euro Stoxx Oil & Gas, FTSE 350 Oil, Gas & Coal, iShares Global Clean
Energy ETF, Nasdaq Clean Edge Green Energy, S&P Global Clean Energy, WilderHill
Clean Energy, and WTI. The period used for the analysis extends from 3 May 2018 to
2 May 2023. Upon examination of the statistical summary table, it is evident that the
mean returns exhibit a positive trend. Additionally, it is noteworthy that the Clean Energy
Fuels stock index displays the highest standard deviation (0.040084). In order to ascertain
the presence of Gaussian distributions, it is essential to observe that skewness reveals
values different from the reference value of 0. Upon analysis, it is observed that Brent
exhibits the most prominent value (−11.31994). In addition, it was observed that all stock
indexes exhibit values exceeding 3, with particular emphasis on the Brent stock index
(418.9986). The findings are further corroborated by the [31] test, which also leads to
rejection of the null hypothesis at a significance level of 1%. These results were anticipated
as a consequence of the existence of “fat tails”, which denote extreme values, that emerged
from the events of 2020 and 2022.
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Table 2. Descriptive statistics of the financial markets under study during the period from 3 May
2018 to 2 May 2023.

Mean Std. Dev. Skewness Kurtosis Jarque-Bera Probability Obs.

Brent 0.000431 0.038992 −11.31994 418.9986 13,205,589 0.000000 1826
Clean Energy 0.000482 0.040084 1.459962 24.10483 34,537.25 0.000000 1826

Euro Stoxx Oil Gas 0.000104 0.012673 −0.602354 37.57033 91,038.18 0.000000 1826
FTSE 350 0.000165 0.016858 −0.616905 34.92591 77,664.82 0.000000 1826

iShares Global Clean 0.000369 0.014837 −0.088204 11.75285 5831.294 0.000000 1826
Nasdaq Clean 0.000571 0.018702 −0.138421 9.279764 3006.210 0.000000 1826

S&P Global Clean 0.000412 0.012749 0.055932 15.16997 11,269.51 0.000000 1826
WilderHill Clean 0.000125 0.019707 −0.094281 10.20693 3954.463 0.000000 1826

WTI 2.17 × 10−5 0.036812 0.412903 15.11180 11,212.98 0.000000 1826

Source: Own elaboration.

The Q-Q plots chart for the clean and dirty energy stock indexes, namely, Brent Crude
Spot, Clean Energy Fuels, Euro Stoxx Oil & Gas, FTSE 350 Oil, Gas & Coal, iShares Global
Clean Energy ETF, Nasdaq Clean Edge Green Energy, S&P Global Clear Energy, WilderHill
Clean Energy, and WTI, is depicted in Figure 2. The period considered for the analysis
spans from 3 May 2018 to 2 May 2023. The findings from the Q-Q plots show that the
examined stock indexes’ return distribution is both leptokurtic and asymmetric. This is due
to the observed data distribution failing to align accurately with the 45 degree straight line,
which represents a normal distribution. In light of the unavailability of precise information
regarding the distribution of the time series being examined, it is possible to deduce an
approximately normal distribution using the central limit theorem (CLT), given that the
data sets were comprised of a sufficiently large number of observations.
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Figure 2. Q-Q plots, in returns, of the financial markets under study during the period from 3 May
2018 to 2 May 2023.

4.2. Diagnostic
4.2.1. Time Series Stationarity

The study aimed to verify the stationarity assumption of different stock indexes, namely
Brent Crude Spot, Clean Energy Fuels, Euro Stoxx Oil & Gas, FTSE 350 Oil, Gas & Coal,
iShares Global Clean Energy ETF, Nasdaq Clean Edge Green Energy, S&P Global Clear
Energy, WilderHill Clean Energy, and WTI. To achieve this, the panel unit root test of [32],
Fisher chi-square, and Choi Z-stat, as well as the [34] test, were employed. The intersection
of the tests with different hypotheses is robust enough to pinpoint the level of dephasing of
each time series until we reach the balance (average 0 and variance 1). The findings indicate
that the time series exhibits unit roots upon the estimation of the original price series. To
attain stationarity, a logarithmic transformation was conducted on the first differences. This
transformation facilitated the rejection of the null hypothesis in the [32] test, as evidenced by
the Fisher chi-square and Choi Z-stat. Based on the results of the test [34], it was observed
that the null hypothesis was not rejected, thereby confirming the fundamental assumptions
required for the estimation of VAR models (see Tables 3 and 4).

Table 3. ADF panel unit root test, in returns, concerning the financial markets under analysis, from
3 May 2018 to 2 May 2023.

Null Hypothesis: Unit Root (Individual Unit Root Process)
Method Statistic Prob. **

ADF-Fisher Chi-Square 1451.63 0.0000
ADF-Choi Z-Stat −37.0456 0.0000

Series Prob. Lag Max Lag Obs.

Brent Crude Spot 0.0000 19 24 1805
Clean Energy Fuels 0.0000 20 24 1804
Euro Stoxx Oil Gas 0.0000 19 24 1805

FTSE 350 Oil Gas & Coal 0.0000 19 24 1805
iShares Global Clean Energy ETF 0.0000 19 24 1805
Nasdaq Clean Edge Green Energy 0.0000 19 24 1805

S&P Global Clean Energy 0.0000 20 24 1804
WilderHill Clean Energy 0.0000 19 24 1805

WTI 0.0000 19 24 1805

Source: Own elaboration. Note ** Probabilities for Fisher tests are computed using an asymptotic chi-square
distribution. All other tests assume asymptotic normality.
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Table 4. Hadri panel unit root test, in returns, concerning the financial markets under analysis, from
3 May 2018 to 2 May 2023.

Null Hypothesis: Stationarity

Method Statistic Prob. *

Hadri Z-Stat −2.98073 0.9986
Heteroscedastic Consistent Z-Stat −3.08617 0.9990

Series LM
Variance

Bandwidth Obs.HAC

Brent Crude Spot 0.0185 64.79990 50.0 1825
Clean Energy Fuels 0.0249 0.242582 49.0 1825
Euro Stoxx Oil Gas 0.0202 1038.727 50.0 1825

FTSE 350 Oil Gas & Coal 0.0263 624,396.0 50.0 1825
iShares Global Clean Energy ETF 0.0127 3.529977 50.0 1825
Nasdaq Clean Edge Green Energy 0.0123 5444.951 50.0 1825

S&P Global Clean Energy 0.0250 27,308.31 51.0 1825
WilderHill Clean Energy 0.0247 219.5319 50.0 1825

WTI 0.0225 0.289815 50.0 1825

Source: Own elaboration. Note: * High autocorrelation leads to severe size distortion in Hadri test, leading to
over-rejection of the null.

4.2.2. Residue Stability Test

Figure 3 shows the residue stability charts for different stock indexes, including Brent
Crude Spot, Clean Energy Fuels, Euro Stoxx Oil & Gas, FTSE 350 Oil, Gas & Coal, iShares
Global Clean Energy ETF, Nasdaq Clean Edge Green Energy, S&P Global Clean Energy,
WilderHill Clean Energy, and WTI. By means of a graphical analysis of the stability charts, it
is possible to evaluate the existence of disruptions in the variance of residues. Furthermore,
the presence of unstable behavior in the time series is confirmed by breaches of the 95%
probability limits. The results suggest that the analyzed stock indexes exhibit fluctuating
and uncertain trends, underscoring the significance of factoring in these variables when
making investment decisions.
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Figure 3. Stability tests for residues of the financial markets under study during the period from
3 May 2018 to 2 May 2023.

4.3. Methodological Results
VAR Granger Causality/Block Exogeneity Wald Test

The objective of this study is to examine the causal relationship structures among dif-
ferent stock indexes pertaining to dirty and clean energy. The indexes under consideration
include Brent Crude Spot, Clean Energy Fuels, Euro Stoxx Oil & Gas, FTSE 350 Oil, Gas
& Coal, iShares Global Clean Energy ETF, Nasdaq Clean Edge Green Energy, S&P Global
Clean Energy, WilderHill Clean Energy, and WTI. The research period spanned from 3 May
2018 to 2 May 2023. The Granger causality test was employed to evaluate the predictive
capacity of certain markets for the future prices of their peers. The present assessment
endeavors to estimate an autoregressive vector and facilitate the identification of causal
relationships among indexes.

To assess the effects of specific events on market relationships, the sample was parti-
tioned into two distinct subperiods: tranquil (3 May 2018, to 31 December 2019) and stress
(1 January 2020, to 2 May 2023), with the latter encompassing the COVID-19 pandemic
crisis of 2020 and the armed conflict between Russia and Ukraine in 2022.

In order to mitigate the presence of autocorrelation in serial residues, we use a number
of information criteria, as shown by the results of Table 5. During the tranquil period, we
employed the information criteria LR (likelihood ratio) to assess the sequentially modified
LR test statistics. Our findings, at a 5% level of significance, revealed that there was a
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requirement for an 8-day lag in the estimation of VAR (vector autoregressive). The VAR
residual serial correlation test was used to validate and ensure robustness, as well as to
verify the absence of autocorrelation. The findings presented in Table 6 demonstrate that
the detection of autocorrelation was not significant when using nine lags. The findings
confirm the validity of the Lag VAR’s order selection criteria, which identified eight as
the optimal number of lags for conducting the analysis. The reliability and validity of the
subsequent analysis can be ensured by eliminating autocorrelation and ascertaining the
suitable lag order for the VAR model.

Table 5. VAR lag order selection criteria for the tranquil subperiod.

Lag LogL LR FPE AIC SC HQ

0 19,778.94 NA 9.14 × 10−42 −66.11685 −66.04338 * −66.08825
1 20,058.71 549.2449 5.01 × 10−42 * −66.71808 * −65.90990 −66.40343 *
2 20,111.22 101.3386 5.88 × 10−42 −66.55927 −65.01637 −65.95856
3 20,137.01 48.91383 7.54 × 10−42 −66.31109 −64.03347 −65.42432
4 20,171.64 64.49973 9.39 × 10−42 −66.09244 −63.08011 −64.91962
5 20,236.84 119.2761 1.06 × 10−41 −65.97604 −62.22900 −64.51718
6 20,309.57 130.6295 1.16 × 10−41 −65.88485 −61.40310 −64.13993
7 20,408.50 174.3655 1.17 × 10−41 −65.88127 −60.66480 −63.85030
8 20,493.48 146.9367 * 1.24 × 10−41 −65.83103 −59.87985 −63.51401
9 20,550.26 96.28122 1.44 × 10−41 −65.68649 −59.00059 −63.08341

10 20,577.84 45.83760 1.85 × 10−41 −65.44427 −58.02365 −62.55514

Source: Own elaboration. Note: * indicates lag order selected by the criterion: LR: sequential modified LR
test statistic (each test at 5% level), FPE: final prediction error, AIC: Akaike information criterion, SC: Schwarz
information criterion, HQ: Hannan–Quinn information criterion.

Table 6. VAR residual serial correlation LM tests for the tranquil subperiod.

Lag LRE* Stat df Prob. Rao F-Stat df Prob.

1 94.09899 100 0.6474 0.940426 (100, 3591.7) 0.6476
2 64.30582 100 0.9979 0.640039 (100, 3591.7) 0.9979
3 49.91748 100 1.0000 0.495848 (100, 3591.7) 1.0000
4 51.68848 100 1.0000 0.513565 (100, 3591.7) 1.0000
5 100.7474 100 0.4602 1.007794 (100, 3591.7) 0.4604
6 67.81874 100 0.9943 0.675330 (100, 3591.7) 0.9943
7 127.2454 100 0.0343 1.277524 (100, 3591.7) 0.0343
8 113.6012 100 0.1665 1.138391 (100, 3591.7) 0.1667
9 89.87137 100 0.7563 0.897652 (100, 3591.7) 0.7564

Source: Own elaboration.

Table 7 shows the outcomes of the VAR Granger Causality/Block Exogeneity Wald
test for the tranquil period, which includes the Brent Crude Spot, WTI, FTSE 350 Oil, Gas
& Coal, Euro Stoxx Oil & Gas indexes. The clean energy indexes are represented by Clean
Energy, Nasdaq Clean Edge Green Energy, WilderHill Clean Energy, and S&P Global Clean
Energy. The findings indicate the presence of 30 movements, out of a total of 72, that
exert an influence on their peers. Notably, the WilderHill Clean Energy stock index has an
influence on the price formation of seven stock indexes out of a possible eight, while the
Brent causes five shocks. The Euro Stoxx Index and S&P Global Clean influence four shocks
among their peers. Additionally, the stock indexes WTI (3), Clean Energy Fuels (2), iShares
Global (2), Nasdaq Clean (2), and FTSE 350 (1). Furthermore, an analysis was conducted
to determine the indexes that are mostly caused in the Grangerian sense, specifically those
that experience the greatest effects. The results indicate that the Euro Stoxx Oil & Gas and
FTSE 350 Oil, Gas & Coal indexes are the most influenced (seven out of eight possible). This
holds true regardless of whether the indexes relate to clean or dirty energy. The iShares
Global (5), Nasdaq Clean (3), S&P Global (3), WilderHill (2), WTI (2), and Clean Energy
(1) exhibit different levels of influence in smaller dimensions, while the Brent (dirty energy
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index) is not influenced by any of the stock indexes under consideration. The findings
indicate that the performance of clean energy indexes is not entirely isolated from general
market conditions, even in a time of stability in global financial markets. The aforementioned
statement suggests that portfolio managers who solely depend on clean energy stocks for
diversification may need to reconsider their strategy. Specifically, they should reassess their
risk profiles since clean stock indexes do not consistently exhibit the attributes of a safe haven
or hedge. Consequently, this indicates that their risk exposure may be more substantial than
previously perceived. To summarize, the results suggest that portfolio managers operating
in the clean energy markets ought to implement a more exhaustive and distinct method
when constructing portfolios, evaluating risks, and devising hedging strategies. In order
to optimize performance and manage risks effectively, it is essential for individuals to
take into account diversification, critically evaluate risk profiles, comprehend industry
interdependence, explore hedge opportunities, and adapt to changing market conditions.

Table 7. Granger causality/Block Exogeneity Wald Tests, of the financial markets under analysis, in
the tranquil subperiod.

Brent
Crude
Spot

Clean
Energy
Fuels

Euro
Stoxx
Oil &
Gas

FTSE
350 Oil,
Gas &
Coal

iShares
Global
Clean

Energy ETF

Nasdaq
Clean Edge

Green
Energy

S&P
Global
Clean

Energy

WilderHill
Clean

Energy
WTI

Brent Crude Spot 1.39064 0.87183 0.86521 0.96945 0.83874 0.82249 0.97842 1.58858

Clean Energy Fuels 1.60007 0.72183 0.70908 0.61744 0.70552 1.37836 2.91225
*** 0.73159

Euro Stoxx Oil
& Gas

14.1548
***

2.25743
** 1.10889 3.86084

***
4.51593

***
6.52167

***
7.58047

***
4.53169

***

FTSE 350 Oil,
Gas & Coal

13.3539
***

2.51606
** 1.51785 3.24214

***
3.57241

***
3.50362

***
4.40622

***
4.39322

***

iShares Global
Clean Energy ETF 1.25952 1.46159 2.06409

**
2.11719

** 0.22516 20.2295
***

15.0090
***

1.68806
*

Nasdaq Clean Edge
Green Energy 0.83257 0.52036 2.35237

** 1.64448 0.95913 9.17023
***

26.3694
*** 1.22674

S&P Global
Clean Energy

1.88706
* 0.67424 1.94370

* 0.84198 0.09090 0.39098 2.18513
** 0.98459

WilderHill
Clean Energy

2.39103
** 0.35838 2.48903

** 1.00458 0.50769 1.12847 0.85974 0.92135

WTI 3.65746
*** 1.32239 1.63314 0.64393 0.41154 0.51433 1.48187 4.45433

***

Source: Own elaboration. Notes: ***, **, * the statistical significance levels observed were 1%, 5%, and 10%,
respectively.

The analysis of the information criteria during the stress period is presented in Table 8.
The study used the LR (likelihood ratio) information criterion to determine the appropriate
lag for estimating the VAR model. The results indicated that, at a significant level of 5%, the
sequential modified LR test statistics recommended a 9-day lag. To ensure the reliability and
validity of the analysis, the residual serial correlation test VAR was performed to confirm
and ensure the absence of autocorrelation. The results of the test are presented in Table 9,
which reveals that the absence of significant autocorrelation was observed with 10 lags. This
finding is considered a fundamental requirement for a reliable estimation of VA.

Table 10 presents the results of the VAR Granger Causality/Block Exogeneity Wald
test for the stress period, which covers the events of 2020 and 2022. The findings indicate
that 59 out of 72 potential movements have an influence on the indexes of clean and dirty
energy stocks. This suggests that during the recent period of financial turbulence in global
markets, the co-movements between these stock indexes have intensified considerably. As
a result, the assumptions of coverage and safe haven have been called into question.
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Table 8. VAR lag order selection criteria for the stress subperiod.

Lag LogL LR FPE AIC SC HQ

0 31,980.79 NA 4.87 × 10−36 −52.93176 −52.88957 −52.91588
1 32,666.56 1359.053 1.85 × 10−36 −53.90158 −53.43748 * −53.72682 *
2 32,797.17 256.6834 1.75 × 10−36 * −53.95227 * −53.06625 −53.61862
3 32,860.71 123.8111 1.86 × 10−36 −53.89190 −52.58396 −53.39937
4 32,918.94 112.5170 2.00 × 10−36 −53.82275 −52.09290 −53.17134
5 32,994.09 143.9591 2.08 × 10−36 −53.78161 −51.62985 −52.97132
6 33,089.42 181.0249 2.10 × 10−36 −53.77387 −51.20020 −52.80471
7 33,223.98 253.2958 1.98 × 10−36 −53.83109 −50.83550 −52.70304
8 33,314.69 169.2644 2.01 × 10−36 −53.81571 −50.39821 −52.52879
9 33,387.51 134.6642 * 2.11 × 10−36 −53.77071 −49.93129 −52.32490

10 33,435.51 87.98158 2.30 × 10−36 −53.68462 −49.42329 −52.07994

Source: Own elaboration. Note * indicates lag order selected by the criterion: LR: sequential modified LR test
statistic (each test at 5% level); FPE: final prediction error; AIC: Akaike information criterion; SC: Schwarz
information criterion; HQ: Hannan–Quinn information criterion.

Table 9. VAR residual serial correlation LM tests for the stress subperiod.

Lag LRE* Stat df Prob. Rao F-Stat df Prob.

1 78.94107 100 0.9407 0.788451 (100, 7880.4) 0.9407
2 86.62977 100 0.8273 0.865665 (100, 7880.4) 0.8273
3 88.93548 100 0.7781 0.888834 (100, 7880.4) 0.7781
4 85.29619 100 0.8526 0.852267 (100, 7880.4) 0.8526
5 162.0517 100 0.0001 1.627072 (100, 7880.4) 0.0001
6 180.4160 100 0.0000 1.813564 (100, 7880.4) 0.0000
7 154.9874 100 0.0004 1.555448 (100, 7880.4) 0.0004
8 176.6897 100 0.0000 1.775688 (100, 7880.4) 0.0000
9 140.7629 100 0.0045 1.411422 (100, 7880.4) 0.0045

10 94.88605 100 0.6257 0.948662 (100, 7880.4) 0.6258
Source: Own elaboration.

Table 10. Granger Causality/Block Exogeneity Wald Tests, of the financial markets under analysis, in
the stress subperiod.

Brent
Crude
Spot

Clean
Energy
Fuels

Euro
Stoxx
Oil &
Gas

FTSE
350 Oil,
Gas &
Coal

iShares
Global
Clean

Energy ETF

Nasdaq
Clean Edge

Green
Energy

S&P
Global
Clean

Energy

WilderHill
Clean

Energy
WTI

Brent Crude Spot 1.20908 4.49021
***

3.81802
*** 0.33076 1.35892 1.67729

*
1.65719

*
2.83028

***

Clean Energy Fuels 0.90543 2.85100
***

2.80939
***

2.24056
**

1.88466
*

15.2611
***

25.0161
*** 1.22985

Euro Stoxx
Oil & Gas

12.9899
***

4.80739
*** 1.36396 6.53173

***
5.21309

***
12.7973

***
9.40650

***
11.2146

***

FTSE 350 Oil,
Gas & Coal

15.1841
***

4.92783
***

3.72192
***

5.36956
***

4.29655
***

9.11746
***

6.10365
***

17.0124
***

iShares Global
Clean Energy ETF

2.23915
**

1.89602
**

2.89943
***

3.40501
*** 1.74145 * 54.1585

***
45.2291

*** 1.28080

Nasdaq Clean Edge
Green Energy

2.55345
*** 1.58845 8.01029

***
1.84119

* 1.63478 47.3940
***

66.0114
*** 1.60241

S&P Global
Clean Energy

3.32992
*** 1.47178 2.11570

**
5.65429

***
2.45833

***
1.76011

*
1.85775

*
3.13360

***

Wilderhill
Clean Energy

3.05354
*** 1.57140 6.34781

***
4.70017

***
1.64098

* 1.14656 2.06878
**

2.59538
***

WTI 4.04397
***

1.86902
*

2.52073
***

1.97931
**

2.95658
*** 2.28115 ** 5.10181

***
6.75158

***

Source: Own elaboration. Notes: ***, **, * the statistical significance levels observed were 1%, 5%, and 10%,
respectively.
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The stock indexes that exert the greatest influence on the price formation of other
indexes can be characterized as follows: The Euro Stoxx, S&P Global, and WilderHill
indexes have achieved eight out of eight possible shocks. The Brent and FTSE 350 indexes
have caused seven, while the iShares Global and Nasdaq Clean indexes have caused six
shocks in their peers. The WTI index has caused five, while the Clean Energy index has
caused four movements. It is worth noting that the indexes for clean and dirty energy
stocks are not independent. To corroborate these results, we conducted an analysis of the
stock indexes that these entities assimilate, thereby identifying the most dominant among
their peers. The identified indexes are as follows: WTI (eight), FTSE 350 (eight), Euro Stoxx
(seven), iShares Global (seven), S&P Global (seven), WilderHill (six), Clean Energy (six),
Nasdaq Clean (five), and Brent (five).

The findings suggest that there exists a significant correlation between the performance
of clean energy stock indexes and that of dirty energy stock indexes, with each exerting an
influence on the other. In brief, the results underscore the interconnected nature of clean
energy stock indexes, their dependence on dirty energy indexes, and the assimilation of the
impact of the scrutinized stock indexes. It is recommended that investors with portfolios
operating within the clean energy markets engage in vigilant monitoring of prominent
indexes, conduct thorough evaluations of price dynamics, adopt a comprehensive approach
to risk management, and make suitable changes to their investment strategies. Through a
comprehensive analysis of the wider market environment and the interdependence between
different variables, portfolio managers can enhance the effectiveness and long-term viability
of their clean energy portfolios by making well-informed decisions.

5. Discussion

The objective of this investigation was to examine the potential of clean energy indexes
as coverage assets and safe havens in comparison to their dirty energy peers, particularly in
times of economic uncertainty, specifically during the events of 2020 and 2022. The present
study involved an analysis of different clean energy stock indexes, including Nasdaq Clean
Edge Green Energy, WilderHill Clean Energy, S&P Global Clean Energy, the iShares Global
Clean Energy ETF, and Clean Energy Fuels. In addition, the study also examined dirty
energy stocks, such as Brent Crude Spot, WTI, FTSE 350 Oil, Gas & Coal, and Euro Stoxx
Oil & Gas. In order to enhance the robustness of our analysis, we partitioned the sample
into two distinct subperiods. The first subperiod, which we refer to as “Tranquil”, spans
from 3 May 2018 to 31 December 2019. The second subperiod, which we refer to as the
“Stress” period, covers the period from January 2020 to May 2023.

Upon comparing the two subperiods, it becomes evident that the frequency of influ-
ence movements between the aforementioned indexes has risen from 30 to 59 movements
out of a total of 72 possible (see Table 11). This indicates a substantial increase in the
interdependence between the said indexes. Dirty energy stock indexes such as Brent Crude
Spot (five to seven), Euro Stoxx Oil & Gas (four to eight), FTSE 350 Oil, Gas & Coal (one to
seven), and WTI (three to five) began to influence the remaining indexes more significantly
during the stress period. Furthermore, the clean energy indexes exhibit analogous features
when comparing the two distinct subperiods. Specifically, the WilderHill Clean Energy
indexes (seven to eight), iShares Global Clean Energy ETF (two to six), Nasdaq Clean Edge
Green Energy (two to six), and S&P Global Clean Energy (four to eight), Clean Energy Fuels
(two to four), demonstrate comparable characteristics. The results of this study indicate that
during times of economic uncertainty on an international level, both clean energy and dirty
energy stocks lack coverage and safe haven attributes. In general, it can be emphasized
that assets lacking safe haven characteristics are deemed unsuitable for investment during
periods of economic instability in the global market. The absence of safe haven investment
properties suggests that the valuation of said assets is more vulnerable to fluctuations in the
market, thereby reducing their appeal as a means of portfolio diversification. The absence
of safe haven properties from the display has noteworthy consequences for investment
strategies, as investors may need to reassess their portfolio structure and seek out substitute
assets that can offer stability in times of unpredictable nature.
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Table 11. Comparison of index movements in both subperiods under analysis.

Indexes Tranquil Subperiod Stress Subperiod Evolution

Brent Crude Spot 5/8 possible Euro Stoxx Oil & Gas; FTSE 350 Oil, Gas & Coal; S&P
Global Clean Energy; WilderHill Clean Energy; WTI 7/8 possible

Euro Stoxx Oil & Gas; FTSE 350 Oil, Gas & Coal;
iShares Global Clean Energy ETF; Nasdaq Clean Edge
Green Energy; S&P Global Clean Energy; WTI

↑

Clean Energy Fuels 2/8 possible Euro Stoxx Oil & Gas; Ftse 350 Oil, Gas & Coal 4/8 possible Euro Stoxx Oil & Gas; iShares Global Clean Energy
ETF; WTI ↑

Euro Stoxx Oil & Gas 4/8 possible
iShares Global Clean Energy ETF; Nasdaq Clean Edge
Green Energy; S&P Global Clean Energy; WilderHill
Clean Energy

8/8 possible

Brent Crude Spot; Clean Energy Fuels; FTSE 350 Oil,
Gas & Coal; iShares Global Clean Energy ETF;
Nasdaq Clean Edge Green Energy; S&P Global Clean
Energy; WilderHill Clean Energy; WTI

↑

FTSE 350 Oil,
Gas & Coal 1/8 possible iShares Global Clean Energy ETF 7/8 possible

brent crude spot; clean energy fuels; iShares Global
Clean Energy ETF; Nasdaq Clean Edge Green Energy;
S&P Global Clean Energy; WilderHill Clean
Energy; WTI

↑

iShares Global Clean
Energy ETF 2/8 possible Euro Stoxx Oil & Gas, FTSE 350 Oil, Gas & Coal 6/8 possible

Clean Energy Fuels; Euro Stoxx Oil & Gas; FTSE 350
Oil, Gas & Coal; S&P Global Clean Energy; WilderHill
Clean Energy; WTI

↑

Nasdaq Clean Edge
Green Energy 2/8 possible Euro Stoxx Oil & Gas; FTSE 350 Oil, Gas & Coal 6/8 possible

Clean Energy Fuels; Euro Stoxx Oil & Gas; FTSE 350
Oil, Gas & Coal; iShares Global Clean Energy ETF;
S&P Global Clean Energy; WTI

↑

S&P Global
Clean Energy 4/8 possible

Euro Stoxx Oil & Gas; FTSE 350 Oil, Gas & Coal; iShares
Global Clean Energy ETF; Nasdaq Clean Edge
Green Energy

8/8 possible

Brent Crude Spot; Clean Energy Fuels; Euro Stoxx Oil
& Gas; FTSE 350 Oil, Gas & Coal; iShares Global
Clean Energy ETF; Nasdaq Clean Edge Green Energy;
WilderHill Clean Energy; WTI

↑

WilderHill
Clean Energy 7/8 possible

Clean Energy Fuels; Euro Stoxx Oil & Gas; FTSE 350
OIL, GAS & COAL; iShares Global Clean Energy ETF;
Nasdaq Clean Edge Green Energy; S&P Global Clean
Energy; WTI

8/8 possible

Brent Crude Spot; Clean Energy Fuels; Euro Stoxx Oil
& Gas; FTSE 350 Oil, Gas & Coal; iShares Global
Clean Energy ETF; Nasdaq Clean Edge Green Energy;
S&P Global Clean Energy; WTI

↑

WTI 3/8 possible Euro Stoxx Oil & Gas; FTSE 350 Oil, Gas & Coal; iShares
Global Clean Energy ETF 5/8 possible

Brent Crude Spot; Euro Stoxx Oil & Gas; FTSE 350 Oil,
Gas & Coal; S&P Global Clean Energy; WilderHill
Clean Energy

↑

Source: Own elaboration.
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The results offer evidence that stock indexes pertaining to clean and dirty energy are
lacking in hedging or safe haven characteristics during times of economic uncertainty on a
global level, i.e., these indexes exhibit inefficiency in protecting against market downturns
or providing stability during periods of economic instability. The absence of hedging and
safe haven characteristics shows that the exposure of the value of such assets to market
volatility during such periods may increase, thereby reducing their appeal for portfolio
diversification. In other words, assets possessing safe haven characteristics are typically in
high demand among investors during times of ambiguity in global financial markets. These
particular assets have a tendency to maintain or increase their market value during periods
of substantial volatility or downturn. The lack of hedging and safe haven characteristics in
the indexes of clean and dirty energy stocks suggests that their valuations may be more
vulnerable to market volatility in times of unpredictability. Additional evidence that can
be posited is that safe haven assets are frequently incorporated into investment portfolios
as a strategy to attain diversification. The objective of diversification is to mitigate risk by
allocating investments across different asset classes that are expected to exhibit distinct
performance trends in response to fluctuating market circumstances. Notwithstanding, the
absence of safe haven characteristics in clean energy and dirty energy stock indexes might
hinder their ability to act as diversification instruments in times of market volatility, such
as those experienced in 2020 and 2022.

Therefore, the lack of hedge and safe haven attributes holds important consequences for
investment strategies, prompting investors to reconsider their portfolio structure and explore
substitute assets that can furnish stability during periods of ambiguity and vulnerability.
This entails exploring substitute assets or investment strategies that offer stability and serve
as secure havens during periods of market turmoil. It may be essential for investors to
consider alternative markets or asset classes that have exhibited safe haven characteristics in
the past, such as defensive shares, sovereign debt, or gold. The results suggest that clean
energy and dirty energy stock indexes could exhibit greater volatility in times of uncertainty
in global financial markets. The presence of volatility in the market may potentially offer
both risks and opportunities for investors. In general, the findings indicate that the clean
energy and dirty energy stock indexes may not be reliable options for investors who are
seeking effective hedging or diversification instruments during periods of worldwide
economic instability, specifically the occurrences that transpired in 2020 and 2022.

6. Conclusions

The objective of this investigation was to examine the potential of clean energy stock
indexes as hedge assets and safe havens for dirty energy indexes particularly during times
of economic uncertainty, with a specific focus on events occurring in 2020 and 2022. Several
clean energy indexes were analyzed, namely Nasdaq Clean Edge Green Energy, WilderHill
Clean Energy, S&P Global Clean Energy, iShares Global Clean Energy ETF, and Clean
Energy Fuels. In addition, we take into account indexes pertaining to energy stocks that are
associated with high levels of pollution, including but not limited to Brent Crude Spot, WTI,
FTSE 350 Oil, Gas & Coal, and Euro Stoxx Oil & Gas. In order to enhance the robustness of
our analysis, we partitioned the sample into two distinct subperiods. The first subperiod,
referred to as the tranquil period, spans from 3 May 2018 to 31 December 2019. The second
subperiod, known as the stress period, covers the period from January 2020 to May 2023.

Upon comparing these subperiods, it was observed that there was an evident increase
in the degree of influence between the indexes. The number of movements also exhibited
an upward trend, increasing from 30 to 59 out of a total of 72 possible movements. This
suggests a significant increase in the level of interdependence among these indexes. During
the stress period, it was observed that there was a notable influence of the dirty energy stock
indexes, namely, Brent Crude Spot, Euro Stoxx Oil & Gas, FTSE 350 Oil, Gas & Coal, and
WTI, on the other indexes. There was an increase in the number of significant influences
observed for the dirty energy indexes when compared to the tranquil period. The two
subperiods exhibited comparable features in terms of the clean energy indexes. During the
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stress period, WilderHill Clean Energy, iShares Global Clean Energy ETF, Nasdaq Clean
Edge Green Energy, S&P Global Clean Energy, and Clean Energy Fuels exhibited a notable
upsurge in their level of influence.

To conclude, the research findings suggest that during times of global economic
uncertainty, clean energy, and dirty energy stock indices do not exhibit the characteristics of
hedge or refuge assets. Investors tend to avoid assets that lack safe haven properties due to
their perceived inaccuracy in protecting or improving profits during periods of insecurity.
The lack of safe haven qualities denotes that the price of those assets is relatively more
vulnerable to fluctuations in the market, thereby diminishing their appeal for the purpose
of portfolio diversification. The findings have significant implications for investment
strategies. It is vital for investors to reassess their portfolio allocation and explore alternative
assets that provide stability and act as a safe haven during periods of unpredictability in
the global financial markets. Depending only on either clean or dirty energy stock markets
for diversification goals may not be suitable in terms of risk mitigation during periods of
market instability. On the other hand, investors may consider exploring substitute asset
classes or markets that have previously exhibited the attributes of a safe haven. Investors
can make informed decisions and adjust their investment strategies by acknowledging
the constraints of clean energy and dirty energy stock indices as hedging or safe haven
assets. The research highlights how important it is to take into account the influence of
market volatility and uncertainty on different assets and the significance of pinpointing
investments that provide constancy and protection during difficult economic circumstances.

7. Practical Implications

The profitability of investing in renewable energy is a well-established fact, yet it is
coupled with certain elevated risks. The profitability of investments in renewable energy
is contingent upon multiple variables, such as individual projects, prevailing market
conditions, and governmental regulations. Although there has been substantial growth in
renewable energy sources, such as solar and wind, in recent years, the return on investment
may exhibit variability. The absence of diversification may pose a potential obstacle for
investors in the renewable energy sector. Investors who focus their entire capital on an
isolated renewable energy project or enterprise may encounter a higher level of risk in
contrast to distributing their investments across different markets. Nevertheless, it is
possible to achieve diversification within the renewable energy industry by allocating
investments to an assortment of projects or companies that operate in different technologies
or geographical locations. In order to assess the profitability of investments in renewable
energy, investors must take into account many factors, such as project costs, potential
sources of revenue (e.g., power purchase agreements), government grants or subsidies, and
the long-term market outlook. The evaluation of the regulatory framework, which includes
measures designed to support the adoption of renewable energy sources, is a crucial aspect
that must be taken into account, given its potential to exert a substantial influence on the
return of investments. The efficacy of policy formulation for the development of renewable
energy may differ based on the specific nation or region. It is widely acknowledged that
the implementation of strong and supportive policies plays a crucial role in speeding the
shift toward renewable energy sources. To determine the suitability of the existing policy
formulation, it is important to conduct an evaluation of the specific objectives, targets, and
incentives that are in effect. Additionally, an assessment of the results and improvements
toward the deployment of renewable energy is also required. The evaluation demands a
comprehensive examination of the precise policies under consideration and their impact
on the renewable energy industry.
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