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Abstract: The exponential increase in photovoltaic (PV) arrays installed globally, particularly given
the intermittent nature of PV generation, has emphasized the need to accurately forecast the predicted
output power of the arrays. Regardless of the length of the forecasts, the modeling of PV arrays
is made difficult by their dependence on weather. Typically, the model projections are generated
from datasets at one location across a couple of years. The purpose of this study was to compare
the effectiveness of regression models in very short-term deterministic forecasts for spatiotemporal
projections. The compiled dataset is unique given that it consists of weather and output power data of
PVs located at five cities spanning 3 and 6 years in length. Gated recurrent unit (GRU) generalized the
best for same-city and cross-city predictions, while long short-term memory (LSTM) and ensemble
bagging had the best cross-city and same-city predictions, respectively.

Keywords: machine learning; deep learning; photovoltaic generation forecasting; spatiotemporal regression

1. Introduction

Problem. The usage of renewable energy sources (RES) within the energy sector has
been exponentially increasing, both globally and domestically, within the 21st century.
While there are several types of RES, PV arrays have seen consistent improvements in their
efficiency and reductions in cost, subsequently leading to becoming more readily adopted.
In 2001, only 1.5 GW of PV generation was constructed, while the global gigawatt capacity
constructed in 2011 and 2021 was 65 GW and approximately 156.1GW, respectively [1,2].
Although the shift from fossil fuels to RES likely originated from the desire to decarbonize
our world, the shift would not have gained much traction without the reduction in costs
for these alternative sources. The estimated total selling price per peak DC watt of power
generated by PV arrays across the residential, commercial, and utility sectors was projected
to significantly decrease from 2010 to 2020 [3]. The prices were USD 5.71, USD 4.59, and
USD 3.80 in 2010 for the residential, commercial, and utility sectors, respectively. Although
these prices were forecasted to drop to USD 1.50, USD 1.25, and USD 1.00 in 2020 for
the respective sectors [3], the actual prices for 2020 and 2021 were higher than initially
forecasted. The prices per peak DC watt of power generated in 2020 for the residential,
commercial, and utility sectors were USD 2.71, USD 1.72, and USD 1.01, respectively [4]. In
2021, the prices dropped to USD 2.65, USD 1.56, and USD 0.89 for the respective sectors.

With this trend in the reduction of the overall cost of PV arrays across all sectors, the
rate of installation and construction of additional arrays would naturally increase. The
projected growth of RES from 2020 to 2026 is expected to increase by more than 60% such
that the total global generation is more than 4800 GW [2]. To put this in another perspective,
this would amount to more than the current global generation of fossil fuels and nuclear
power combined. However, unlike fossil fuels and nuclear power generation, RES are
subject to variability and inconsistencies due to weather factors [1]. Therefore, there is
value in applying predictive modeling algorithms to forecast PV arrays, such that grid
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operators can accurately predict the output power at a given instance to ensure that the
load demand is met.

This predictive modeling for a given RES revolves around the weather conditions and
the anticipated energy output of the system. The existing solutions of these models can be
categorized by physical, statistical, or hybrid models [5]. The complexity of these models
increase from physical to statistical to hybrid.

Physical models are considered the simplest of the three. Physical models describe the
conversion process of solar radiation into electricity. For PV arrays, these typically include
the weather conditions of solar irradiance, temperature, wind speed, humidity, and air
pressure as well as the parameters of the cells within the PV itself [6]. These parameters
could include the conversion process, uniformity, aging, soiling, cell temperature, and load
condition [7]. Most notably, physical models do not rely on historical datasets of weather
or cell conditions; instead, real-time data are utilized.

Statistic models are based on the concept of persistence, such as stochastic time
series. Therefore, these models often rely on either machine or deep learning. In contrast
to physical models, statistic models require a historical dataset in order to create PV
projections [7]. This historical datasets are composed using time series and the associated
weather conditions. Unlike physical models, the parameters of the PV cell are excluded [6].
Statistic models can employ algorithms ranging from a simple linear regressor to the more
complex architecture of an artificial neural network (ANN). Stochastic models are most
prevalent in literature regarding PV power projections. The dependence on historical
data is considered a shortcoming of stochastic models, and this dependence is reduced in
hybrid models.

While hybrid models are any combination of the two aforementioned classifications.
The objective of the hybrid model is to mitigate the shortcomings of the different constituent
models [5]. Therefore, these tend to be the most accurate yet complex models.

Our Contributions. This study compares the accuracy of projections from 15 algo-
rithms on expansive spatiotemporal datasets. These algorithms were classified as statistic
models because they strictly used historical time series data. Within that classification
exists both machine learning and deep learning algorithms. The machine learning models
analyzed in this study were k-nearest neighbors (KNN), linear regression, linear stochastic
gradient descent regression (LSGDR), elastic net, partial least squares (PLS), ridge, kernel
ridge, SVR, NuSVR, decision tree, random forest, and ensemble bagging. Meanwhile, the
neural networks used were MLP, LSTM, and GRU. Although LSTM has been widely tested
in prior works and GRU has been compared but less frequently, it is the contrasting of the
two models within this study that brings forth the unique contribution. The datasets used
in this study included five locations, where all but one of the locations had 6 years of data.
The accuracy of the projections was compared for both same city and cross city. In this study,
it was found that GRU generalized the best for same-city and cross-city predictions, while
LSTM and ensemble bagging had the best cross-city and same-city predictions, respectively.

Significance. Given the inconsistencies inherent in RES due to their reliance on
weather and external factors, a diverse collection of RES and predictive modeling of these
respective sources is necessary to maintain the load demand of electric grids. While all RES
must receive careful consideration in terms of potential installation locations, for PV arrays,
the impacts of partial shading and typical weather patterns of the region are critically
important [8]. That said, PV generation is most closely tied to cloud cover [9]. When there
are no clouds, PV generation follows a diurnal curve as the sun traverses the sky, which is
both smooth and predictable.

However, when clouds are present, they impact both the quality and quantity of the
output power generated [9]. One such example is when there are sparse cumulus clouds in
an otherwise relatively clear day [9]. Due to the sparsity of these clouds, the shading upon
the given PV array is inconsistent. Therefore, the quality of the output power is greatly
diminished, while the quantity remains relatively high. This contrasts with when there
are opaque stratus clouds that linger for hours, thereby causing the output power to be
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greatly diminished, while the quality remains high [10]. Whether a cloud is drifting such
that it is just shading an array or that it is just departing, the abrupt nature of this change
creates a step change that is either a decrease or increase in the power generation [11]. This
is classified as ramping and is a factor that grid operators must consider when balancing
load demands.

Any significant surplus or deficit of PV power generation, if multiple sources are
tied together, must be balanced with an equal but opposite allocation such that the load
demand of a given region is met [9]. The power quality from a PV array can be most easily
visualized on the consumer end when voltage flicker occurs. While low power quality is
not directly indicative of voltage flicker occurring, it would occur more frequently given
increased variations in the quality of power delivered. Voltage flicker is when the demand
for electricity momentarily rises above the threshold of power generation that can be
delivered [12]. This can most easily be observed in the brief flickering of lights after a large
appliance was activated. That said, preventing voltage flicker and moderating ramping
effects are just a few of many parameters that govern the output power generated by a
singular or collection of PV arrays. These are just a few tasks that are categorized as electric
grid management, as shown in Figure 1. Therefore, the more accurate the projections of
output power from RES, the more efficient and cost-effective energy management can
be. The grid operators would be able to either pull from energy storage units to meet
the grid’s load demand or allocate any surplus of energy generated to these battery units.
Additionally, with a better understanding of the amount of energy generated by a source at
any given point, the grid operator would be able to better transmit the energy to regions
with greater demand. The impact of clouds upon PV arrays influences the amount of
solar irradiance that is received by the arrays. This irradiance can be subcategorized
based on the angle and method that it hits each panel of the PV array. These distinctions
include the diffused horizontal irradiance (DHI), diffused normal irradiance (DNI), global
horizontal irradiance (GHI), and the corresponding clear sky variations. Although the
different distinctions of irradiance are grouped as one in Figure 1, it also becomes evident
that there are multiple other parameters that influence the output power of PV arrays.
These include but are not limited to the cloud type and amount of cloud cover, wind
speed, relative humidity, temperature, and other weather parameters. Therefore, given
these characteristics and the additional complexity of the conditions governing the power
generation of PV arrays, logically, these arrays would greatly benefit from the usage of
predictive modeling. The output power can be modeled given the weather conditions at
the location. These forecasts are best accomplished using machine learning.

Figure 1. The connection between inputting weather data into a model and utilizing that model in
assisting in the management of the electrical grid. Source [13].

Artificial intelligence is the parent category that contains machine learning, and within
it exists a subset called deep learning. Machine learning can be considered a shallow
neural network, as it allows programs to learn from data without being declaratively
programmed [14]. Deep learning differs by having several hidden layers, complex connec-
tivity architectures, and different transfer operations [14]. Deep learning algorithms are
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synonymous with neural networks. The term machine learning was first used in 1959 by
the American scientist Arthur Lee Samuel to describe the field of computers that enables
computers to learn from data without being directly programmed [14]. However, in the
contemporary era, machine learning has become universal. Its usage has entered the ev-
eryday workspace, household devices, automobiles, and any sphere with the intention of
providing ease of life to people. From the ubiquitous growth of machine learning, it has
also been employed to generate predictive models for the output power of PV arrays.

PV Prediction in Literature

Related Works. As stated, prior art in PV predictions can be classified into physical,
statistical, or hybrid models. Statistical models are most commonly employed within
these publications. These publications compare different machine learning and deep
learning models against one another. In most cases, there are only a handful of models
whose performances are compared, while there are a few publications that are more
comprehensive, comparing the results across articles. When using stochastic models on
PVs, there are more types of machine learning algorithms applied to PV projections than
those of deep learning. Typically, the machine learning algorithms of linear regression,
ridge, lasso, elastic net, decision trees, random forests, random-forest-based ensemble
bagging, and support vector machines are applied [14]. In one particular study, an ensemble
method that was developed was composed of the elastic net, gradient boosting, and random
forest algorithms.

However, before determining which model is best to use, one must first understand
the different durations of forecasts and their corresponding applications. Power generation
forecasts are typically categorized into four groups based on the length of the projection:
very short-, short-, medium-, and long-term forecasts [15]. Intraday forecasts are classified
as very short-term, and for these projections, onsite measurements are necessary. These
very short-term forecasts are applied in real-time operations, such as spot markets, power
smoothening, real-time power dispatching, and automatic generation control [15]. Short-
term forecasts are typically between 1 hour to 1 week ahead. These projections are typically
utilized for reserve optimization, economic dispatching, transmission scheduling, unit
commitment, storage system management, and day-ahead markets [15]. Medium-term
forecasts typically range from 1 month to 1 year [1], while long-term forecasts tend to
range from 1 to 10 years [15]. These forecasts are mainly applied to the power sector for
determining scheduling and planning within the sector.

In statistical modeling, deep learning algorithms are tested as frequently as machine
learning algorithms. These algorithms consist of multiple layers, each layer composed of
multiple nodes, thereby garnering the name neural networks. These layers are the input
layer, the hidden layer, and the output layer. While not necessary, the hidden layer can be a
single layer or multiple layers. Additionally, the output layer may consist of a singular or a
multitude of nodes, depending on how many dependent variables are desired. The most
overarching type of neural network is the recurrent neural network (RNN). The standard
deep learning models used within existing studies include multi-layer perceptron (MLP),
LSTM, grated recurrent unit (GRU), or convolutional neural network (CNN) [16]. LSTM
models and other RNNs have also been used for these predictions because of the strength
of their time series ability.

Regardless of the type of neural network used, the algorithms typically outperform
machine learning models. In one study, a joint Siamese CNN and LSTM model (SCNN-
LSTM) was developed [16]. This model was then tested against an MLP, LSTM, and
3D-CNN. The SCNN-LSTM outperformed the 3D-CNN, which outperformed the LSTM
and MLP, respectively, for 10 min ahead forecasts. The better performance of the SCNN-
LSTM and the 3D-CNN could be attributed to the ability of deep learning models to handle
images and numerical data. In another study, a Bayesian neural network was tested against
an SVR and a regression tree [15]. These models were tested under conditions where
minimal input features were provided to determine the day-ahead forecasts. Within this
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study, the three models were trained and tested on the same dataset for optimal comparison
analysis. The results were that the Bayesian neural network significantly outperformed
the SVR, which moderately outperformed the regression tree. Another study compared 24
machine learning models for deterministic day-ahead forecasts using a 2-year-long dataset
at 15 min resolution [15]. From this comprehensive comparison, it was found that a neural
network composed of an MLP had the best overall performance, followed by SVMs.

To properly compare the accuracy of different models, error analyses and accuracy
evaluations must be conducted. Under different sky conditions, the accuracy of a model, let
alone the baseline, will vary. The California Renewable Energy Collaborative demonstrated
that a %RMSE value up to 6% could be expected when forecasting a day ahead under
clear sky conditions [17]. Meanwhile, under nonclear sky conditions, %RMSE values
of at least 20% with a few outliers ranging between 40% and 80% were observed [17].
A study that focused on a type of ANN determined that this type of algorithm could
achieve %RMSE values within the range of 15.2–16.3% for the day-ahead forecasts [18].
Additionally, the forecasting techniques of ANNs on average have been proven to be
considerably effective given the inherent ability to record nonlinear abrupt changes that
are caused by rapid changes in the environmental conditions of the relationship between
the input and outputs [15,18].

Similar Works. While there are no prior works that align completely, for select aspects,
there are a few that are more closely related. There are few studies that incorporate data
from two or more locations. Based on the data compilation in one study, annual and
quarterly projections were generated for two locations, one in China and another in the
United States [19]. The dataset utilized was sampled quarterly, and the forecasts were
made annually, for an undisclosed length of time and location. The study shares similarity
only in the usage of datasets from more than one location. Another study shares similarity
by utilizing data from multiple locations and employs a rolling window [20]. The study
compiled 14 months of data from 7 wind farms, 10 PV arrays, and the respective weather
data from NREL collected in Oahu, Hawaii. Although this study utilized data from
multiple locations, it was used by locations in close proximity. This was done such that
by knowing the distance to the nearby location with a given weather event, and the speed
that the weather event was moving at, the arrival of the observed weather event could
be anticipated at the original site. In contrast to what is proposed in this manuscript, the
models compared in both of these similar studies were not trained on the data from one
dataset and tested on another. Instead, the models were trained and tested on data from
the same location. Although no studies were found where cross-city projections occurred,
comparable to this study, a simple LSTM structure was used in [21]. The baseline structure
of an LSTM without supplemental deep learning networks was attached.

Prior Datasets. As relevant as it is to understand differences between different ap-
plications of statistical algorithms and the forecasting windows applied to PV generation,
the parameters used also have different predictive capabilities. The parameters of GHI,
wind speed forecasts, and ambient temperature are considered basic because they are most
used [22]. While the GHI from the actual, hourly, and daily mean GHI ambient temperature
shifted by 1 hour, azimuth, declination angles, and elevation are the most effective at
predictive capability. However, these are considered complex as these are calculated from
the basic inputs without requiring additional data [22]. Meanwhile, the daily mean GHI,
supplemented by declination angle, azimuth, and modeled 15 min elevation, are useful if
operating at a low budget [22]. They come at the cost of a reduced resolution of generated
forecasts. In short, the most used predictors for the output power are the average GHI,
temperature, wind speed and direction, precipitation, humidity, and cloud cover.

Across two comparative analyses spanning 31 studies, there are significant variations
in the sampling rates, lengths of datasets, and locations tested within each study. The
average sampling rate was split equally between 15 and 30 min intervals. There were
sampling rates as frequent as once per minute and as infrequent as once an hour [14].
The length of each dataset varied from less than a year to the rare few with 5 years of
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data. However, the average length of data available was between 1 and 2 years, erring
on 2 years [22]. Furthermore, all but 2 of the 31 studies had datasets that were restricted
to one location. These 2 studies that serve as outliers are first referenced in the similar
work section.

2. Materials and Methods
2.1. Spatiotemporal Weather and PV Power Data

In this subsection, the compiled weather and PV dataset is introduced, as well as the
real-world applications of the dataset. The weather data were obtained from the National
Renewable Energy Laboratory (NREL) [23], while the output power of the PV arrays
was obtained from the Special Interest Groups Energy (SIG Energy) of California and the
University of Massachusetts Amherst [24]. For each of these sources, the usage rights are
only restrictive against commercial usage.

2.1.1. Dataset Analysis

The empirical data for this study were compiled from three different databases. The
dataset consists of the weather data and the output power of a given PV array, taken at
uniform intervals of date and time. To maintain standardization across the dimensions of
the dataset, the weather data from each of the five locations were obtained from NREL [25].
The weather data from NREL are available from the years 1998 to 2021, and they are
sampled at a 30 min refresh rate with a localized region of 4 km [23]. The initial city was
Amherst, MA, wherein the power data were obtained from the 155 kW capacity PV array
atop the Computer Science Building at the University of Massachusetts Amherst [26]. The
locations of the other PVs were in the Californian cities of Davis, Huron, Santa Barbara, and
La Jolla with output power capacities of 143.2, 53.8, 42.5, and 41.7 kW, respectively [27].

Given the vast distances between some of the chosen cities, it is necessary to provide
the rationale behind the selection. The city of Amherst, MA, was initially selected to serve
as a ground truth for the weather and PV power data collected by an undergraduate
capstone project at WPI given the relative proximity of the cities. In this capstone, an array
of irradiance sensors were utilized to predict the output power of a small PV array. Given
that the initial plan was to train the model on the data from Amherst and to test it on the
data collected by the irradiance sensors, a sampling window from 10 a.m. to 3 p.m. with
a 30 min refresh rate was proposed. This was deemed an acceptable window given the
setup and management of the undergraduates. The direction of this research changed, and
with it, the number and the scope of the cities included. This enabled cross-city projections,
where a given algorithm model was trained on data from one city and tested on another. In
order to avoid the persistence of weather in a localized region, it was necessary to locate
additional PV arrays outside of New England with a comparable sampling frequency and
length of data available. The cities in California were selected based on these criteria.
Additionally, the capacities of the PV arrays were large enough that comparisons could be
made. The city of Davis in California was selected as it had a PV array nearly equal in size
to that of Amherst and was located on a similar latitude. The remaining cities in California
were selected based on the subsequently decreasing capacities of the PV arrays located at
the given cities.

Although multiple years of data were obtained from each source and location, un-
fortunately, there was no overlap of years between the site in Massachusetts and those
in California. The University of Massachusetts Amherst accrued historical data of the
power output of their array with a 15 min refresh rate from the years 2017 up until the
current day when this was written. The output power from Amherst was compiled from
the year 2018 to 2020. This contrasts with the years available from SIG Energy. Although
the data also contained a 15 min sampling frequency, they were only available from 2011 to
2016. For each year of data available, the dataset followed the calendar year by starting on
January 1 and ending on December 31. Fortunately, despite this discrepancy, the weather
data maintained a consistent dimension of parameters for each location. When conducting
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cross-city analyses on 3 years of data, all five cities were used. Therefore, only the cities
in California were used when conducting cross-city projections for 6 years. To reduce
any potential differences that may arise when comparing the datasets from California and
Massachusetts, only the last 3 years of the SIG Energy data were utilized for the cross-city
analyses across the five cities.

The datasets underwent preliminary preprocessing, prior to any standard preprocess-
ing required for the algorithms. This preliminary preprocessing predominantly consisted
of filtering the dataset to match the daily window of 10 a.m. to 3 p.m., composed of 11 data
points per day. However, in addition to that, the output power from SIG Energy was
converted from kWh every 15 min to kW per 30 min window. The datasets for each city are
composed of 22 columns, wherein the first 5 are the date and time, the next 16 are weather
data, and the last column is the output power. For the datasets of 3 years in length, there
are 12,056 rows of data, while the datasets of 6 years in length are twice that at 24,112 rows.
The columns and the respective units are described in more detail in the bulleted list.

2.1.2. Data Description

• Year: For the data at Amherst, the years range from 2018 to 2020, while the Californian
cities range from 2011 to 2016. Only the last 3 years from the Californian cities were
compared with those from Amherst.

• Month: All 12 months of data are included for each year of data available.
• Day: Each day, including leap days, was included.
• Hour: Only the hours from 10 a.m. to 3 p.m. and subsequent data points within

were used.
• Minute: The data were sampled at a 30 min sampling frequency.
• Diffused horizontal irradiance ( DHI) (W/m2): The solar radiation that has indi-

rectly arrived at a given location after having been scattered by the clouds and other
particulate matter in the atmosphere. The solar radiation arrives equally from all di-
rections [28].

• Diffused normal irradiance ( DNI) (W/m2): It is representative of the total radiation
that arrives perpendicular to a given surface, and is measured by photoelectric detec-
tors [23].

• Global horizontal irradiance ( GHI) (W/m2): It is representative of the total amount
of shortwave radiation that is received from the sun by a given horizontal surface. The
GHI was measured by thermoelectric detectors and can also be calculated from the
equation GHI = DNI ∗ cos(SolarZenithAngle) + DHI.

• Clear sky ( DHI) (W/m2): Clear sky denotes the conditions where there is an absence
of clouds across the entire visible sky. The clear sky DHI is therefore the upper
threshold that the DHI could achieve.

• Clear sky ( DNI) (W/m2): The clear sky conditions for DNI.
• Clear sky ( GHI) (W/m2): The clear sky conditions for GHI.
• Cloud type (unitless): NREL classifies clouds into 11 types. In increasing numbers,

these types are probably clear, fog, water, supercooled water, mixed, opaque ice,
cirrus, overlapping, overshooting, unknown, and dust. Therefore, this specific column
contains discretized data rather than continuous.

• Dew point (◦C): The temperature at which water vapor can condense. At the dew
point, a saturation of water vapor is reached; therefore, fog, clouds, and precipitation
may develop [29].

• Solar zenith angle (degrees): The angle is the angle that the sun is relative to an axis
that is normal to a surface [30]. This angle decreases as midday approaches, reaches a
minimum value, and then increases afterward. It equals the latitude minus the angle
of solar declination.

• Surface albedo (degrees): The fraction of solar radiation that is reflected by the surface
of the Earth [31]. This value varies between zero and one, whereby a higher value
indicates a larger amount of radiation that was reflected off the Earth.
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• Wind speed (m/s): The speed of the wind within the atmosphere. This measurement
was taken at the surface and scaled to within the atmosphere [23].

• Precipitable water (mm): The cumulative amount of water vapor contained within
a vertical column of a given space of the atmosphere. The volume of water vapor is
typically expressed as if it had condensed.

• Wind direction (degrees): The direction is determined by the nearest hourly values
of the second iteration of the Modern Era Retrospective Analysis and Research Appli-
cations [23].

• Relative humidity (%): The total amount of water vapor in the air compared with the
maximum vapor that the air can retain at a given temperature [29].

• Temperature (◦C): The temperature is measured at the surface level but scaled to be
the temperature within the atmosphere by a factor of 6ºC/km of elevation increased.

• Pressure (mbar): The measured pressure of the atmosphere.
• Output power (kW): The power generated by the PV array. The upper threshold

of this value is dependent on the size of the array, while the instantaneous value is
dependent on the weather factors above.

2.2. Machine Learning Methods

In this section, the techniques and algorithms covered within the paper are introduced
and discussed. The statistical models covered are KNN, linear regression, LSGDR, elastic
net, PLS, ridge, kernel ridge, SVR, NuSVR, decision tree, random forest, ensemble bagging,
MLP, LSTM, and GRU. Since the dataset used in this research is time sequencing, it dictates
that the regression variations of the models should be used instead of classification.

K-Nearest Neighbors. The KNN algorithm utilizes a type of instance-based learning
based on the differences between features. The algorithm uses the distance function to
determine a set of samples, whose length is dictated by the value of k, that are closest
to the target variable [32]. The algorithm stores the entire training dataset during the
training phase. The algorithm then creates a set of instances of length k that most closely
maps to the target. The prediction of the model is created based on the similarity that
new observations have with the aforementioned set formed during training. These new
instances are compared with each instance within the training set; the prediction is derived
from the average of the response variable. In regression-based KNN, the response variable
is the mean of the output variable [32]. In greater detail, the KNN algorithm computes the
prediction Y for each instance of x by averaging the targets from the nearest k instances
from the set, as described in Equation (1):

Y =
1
k ∑

xi∈Nk(x)
yi (1)

where, in this simplified example, xi represents the training examples, and Nk(x) is the set
of nearest points [32]. It can be difficult to determine the optimal value of k as there is an
inverse relationship between k and the error on the training set but a direct relationship
with the error on the test set. The distance function, used to calculate the Euclidean distance
d between the variables x and y, is used in the KNN algorithm as described in Equation (2).

dx,y =

√
n

∑
i=1

xi − yi
2 (2)

Linear Regression. This algorithm is one of the simplest models that could be tried
when conducting regression on a dataset. As shown in Equation (3), the correlation between
the independent variable X and the dependent variable Y is bridged with a coefficient for
each dependent variable and an intercept [33]. However, as the complexity of a dataset
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increases, the likelihood of linear regression producing accurate projections likely decreases.
However, it is still beneficial to include the model to serve as a baseline:

y = w[0] + w[1] ∗ x[1] + . . . + w[n]x[n] (3)

where y is the output or dependent variable, x[1]...x[n] are the independent features,
w[1]...w[n] are the coefficients of the linear model, and w[0] is the intercept term.

Linear Stochastic Gradient Descent Regressor. A linear regression model that uses
stochastic gradient descent as an optimizer. This model iteratively updates the model
weights using a small, randomized subset of the training data instead of the entire dataset,
therefore making it computationally efficient for larger datasets [34]. The linear function
that is used to predict the target variable is described in Equation (3). The objective of this
regressor is to determine the values of w and w[0] such that the loss function is minimized.
Additionally, the loss function must be defined within the predicted and actual values of
the target variable [34]. In this case, the loss function is the squared error, and the penalty
function is the elastic net.

Partial Least Squares. PLS is an efficient regression model, based on covariance, that
is often used in circumstances where there are many independent variables. In particular,
PLS is often used when the independent variables are correlated. PLS reduces the number
of variables to predict a smaller set of predictors [35]. This smaller set is then used to
perform the regression analysis. Although there are two types of PLS for regression, PLS 1
and PLS 2, the difference between them is if there are one or multiple dependent variables,
respectively. Given that there was only one dependent variable in this research, PLS 1 was
used [35]. The formula for PLS regression is described in Equation (4):

Y = ThC′h + Eh = XWh ∗ C′h + Eh = XWh(P′hWh)− 1C′h + Eh

B = Wh(P′hWh)− 1C′h
(4)

where Y is the matrix of dependent variables, X the matrix of independent variables,
and B the matrix of regression coefficients generated by PLS of Y on X with h number
of components. Meanwhile, Th, Ch, W ∗ h, Wh, and Ph are matrices generated by the
algorithm, and Eh is the residual from the algorithm.

Ridge Regression. Ridge regression is an algorithm that estimates the coefficients of
multiple regression models where the independent variables are highly correlated. The
ability of ridge regression to handle this multicollinearity separates it from partial least
squares regression. As a result, the ridge is most used in applications where there are many
independent variables. Typically, when using ridge regression, it can be assumed that the
independent and the dependent variables have been centered [36]. In ridge regression, L2

regularization is used, such that the penalized sum of squares is minimized to yield the
ridge coefficient.

Kernel Ridge. Kernel ridge combines the linear least squares and L2-norm of ridge
regression with the kernel trick. Therefore, a linear function is learned in the space induced
by the respective kernel and data [37]. However, in this study, this model uses a polynomial-
based kernel function; therefore, a nonlinear function is mapped to the original space.
Within this research, the polynomial kernel function has a degree of 10. The resulting kernel
ridge regression model differs from SVR from the loss function that is used [37]. For kernel
ridge, squared error loss is used, while epsilon-insensitive loss is typically used by SVR.

Elastic Net. Elastic net is a sparse learning regressor that solves the limitations of
lasso and ridge regression, yet also maintains both as special cases. It uses a weighted
combination of the L1- and L2-norm, where these regularization methods are used by
lasso and ridge, respectively [38]. In lasso regression, the independent variables are
shrunk to a central value. Elastic net is able to generate reduced models by creating
zero-valued coefficients [39]. The algorithm is often preferred, as it is able to apply the
optimal regularization technique based on the nature of the data. As a result, the elastic net
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is considered to be a parent model to lasso and ridge regression [38]. Elastic net is described
further in Equation (5):

minPα(β) =

(
1

2N

N

∑
i=1

(
yi − β0 − xT

i β
)2

+ λPα(β)

)
, Pα(β) =

p

∑
j=1

(1− α

2
β2 + α|β j|

)
(5)

where N is the number of observations, yi is the response at observation i, xi is the data
as a vector of p values at observation i, λ is a positive regularization parameter, Pα(β)
is the penalty term, α is a scalar that ranges between zero and one, and β0 and β are
scalars [39]. When α equals one, then the elastic net applies the L1-norm and functions
like lasso regression; alternatively, as α approaches zero, the elastic net approaches the
L2-norm, therefore functioning comparable to ridge regression. If the elastic net is operating
similarly to ridge regression, then the algorithm would use gradient descent to generate
the projections. If the elastic net is either completely or partially configured to operate as
lasso regression, then subgradient descent or coordinate descent would be used. In the
case where α is between zero and one, then both the L1- and L2-norm would be used by
the algorithm.

Decision Tree. Tree-based regression models benefit from a simpler structure and
efficiency, in regard to the large domains of datasets. This is a result of the fast divide-and-
conquer behavior of the model, based on the greedy algorithm wherein the larger dataset
is split recursively into smaller partitions [40]. These tree-based algorithms are effective for
large datasets yet prove to have shortcomings, such as instability on smaller datasets. This
instability could arise from a small change during the training phase, leading to different
nodes being created, causing the said instability and inconsistent results. A decision tree
is composed of the potential decisions and corresponding repercussions, constructed in a
flowchart-like tree structure [32]. The outcome of a node is represented by the branches
or edges. Each node has either a decision node, chance node, or end node. A boolean
argument is representative of the branches or edges, and the decision tree weighs the three
aforementioned conditions.

Random Forest. Random forest is a type of supervised learning algorithm that effec-
tively uses ensemble bagging to tackle regression- or classification-based problems. During
the training phase, the algorithm creates multiple decision trees and then outputs the mean
prediction of the trees [41]. The benefit of having multiple trees, instead of just one, is
that the collection of trees protects against the errors of the individual counterparts. The
random forest model acts as an aggregator to the mean projections of the total decision
trees constructed. In this study, both the random forest and the decision tree algorithms
use squared error as the loss function.

Ensemble Bagging. The basic principle behind ensemble methods is to create an
integrated group of baseline models, typically considered weak learners, into a more robust
model [14]. The more robust a model is, the more capable it is to adapt to changes in
the dataset, thereby providing more accurate and reliable performances regarding the
projections. There are three types of ensemble methods that are typically used: bagging,
boosting, and stacking. In this study, a version of ensemble bagging that is composed
of random forest models is utilized. Bagging, whose name was derived from bootstrap
aggregation, is where multiple baseline models are trained in parallel on portioned subsets
of the training data. During the training phase, bootstrapping occurs, where the original
dataset is randomly sampled with replacement. Sampling with replacement means that
every time a sample is collected by a model, it is then replaced [42]. This ensures that
each round of sampling is independent and does not interfere with the next round. Then,
the final prediction of the algorithm is obtained from a voting aggregation of the final
predictions of the baseline models [14]. Given that random sampling with replacement is
used within ensemble methods, instead of altering the biases of the models, the variance of
the projections is reduced.
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Support Vector Regression. Support vector regression is an abstracted version of
support vector machines. SVRs are better suited for times-series predictions, which are the
condition that governs forecasts for PV power generation when using irradiance. In a more
general sense, the SVR is derived from a function that maps the input patterns to those of
the output. This is done based on a given set of training data that aim to minimize error by
individualizing the hyperparameters. The input features are mapped using a nonlinear
mapping process to a high-dimensional space [15]. The nature of the SVR is described
in Equation (6):

y(x, w) =
N

∑
i=1

wik(x, xi) (6)

where {xi, ti}i=1:N is the training set and many of the wi’s are equal to zero. However, there
are some limitations to the SVR algorithm: it lacks probabilistic interpretation, there is
difficulty in selecting the optimal regularization parameter C, and the algorithm is restricted
to using positive semidefinite kernels [43].

The projections of NuSVR are also compared in this study. Nu is a parameter used
to control the number of support vectors and replaces the parameter epsilon in epsilon-
SVR [44]. In this case, an nu value of 0.35 was used. For both SVR and NuSVR, the radial
basis function kernel was used as the activation function.

Multilayer Perceptron. MLP is a type of feed-forward supervised learning algorithm.
It is composed of three layers, an input layer, a hidden layer, and an output layer. Each layer
is multidimensional and can handle nonlinear calculations. However, in the case of this
study, the output just has one dimension. Each neuron in the hidden layer transforms the
previous dimensions of the input layer using a weighted linear summation, then utilizes
a nonlinear activation function [45]. Additionally, backpropagation is used without the
need for an activation function in the output layer, effectively using the identity function
as an activation function. In this study, for forward propagation, the rectified linear unit
activation function is used. Additionally, the Adam optimizer, an extended version of
stochastic gradient descent, and the square error loss function are implemented into the
MLP. The MLP algorithm is beneficial as it has the capability to learn nonlinear models and
learning models in real time. However, the hidden layers have a nonconvex loss function,
which leads to the potential for multiple minima to exist [45]. Therefore, any differences
in the random weighting of the initialization can cause differences in the accuracy of the
validation. Additionally, the MLP is subject to sensitivity when feature scaling.

Long Short-Term Memory. LSTM networks are composed of a few types of gates that
contain information about the previous state. The information of the LSTM is either written,
stored, read, or eliminated in the cells that serve as a memory stage for the model [21]. The
four potential processes are accomplished through the opening or closing of the gates. The
cells act on signals they receive, and based on the strength of the signal, they will either
transmit or block information. The LSTM model is composed of three different states, the
input, hidden, and output state. Within each unit of the LSTM, there exist a cell state, Ct; an
input gate, it; an output gate, ot; and a forget gate, ft, displayed in Figure 2. The forget gate
is tasked with determining which information is kept or eliminated from the cell state [21].
This decision is determined by the logistic function ft, as described in Equation (7). This
function will either output a value of zero, to keep the information, or a value of one, to
forget it:

ft = σ(W f [ht−1, xt] + b f ) (7)

where, in Equations (7) and (8), σ is the activation function, W f is the weight of the forget
gate, b f is the bias of the forget gate, x f is the input at time t, ht−1 is the hidden layer at
time t− 1, Wc is the weight of the cell, and bc is the bias of the cell. The input gate, forget
gate, cell state, and output gate are shown in Figure 2, the LSTM cell. The input gate, it,
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and the cell state, Ct, are described in Equation (8). The input gate determines which input
values are updated by the blocks of the LSTM.

it = σ(Wi[ht−1, xt] + bi), Ct = tanh(Wc[ht−1, xt] + bc) (8)

The output state determines which segment of the cell state is permitted to output. The
formula for the output state, as described in Equation (9), includes a tanh and is multiplied
by another logistic function whose output is scaled similarly to the forget state:

ot = σ(Wo[ht−1, xt] + bo), ht = ot + tanh(Ct) (9)

where σ is the activation function, Wo is the weight of the output gate, and bo is the bias
of the output gate. The input data to the LSTM are composed of a three-dimensional
array. The first dimension is represented by the number of samples in the network, the
second dimension is the time steps, and the third is the number of features in one input
sequence [21]. In order for the LSTM to properly handle the dataset, a sliding window
was created such that data could be inputted into the algorithm. The sliding window is
discussed in greater detail in the preprocessing section. That said, the resulting size of the
three-dimensional array inputted into the LSTM was 11 by 3 by 20. The version of the
LSTM in this study contains a batch size of 64, a hidden size of 64, three dropout layers,
and an MSE loss function used given the regression nature of the dataset. Additionally, the
Adadelta optimizer was determined to yield the best performance by trial and error. The
Adadelta optimizer is a more robust version of the Adagrad optimizer. Adadelta adapts the
learning rates based on a moving window of gradient updates; therefore, it is not necessary
to set an initial learning rate [46].

(a) (b)

Figure 2. The LSTM unit with the forget, input, and output gates: (a) the LSTM unit, source [21],
(b) the LSTM cell.

Gated Recurrent Unit. The GRU is a type of RNN and was introduced in 2014. It was
implemented to solve the issue of the vanishing gradient that is a problem within standard
RNNs [47]. Similar to the LSTM, the GRU is able to handle sequential data, such as time
series, speech, and text. Similar to the functionality of the LSTM, the GRU uses gating
mechanisms to selectively update the hidden state, subsequently updating the output
layer. In particular, the GRU has an update gate and a reset gate that compose the gating
mechanisms. However, unlike the LSTM, the GRU does not contain an internal cell state.
In the GRU model, the reset gate determines how much of the previous information of
the hidden state should be forgotten. The reset gate of the GRU is analogous to the input
and forget gate of the LSTM [48]. Meanwhile, the update gate determines how much of
the previous information should update the hidden state, and subsequently be passed into
future units of the algorithm. The update gate is comparable to the output gate within
the LSTM. The current memory gate is a subset of the reset gate. This gate introduces
nonlinearity to the input data. Another benefit of the current memory gate being a subset
of the reset gate is that it is able to reduce the impact that the previous information has on
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the current information that will be transmitted to any future units [48]. The final output of
the GRU model is calculated based on the hidden state and is described in Equation (10):

rt = sigmoid(Wr[ht−1, xt]), zt = sigmoid(Wz[ht−1, xt]),

h′t = tanh(Wh[rtht−1, xt]), ht = (1− zt)ht−1 + zth′t
(10)

where rt is the reset gate, zt is the update gate, h′t is the candidate hidden state, ht is the
hidden state, ht−1 is the prior hidden state, Wr and Wz are the learnable weight matrices,
and xt is the input at time step t. The sigmoid function is applied to scale the result between
zero and one. The GRU model is able to solve the vanishing gradient by storing the relevant
information from one time step to the next of the network [47]. The GRU used in this
research shared the dimensionality of data inputted as the LSTM because the same sliding
window was employed. Additionally, the model utilized an averaged stochastic gradient
descent optimizer with an MSE loss function.

2.3. Preprocessing

The research that was conducted included machine learning and deep learning mod-
els. To improve the accuracy of the projections of these models, feature selection was
conducted on the dataset. The parameters of interest were determined from the generation
of Kendall correlation heatmaps. Additional preliminary testing was conducted to evaluate
the optimal normalization technique to be used on the compiled dataset. The normalization
methods that were compared were min–max, z-score, and decimal scaling. These methods
were evaluated based on the accuracy of the models given same-city and cross-city projec-
tions when trained at Huron. Ultimately, min–max scaling was used for the evaluations
within the study. The data were then either split sequentially or randomly depending on
the type of model used, although in both cases, there was a 70/30 split of training data
to testing data. Sequential data were used for the deep learning models of the LSTM and
GRU, while all the other models underwent random sampling. The machine learning
models were inherited from the scikit-learn library. Based on the input requirements for
the machine learning models, the entire training dataset was inputted in one instance prior
to testing. This is in contrast to LSTM and GRU algorithms. The two deep-learning models
were trained and tested using a sliding window. The sliding window dropped the year
but retained the other independent parameters of data and was composed of 11 rows such
that the equivalent of 1 day of data was used in each instance. The output power data
from the 11th row were the dependent variable tied to the entire sliding window. The
sliding window and the respective output power value were saved as a pickle file. The
hyperparameters of each model were tuned through trial and error.

The experimentation remained the same for each model. The models were trained
on the dataset from one city, then tested three times on the dataset of a given city. The
location of the testing city was cycled after recording the results of the evaluation metrics
from the mean and standard deviation of each iteration. The process was then repeated by
cycling through which city was used as the training dataset. The same-city projection and
cross-city projection results, from datasets of a given length of years, were extracted from
the large matrix of results generated.

The above process was conducted for the five cities with datasets of 3 years in length
and then repeated for the four cities with 6 years of data. Varying the length of years of
data inserted into the models allowed for deeper evaluations of the performances, namely,
to observe if there was any fall-off of accuracy for certain models.

3. Results
3.1. Evaluation Metrics

Although there is no standardized evaluation metric applied to determine the accuracy
of forecasts for the output power of PVs, there are a few that are more commonly used.
The acceptance of using MSE or RMSE varies from one report to another, as there are
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numerous metrics used within each study. Occasionally, R2 is used as well. R2 is a
statistical measurement of how well the regression coefficient matches the ground truth.
For R2 scores, the closer a score is to one, the more accurate is that projection, while smaller
decimals and negatives are indicative of increasing inaccuracies. This is in contrast to the
ideal MSE and RMSE values, where the more accurate the projection of a model is, the
closer the value would be to zero. The results from MSE and RMSE are strictly positive.

At least in regard to electricity forecasting, RMSE appears to be a popular evaluation
metric [49]. The three accuracy measurements of R2, MSE, RMSE were used to better
enable comparisons with prior contributions. The evaluation metrics used are described
in Equation (11):

R2 = 1− ∑ yi − yi
2

∑ yi − ỹ2 , MSE =
1
n

n

∑
i=1

yi − ỹi
2, RMSE(yT+1, ỹT+1) =

√
1
n

n

∑
i=1

yi − ỹi
2, (11)

where n is the number of iterations, yi is the observed value, and ỹi is the predicted value.

3.2. Analysis

In any dataset, particularly in datasets with many dimensions, it is beneficial to
conduct feature selection. Feature selection is a technique employed to improve the accuracy
of projections by removing the multicollinearity in independent variables. Multicollinearity
between two variables can be easily identified when the magnitude of the correlation
coefficient is equal to or exceeds 0.7 [50]. This is shown in Figure 3, where a cross-correlation
heatmap was generated based on the Kendall coefficient. The Kendall correlation was
selected as it is both more robust and ideal for time series data because it can handle
normally and non-normally distributed data.

When interpreting heatmaps, the learned weight that a given parameter on the hor-
izontal axis has on a parameter on the vertical axis is given by the value at the point of
intersection of the two parameters. If the value of the coefficient is greater than zero, there
is a positive relationship between the two parameters, while if the coefficient is less than
zero, then there is an inverse relationship between the parameters. Additionally, if the
coefficient is equal to zero, then there is no correlation.

Although there is a slight variation in the value of the weight coefficients, based on
the city used in the cross-correlation, the relative ratios between the weights remain similar.
There are a few cases of multicollinearity within Figure 3. This occurs between GHI and
clear sky GHI, DNI and clear sky DNI, GHI and solar zenith angle, and clear sky GHI
and solar zenith angle, with coefficient weights of 0.82, 0.75, −0.77, −0.93, respectively.
According to the heatmap, the parameters with the greatest correlation with the output
power of a PV array are GHI, followed by clear sky GHI, solar zenith angle, and DNI,
with weights of 0.78, 0.67, −0.64, and 0.54, respectively. Unfortunately, the select variables
that are highly correlated with the output power also exhibit multicollinearity with the
other correlated predictor variables. To remove the multicollinearity within the dataset, the
dimensions of solar zenith angle, clear sky DHI, clear sky DNI, and clear sky GHI were
removed. However, the accuracy of the model projections decreased relative to before
the dimensionality of the dataset was reduced. Therefore, the complete dataset was used
for the remainder of the comparative analyses. Prior to the reduced dimensionality, the
parameters that were highly correlated with the output power of PVs align with that of
prior art. Logically, the more solar radiation that a given area receives as measured by GHI,
the greater the power output of the array is. The reason the weight coefficient for the solar
zenith angle is negative is that as the sun rises in the sky, its angle from an axis normal
to the ground decreases, indicative of an inverse relationship between solar zenith angle
and output power. The high correlation between these parameters, with the output power,
aligns with the existing literature within the field.
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Figure 3. The Kendall cross-correlation of the parameters of the dataset.

The cross-city projections of models were less accurate relative to the same-city projec-
tions. This was particularly evident for the R2 evaluations, where numerous models had
negative scores; in some cases, this caused the results from select cities to not be graphed on
a semilog scale. These negative R2 results indicate that the model’s performance is less ac-
curate than that of a constant function used to predict the mean [51]. The graphed R2 scores
from the different testing conditions across 3 and 6 years are displayed in Figures 4 and 5,
respectively. On all the graphs, only the top six overall performing models were graphed.
This was done to allow a better comprehension of the results. Other than to better distin-
guish between the graphed models, there is no significance to the color, marker, or style of
the line for each model. The discrepancies in the graphed results of cross-city projections
for R2 scores across 6 years of data are most likely caused by significant negative scores
under certain testing conditions. Notably, GRU was the only model to have non-negative
R2 scores on 6 years of data, as seen in Figure 5. It should be clarified that for Figure 5a,
GRU has a relatively consistent R2 score of 0.94.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. The cross-city and same-city R2 scores from projections on 3 years, on a semilog scale:
(a) Amherst cross-city projections, (b) Davis cross-city projections, (c) Huron cross-city projections,
(d) Santa Barbara cross-city projections, (e) La Jolla cross-city projections, (f) same-city projections.

The results from all the models were compiled, and for easier comprehension, they
were selectively tabulated. Only the top 5 performing models of each testing condition
were included in Table 1. In this study, the final value used in determining a model’s
cross-city performance was obtained by taking the average of all the results of projections
including the same-city. Meanwhile, the same-city performance of a model was determined
by obtaining the mean of the results from the training and testing phase occurring at the
same location. For further readability, Table 2 was constructed based on Table 1. If a model
was within the top 5 performances of any given testing condition for same-city or cross-city
projections, then a score between one and five, inversely proportional to the ranking of
the model, was assigned. If a model had the best performance, it received a score of five,
while the fifth best model received a score of one. The models were then reordered based
on the decreasing overall performances. When a model did not receive a ranking under
any of the test conditions, it was reflected by a dashed line. The process of tabulating the
results was repeated for R2 scores across 6 years, and RMSE for 3 and 6 years, as shown in
Tables 3–8, respectively.
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Table 1. The overall top-performing models, given R2 scores on 3 years of data.

Training City Same-City Projections R2 Score Cross-City Projections R2 Score

Amherst, MA Ensemble bagging 0.818208 GRU 0.802737
Amherst, MA Kernel ridge 0.808784 NuSVR 0.701983
Amherst, MA GRU 0.802711 MLP 0.630215
Amherst, MA SVR 0.780876 KNN 0.611633
Amherst, MA LSTM 0.786242 Elastic net 0.595406

Davis, CA Kernel ridge 0.968095 GRU 0.924377
Davis, CA Ensemble bagging 0.961323 Kernel ridge 0.748125
Davis, CA NuSVR 0.960771 NuSVR 0.736539
Davis, CA Random forest 0.958764 Elastic net 0.735150
Davis, CA MLP 0.954446 Ensemble bagging 0.735079

Huron, CA Kernel ridge 0.961908 GRU 0.894339
Huron, CA Ensemble bagging 0.954075 Kernel ridge 0.765117
Huron, CA NuSVR 0.952966 Ensemble bagging 0.763900
Huron, CA Random forest 0.950676 NuSVR 0.758083
Huron, CA MLP 0.946865 MLP 0.745354

Santa Barbara, CA Ensemble bagging 0.860608 GRU 0.815995
Santa Barbara, CA Random forest 0.842497 Elastic net 0.691191
Santa Barbara, CA Kernel ridge 0.826094 Ensemble bagging 0.685700
Santa Barbara, CA GRU 0.815155 KNN 0.684999
Santa Barbara, CA MLP 0.796264 NuSVR 0.675440

La Jolla, CA Ensemble bagging 0.871669 GRU 0.820216
La Jolla, CA Kernel ridge 0.870437 Ensemble bagging 0.723362
La Jolla, CA Random forest 0.863120 Elastic net 0.707779
La Jolla, CA SVR 0.841832 Kernel ridge 0.707288
La Jolla, CA NuSVR 0.839770 Linear SGD regressor 0.706491

Table 2. The overall ranking of the top-performing models, given R2 scores on 3 years of data.

Model Same-City Projections Cross-City Projections

Ensemble bagging 23 11
Kernel ridge 21 10
GRU 5 25
NuSVR 7 10
Random forest 11 —
Elastic net — 10
MLP 3 4
KNN — 4
SVR 4 —
LSTM 1 —
Linear SGD regressor — 1

For the evaluation metric of R2 scores, the models with the best performances remained
relatively similar across datasets spanning 3 and 6 years. Given R2 scores in Tables 2 and 4,
ensemble bagging generalized the best for same-city projections yet also had respectable
cross-city forecasts. Meanwhile, GRU had the best projections for cross city for both lengths
of datasets. Based on the method for determining the cross-city R2 performance of a model,
GRU would be the only model that maintained accuracy across 6 years.
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Figure 5. The cross-city and same-city R2 scores from projection on 6 years, on a semilog scale:
(a) Davis cross-city projections, (b) Huron cross-city projections, (c) Santa Barbara cross-city projec-
tions, (d) La Jolla cross-city projections, (e) same-city projections.

Table 3. The overall top-performing models, given R2 scores on 6 years of data.

Training City Same-City Projections R2 Score Cross-City Projections R2 Score

Davis, CA Kernel ridge 0.962847 GRU 0.939112
Davis, CA Ensemble bagging 0.959678 SVR −29.107155
Davis, CA Random forest 0.957719 NuSVR −35.422555
Davis, CA NuSVR 0.956933 Linear SGD regressor −37.781532
Davis, CA MLP 0.954850 KNN −37.950231

Huron, CA Kernel ridge 0.948526 GRU 0.944224
Huron, CA GRU 0.944319 NuSVR −0.082058
Huron, CA Ensemble bagging 0.943442 Ensemble bagging −0.087932
Huron, CA Random forest 0.938625 fandom Forest −0.089763
Huron, CA NuSVR 0.938625 Kernel ridge −0.095945

Santa Barbara, CA Random forest 0.848578 GRU 0.819383
Santa Barbara, CA Ensemble bagging 0.848578 Random forest −0.121863
Santa Barbara, CA GRU 0.943939 Decision tree −0.147946
Santa Barbara, CA Kernel ridge 0.628883 KNN −0.166443
Santa Barbara, CA Decision tree 0.628905 Ensemble bagging −0.190341
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Table 3. Cont.

Training City Same-City Projections R2 Score Cross-City Projections R2 Score

La Jolla, CA Ensemble bagging 0.860190 GRU 0.840431
La Jolla, CA Random forest 0.853891 Random forest −0.144870
La Jolla, CA Kernel ridge 0.849071 Decision tree −0.160601
La Jolla, CA GRU 0.840431 Ensemble bagging −0.203896
La Jolla, CA Decision tree 0.828522 KNN −0.211623

Table 4. The overall ranking of the top-performing models, given R2 scores on 3 years of data.

Model Same-City Projections Cross-City Projections

GRU 9 20
Ensemble bagging 16 —
Kernel ridge 15 —
Random forest 14 —
NuSVR 3 —
Decision tree 2 —
MLP 1 —

Table 5. The overall top-performing models, given RMSE results on 3 years of data.

Training City Same-City Projections RMSE Cross-City Projections RMSE

Amherst, MA GRU 0.117168 LSTM 0.277781
Amherst, MA LSTM 0.117663 SVR 0.299399
Amherst, MA Ensemble bagging 0.132658 Elastic net 0.433328
Amherst, MA Kernel ridge 0.134039 Linear SGD regressor 0.434012
Amherst, MA Random forest 0.140668 Random forest 0.421120

Davis, CA Kernel ridge 0.045814 LSTM 0.277502
Davis, CA NuSVR 0.046171 GRU 0.280577
Davis, CA Ensemble bagging 0.046672 SVR 0.299829
Davis, CA MLP 0.049761 NuSVR 0.326975
Davis, CA Random forest 0.054414 KNN 0.376338

Huron, CA Kernel ridge 0.041984 GRU 0.375316
Huron, CA NuSVR 0.046171 LSTM 0.375896
Huron, CA Ensemble bagging 0.046672 Decision tree 0.500686
Huron, CA Random forest 0.048906 Elastic net 0.510282
Huron, CA MLP 0.049761 Linear SGD regressor 0.510518

Santa Barbara, CA Ensemble bagging 0.085397 LSTM 0.425840
Santa Barbara, CA Random forest 0.093342 GRU 0.459018
Santa Barbara, CA Kernel ridge 0.095554 Random forest 0.504005
Santa Barbara, CA MLP 0.101864 KNN 0.505611
Santa Barbara, CA NuSVR 0.107973 Ensemble bagging 0.509712

La Jolla, CA Kernel ridge 0.074351 GRU 0.409212
La Jolla, CA Ensemble bagging 0.075268 LSTM 0.438382
La Jolla, CA GRU 0.076123 Ensemble bagging 0.551663
La Jolla, CA Random forest 0.078357 Random forest 0.544993
La Jolla, CA NuSVR 0.082536 Decision tree 0.545914
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Table 6. The overall ranking of the top-performing models, given RMSE results on 3 years of data.

Model Same-City Projections Cross-City Projections

LSTM 4 23
GRU 8 18
Ensemble bagging 18 4
Kernel ridge 20 —
Random forest 10 6
NuSVR 10 2
SVR — 7
MLP 5 —
Elastic net — 5
Decision tree — 4
KNN — 3
LSGDR — 3

Although the accuracy metrics of MSE and RMSE were obtained, only RMSE is dis-
cussed in the report (Figure 6). This is because RMSE is more commonly compared between
studies and is derived from MSE. The LSTM was the most accurate model for cross-city
projections for RMSE on 3 years of data, as shown in Table 6. Ensemble bagging performed
the best given same-city projections, and GRU generalized the best for both conditions
between the two models. The better performances of the neural networks could be at-
tributed to the memory storage of previous states inherent in these models. Meanwhile, the
performance of the ensemble method could be attributed to the model’s nature averaging
the results across the baseline models relying on bootstrapping. Additionally, for RMSE
results across 6 years, ensemble bagging had the best generalizations for both same-city
and cross-city projections.

The runtimes of the models were recorded. These runtimes incorporate the training
and testing time for each model across 3 and 6 years of length, as displayed in Table 9.
The increase in runtimes of the machine learning models from 3 to 6 years is significantly
greater than that of the deep learning models compared in the study. The runtimes of
the LSTM and GRU increased by a negligible factor, while the machine learning models
increased on average by a factor of three. The preprocessing time for both the machine
learning and deep learning models increased comparably.

In this study, the kernel ridge model should be disregarded because the algorithm was
not stable. It was common for the model to have cross-city MSE and RMSE results that
were magnitudes worse when it was trained on any city and tested on Amherst or Davis.
This is most likely caused by overtuning the model as a 10th-degree polynomial kernel
was used.

From the extensive testing that was conducted, it became clear that select cities proved
to be best for the training or testing phases. For each city, the projections were more accurate
when trained and tested on the same city. This contrasts with cross-city projections, where,
in each test case, the error is greater than that of the same-city projection. The average of
all cross-city projections was derived to evaluate the cumulative cross-city performance
for each training city. When conducting cross-city projections, the optimal city used in the
training phase was Davis. This is because when a model was trained on a dataset from a city
that was not Davis, and tested on Davis, there were disproportionately large inaccuracies
in those projections relative to the cross-city projections trained on other cities. This can
be visualized in the cross-city projections of Figure 7b–d. Davis is the optimal location to
use as a training city because the cumulative accuracy of the cross-city projections was
improved when trained on the city. This resulted from mitigating the disproportionately
larger inaccuracies when forecasted upon that city. However, if the dataset from the city
of Davis was to be omitted, then the best dataset for the training phase for cross-city and
same-city projections would be from Huron. Should this research be extended and applied
to any given city, such that a model is trained on one city and tested on another, the dataset
from the city of Huron should be used during the training phase.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. The cross-city and same-city RMSE results from projections on 3 years, on a semilog scale:
(a) Amherst cross-city projections, (b) Davis cross-city projections, (c) Huron cross-city projections,
(d) Santa Barbara cross-city projections, (e) La Jolla cross-city projections, (f) same-city projections.

Table 7. The overall top-performing models, given RMSE results on 6 years of data.

Training City Same-City Projections RMSE Cross-City Projections RMSE

Davis, CA Kernel ridge 0.048115 SVR 0.317826
Davis, CA Ensemble bagging 0.050737 NuSVR 0.344721
Davis, CA NuSVR 0.051682 KNN 0.358947
Davis, CA Random forest 0.052197 Linear SGD regressor 0.359327
Amherst, MA MLP 0.053125 LSTM 0.373920

Huron, CA Kernel ridge 0.002136 NuSVR 0.476343
Huron, CA Ensemble bagging 0.002386 Ensemble bagging 0.477623
Huron, CA NuSVR 0.002492 Random forest 0.477702
Huron, CA Random forest 0.002576 KNN 0.478098
Huron, CA MLP 0.002732 Kernel ridge 0.478177

Santa Barbara, CA Ensemble bagging 0.084657 Random forest 0.498814
Santa Barbara, CA Random forest 0.090800 Decision tree 0.505008
Santa Barbara, CA Kernel ridge 0.099094 KNN 0.510331
Santa Barbara, CA MLP 0.101365 Ensemble bagging 0.512817
Santa Barbara, CA Decision tree 0.103732 LSTM 0.512968

La Jolla, CA Ensemble bagging 0.078349 Random forest 0.537771
La Jolla, CA Kernel ridge 0.080821 Decision tree 0.541429
La Jolla, CA Random forest 0.080978 GRU 0.542811
La Jolla, CA MLP 0.084491 Ensemble bagging 0.550890
La Jolla, CA NuSVR 0.084968 KNN 0.551782
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Table 8. The overall ranking of the top-performing models, given RMSE results on 6 years of data.

Model Same-City Projections Cross-City Projections

Ensemble bagging 18 8
Random forest 11 13
Kernel ridge 17 1
NuSVR 7 9
KNN — 9
Decision tree 1 8
MLP 6 —
SVR — 5
GRU — 3
LSTM — 2
Linear SGD regressor — 2

(a) (b)

(c) (d)

(e)

Figure 7. The cross-city and same-city RMSE results from projections on 6 years, on a semilog
scale: (a) Davis cross-city projections, (b) Huron cross-city projections, (c) Santa Barbara cross-city
projections, (d) La Jolla cross-city projections, (e) same-city projections.
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Table 9. The average runtimes of each of the models when tested on 3 and 6 years.

Runtimes (sec)

Model Three Years Six Years

(Preprocessing) 5.417284250 11.95906186
KNN 0.389432907 1.404553890
Linear 0.013805866 0.034776211
LSGDR 0.013444901 0.041595936
PLS 0.028211832 0.083257675
Ridge 0.008878946 0.037673950
Kernel ridge 1.821449280 9.704311132
Elastic net 0.007416725 0.025765896
Decision tree 0.047725916 0.122375965
Random forest 3.889456987 10.76441407
Ensemble bagging 32.85834336 78.72121286
SVR 0.022889853 0.018880129
NuSVR 5.426755905 27.02059078
MLP 0.474739075 1.275279045

(Preprocessing) 12.74293923 25.02512908
LSTM 229.5325911 248.0441761
GRU 256.4041739 266.5943701

4. Discussion

Over the past few decades, the installation of PV arrays has increased exponentially.
Although benefiting the environment by reducing the consumption of fossil fuels, this
surge has primarily been driven by the reduction in costs of these RES. Given the ever-
increasing implementation of PVs into electrical systems, and the intricate dependencies
these sources have with shading and correlated weather conditions, it is critical that PVs are
accurately modeled. Typically, select machine learning and deep learning algorithms have
been adapted to model these RES with varied performances. The objective of this study
was to compare the accuracy of stochastic models, in particular, neural networks that were
implemented against machine learning algorithms to accurately model the output power
of PV arrays. This testing was conducted on a dataset that spanned 3 and 6 years in length
and was inclusive of five locations. Although the accuracy performances varied based
on the testing conditions, the training times for the LSTM and GRU remained relatively
constant from 3 to 6 years, in contrast to the other models tested. It was determined that
the LSTM and GRU had the best overall performances, and of the two, the GRU outplaced
the LSTM when considering R2 scores as well. However, if seeking an algorithm for a
single location, ensemble bagging should be selected. That said, the GRU was the most
robust of the models when determining the output power of PV arrays in very short-term
deterministic forecasts.

Future Works

This application of cross-city projections could be expanded upon and used to model
the PV arrays from any given city. This would be particularly beneficial to locations where
limited data are available, yet a more extensive dataset available at a different location could
be utilized for training. Additionally, this study could be expanded upon by implementing
a physical array of sensors to validate the findings, thereby creating a hybridized model.
Arrays composed of sensors capable of measuring the highly predictive parameters could
be installed in the five given cities and measured simultaneously for the same length of time
to accomplish the validation. Should this application be further developed, the dataset from
the city of Huron yielded the most accurate projections for modeling alternative cities and,
therefore, could be used as a baseline. Additionally, these models and the cross-location
projections could be applied to the modeling of other RES, such as onshore or offshore
wind farms.
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WPI Worcester Polytechnic Institute
PV photovoltaic
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NREL National Renewable Energy Laboratory
SIG Energy Special Interest Groups Energy
DHI diffused horizontal irradiance
GHI global horizontal irradiance
LSGDR linear stochastic gradient descent regressor
PLS partial least squares
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SVR support vector regressor
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