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Abstract: Electric vehicles are growing in popularity as a form of transportation, but are still un-
derused for several reasons, such as their relatively low range and the high costs associated with
manufacturing and maintaining batteries. Many studies using several approaches have been con-
ducted on electric vehicles. Among all studied subjects, here we are interested in the use of machine
learning to efficiently manage the energy consumption of electric vehicles, in order to develop intelli-
gent electric vehicles that make quick unprogrammed decisions based on observed data allowing
minimal electricity consumption. Our interest is motivated by the adequate results obtained using
machine learning in many fields and the increasing but still insufficient use of machine learning
to efficiently manage the energy consumption of electric vehicles. From this standpoint, we have
built this comprehensive survey covering a broad variety of scientific papers in the field published
over the last few years. According to the findings, we identified the current trend and revealed
future perspectives.

Keywords: electric vehicle; machine learning; energy consumption; systematic mapping study;
energy management strategy

1. Introduction
1.1. Objective and Motivation

Transportation is an important sector of human life. People use vehicles in their
daily lives to enjoy the convenience and benefits of reaching a destination by car or public
transport. The transport community is growing faster than the human population [1].

In the last few years, electric vehicles (EVs) have become more popular. There are now
several car manufacturers that have EVs on the market. The EV has gained in popularity
due to its ecological impact and energy source flexibility. However, EVs do not represent a
very large share of the global vehicle fleet. In 2020, EVs accounted for 4.2% of new vehicle
sales around the world. This tends to prove that many drivers have not yet taken the
plunge and that they certainly do not yet have confidence in EVs, and they certainly ask
the question: How far can we drive before having to recharge the EV?

Overall, the worldwide future of EVs is dependent on a number of factors, some of
which are as follows [2]:

• The initial cost of the vehicles is mainly determined by battery costs and other indus-
trial inputs, as well as company profits.

• The number of charging stations available, the distance between them, and the time it
takes to charge.
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• Determination of driving range, speed, and acceleration.
• Maintenance expenses, particularly in terms of battery durability.

A significant number of studies were analyzed, which provided a broad overview
related to EVs taking into account different challenges and contexts, with no clear method-
ological approach [3]. In fact, Vidal et al. [4] present an overview of battery state estimation
techniques using machine learning (ML) algorithms, such as feedforward neural networks,
radial basis functions, etc. The authors aim to provide readers with a comprehensive
understanding of the ML landscape for battery state of charge and state of health estima-
tion in terms of datasets, features, test conditions, battery types, and evaluation measures.
The authors of [5] provide a survey of 15 previously published review papers on privacy
protection using ML for EVs between 2016 and 2021. They also highlight various applica-
tion scenarios in EVs to secure information connected between data collected from EVs
and vehicles to everything. Comparisons between approaches are made in terms of ML
algorithms, datasets, evaluation measures, and privacy framework. Other studies reviewed
a specific topic in EVs as the battery EV technology [6,7] and EVs within smart grid sys-
tems [8], by collecting information that is unsystematically interpreted with subjective
summaries of findings. Among all studied subjects, the use of ML in managing efficiently
energy consumption of EVs (ECEV) is becoming fundamental for the development of truly
intelligent EVs that make quick unprogrammed decisions based on observed data and
ensure minimum electricity consumption. ML-based methods for (efficient) ECEV require
particular attention for two reasons. First, they aim at processing large and complex data to
extract knowledge and make decisions with minimal human intervention. Second, they
facilitate the expression of the relationship between the output variables (i.e., that quantify
ECEV) and its input variables, i.e., features that influence ECEV, such as speed, road type,
weather, etc.) [9].

The satisfactory results obtained using ML in many fields and the increasing but still
insufficient use of ML to efficiently manage ECEV motivated us to write this accurate state
of the art of ML-based studies of ECEV to encourage critical thinking by highlighting the
primary research avenues, approaches, and gaps in the industry.

1.2. Contributions

According to the literature, there is a lack of in-depth analysis of ML-based studies of
ECEV and there is no systematic map or literature review of ML-based studies of ECEV that
has been published so far. For this reason, we have built this state of the art of ML-based
study of ECEV, which, to our best knowledge, is the most comprehensive survey covering
a set of studies rigorously selected. A set of 156 studies are systematically selected among
many papers, before being analyzed and classified with respect to several elements, such
as the algorithms used, the datasets and data preparation techniques, the features used
to make predictions, the research types, the most frequently used evaluation measures,
and cross-validation methods, the software tools used, the road types considered, and the
training architectures adopted. This classification and analysis can help researchers define
research projects related to applying ML for studying ECEV.

1.3. Brief Introduction to Machine Learning

In the last decade, ML algorithms have been used to assess their ability to improve
ECEV compared to statistical algorithms. The principle of ML is to learn patterns in
data to make predictions, recognize new patterns, or suggest different classes to the data.
ML algorithms have been used in many research topics, such as computer vision for
autonomous vehicles [10], software engineering [11], and smart cities [12]. ML algorithms
have two significant advantages: the capacity to model the complex set of relationships
between the output to be predicted and the input, and the capacity to learn from historical
data [9]. By combining several domains such as artificial intelligence, statistics, linear
algebra (vector spaces), and optimization, ML tends to solve a number of problems by
designing various algorithms that “vary in their goals, in the available training datasets, and in
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the learning strategies and representation of data” [9]. The three main categories of ML are [9]:
supervised, unsupervised, and reinforcement learning.

Supervised Learning (SL): Its principle is to build a prediction model (or predictor)
from training data whose each instance is specified by a pair (input, output). The obtained
predictor can then be used to determine the outputs of new instances whose outputs are
unknown [9]. Classification and regression are the common prediction tasks supported
by this category [9]. SL is called classification when the domain of outputs is finite, and
hence discrete. In this case, each output value corresponds to a class (or category), and
classification consists of predicting the class of an input [9]. The generated classification
model may be represented in many structures such as classification rules or mathematical
formulae [13]. On the other hand, SL is called regression when the domain of outputs
(and inputs) is continuous, and hence infinite [9]. Many algorithms initially developed for
classification have been adapted for regression.

Unsupervised Learning (UL): In this category, data that are given to learning algo-
rithms during the learning process are composed of input values, and no notion of output
is used [9]. That is, there are no labels to predict. The main objective of UL is to discover
natural structure in the input data [9]. UL algorithms can organize the data at hand in
different ways.

Reinforcement Learning (RL): It is based on the Markov decision process [14] and
consists of using an agent and an environment that interact as follows: the agent applies an
action to the environment and the latter reacts by modifying the agent’s state and giving a
reward to the agent. The latter state and reward are used as an input of the agent which
will deduce the next action which is therefore an output of the agent, and so on. To learn
which actions to take, the agent uses two phases: (1) exploration: the agent tries several
actions and observes the reaction of the environment, and (2) exploitation: the agent adapts
his behavior to find the strategy that tends to maximize the total reward received by the
agent from the environment [14].

This is the organization of the paper: In Section 2, we present the methodology used
to build our survey. The results of the analysis of these papers are presented and discussed
in Section 3. Finally, Section 4 presents the current trends, future perspectives, and the
validity of this survey.

2. Methodology

This section presents the methodology adopted to carry out an up-to-date literature
review of ML-based studies of ECEV using Systematic Mapping Study (SMS). SMS [15–17]
is a well-structured methodology that basically aim to determine, classify, and analyze
the most relevant studies on a specific topic of interest. The resulting literature review is
addressed to persons interested in studying ECEV, where the focus is on the use of ML as
it has shown impressive results in solving complex problems in many fields. Systematic
mapping process can be represented as three phases which are explained below.

2.1. Formulate a Set of Mapping Questions

The first phase aims to formulate the mapping questions (MQs), which are questions to
which the literature review to be built is supposed to provide answers. The main objective
of this phase is to identify and clearly formulate a set of adequate MQs. Such a phase is
the first step to building a literature review in a systematic and rigorous way. This is a
non-automatable human task, whose input is the studied topic (i.e., studying ECEV using
ML) and output (i.e., MQs) is the input of the other two phases.

After analysis of several surveys and a thorough reflection, we have identified six
MQs. In the following, each MQ is specified as an interrogative sentence and then justified
in a short paragraph.

MQ1: It is related to datasets and is composed of two questions: (a) What datasets
are used? (b) How datasets are prepared?
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Classifying the publications based on the types of datasets and their preparation helps
understand how these elements influence the quality of the predictions of ML-based models.

MQ2: What features (input variables) are used?
Classifying the publications based on the features used helps understand how the

feature choice influences the quality of the predictions of ML-based models.
MQ3: What types of roads are the most investigated?
Classifying the publications based on road types helps identify the results, problems,

and challenges encountered depending on the type of roads when using ML to study ECEV.
This MQ can be generically reworded as: What elements of the environment are the most
investigated?

MQ4: It is composed of two questions: (a) What ML-based algorithms are used and
how are they tuned? (b) What software tools and programming languages are used?

The objective is to exhibit the algorithms used to generate ML-based prediction models
and investigate whether parameter tuning is used in these algorithms. This helps clas-
sify the algorithms used and highlight their trends in the field from the perspective of
researchers and practitioners. Additionally, it helps understand the overall behavior of
ML models by studying the use of parameter tuning methods. Moreover, this question
aims to identify the most used software tools for ML-based studies of ECEV which enables
highlighting the tool kit where research has focused on the implementation and simulation
of newly designed ML-based prediction models.

MQ5: What evaluation measures and validation methods are used?
The aim is to identify the most frequently used measures to assess the quality of pre-

dictions obtained from ML prediction models. The aim is also to identify methods to assess
the model’s ability to predict new data that were not used to build the prediction model.

MQ6: What resolution approaches and architectures are used?
The intention is to highlight the solutions and training architectures proposed in the

selected studies. Answering this MQ enables assessing the maturity level of research in
this field.

2.2. Identify a Relatively Reduced Set of Relevant Studies

The second phase consists of selecting the most relevant papers to be studied in this
literature review study. The papers are selected based on the studied topic and the MQs
using a systematic mapping process. More precisely, we proceed in three steps to identify a
set of relevant papers to be investigated as described below.

2.2.1. Step 1: Construct and Use a Search String to Select Papers in Digital Libraries

In this step, we first extract keywords from MQs and complete them with synonyms
and alternative spellings. The Boolean AND is used to combine the keywords, and OR to
combine the synonyms. The result of combination is the following search string, where
* refers to any sequence of characters:

(artificial intelligence OR machine learning OR deep learning OR AI OR ML OR DL) AND
(prediction OR assessment OR evaluation OR forecast* OR measurement) AND (algorithm OR
model OR technique OR tool OR method OR approach) AND (speed OR velocity OR input
OR features) AND (electric* vehicle OR electric* car OR EV) AND (energy consummation OR
energy optimization OR energy minimization).

The obtained search string is then used to automatically search for papers in six
electronic databases: IEEE Xplore, Science Direct, Springer Link, Scopus, ACM Digital
Library, and Google Scholar.

The automatic search is performed for the period from 2000 to 2022. The search string
is formulated according to the characteristics of each database, and Mendeley and Publish
or Perish tools are used to manage the automatic search results.

This automatic search in the 6 digital libraries returns a huge set of 135,028 papers. The
obtained list of studies is ordered as follows: studies that respect the most the search string
are the first to appear in the list, and the more we go down in the list, the more studies
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become irrelevant. The numbers of studies obtained from each database and at each step
are shown in Figure 1.
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2.2.2. Step 2: Filter the Result of Step 1 Based on Titles and Abstracts of Papers

In this step, we filter the huge set of 135,028 papers returned by step 1, in order to
keep a relatively reduced set of the most relevant papers. Recall that in Step 1, all papers
that respect the search string are returned. In step 2, we keep only the k first papers of
the list whose title and/or abstract respect the search string. That is, k is such that the
(k + 1)th paper is the first paper in the list whose title and/or abstract does not respect the
search string. We proceed this way because the list returned in step 1 is ordered from the
most relevant papers to the least relevant papers. Therefore, step 2 is performed manually
without excessive complexity although the list is very large. This step returns 215 candidate
papers, which are the 215 first papers of the list returned by step 1.

2.2.3. Step 3: Filter the Result of step 2 Using Inclusion and Exclusion Criteria

This step, which is performed manually, consists of applying a set of inclusion criteria
(ICs) and exclusion criteria (ECs) to the candidate studies obtained from step 2 to select
the most relevant studies. In general, ICs and ECs should be built in such a way as to
guarantee that they can be interpreted in a systematic manner and that they correctly
classify studies [15]. Some ICs and ECs can be generic. For each study, a filter is applied to
determine if the study should be included or excluded. We proceed as follows and in order
for each study:

• We apply some generic ECs, i.e., which are used in most studies in the literature [18],
to exclude some studies such as: (1) short studies without any contribution, (2) studies
which include conference/editorial summaries or guidelines or secondary studies
(review, survey, etc.), (3) studies not written in English, (4) studies that the entire text
is not available, (5) studies that are duplicates of other studies, and (6) books and grey
literature. Each study that meets one of these generic ECs is excluded.

• Among the remaining papers (i.e., those not excluded in the above point), we exclude
the studies of EVs which ignore energy consumption.

• Among the remaining papers (i.e., those not excluded in the above two points), we
only keep the papers that meet at least one of the following ICs: (1) studies that
use ML and artificial intelligence algorithms for ECEV, (2) studies working on the
minimization of ECEV, and (3) studies that predict speed profile.

A set of 156 relevant studies [19–174] results from step 3, which will be used to carry
out the state of the art of ML-based studies of ECEV.
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2.3. Analysis and Discussion of the Mapping Questions Results

Phase 3 consists of analyzing the 156 relevant papers selected in the second phase. The
analysis consists of responding to each MQ derived from the first phase. For this purpose,
for each paper, a spreadsheet form is filled to gather information required to respond
to every MQ. Then, we synthesize and analyze the obtained information throughout all
papers to answer each MQ as presented in the six following Sections 3.2–3.7, respectively.
Note that Table A1 in the Appendix A shows the list of acronyms used in this study.

3. Content Analysis and Discussion
3.1. Preliminary Analysis of the Selected Studies

This section presents a preliminary analysis of the selected studies in ML-based ECEV.
By analyzing these studies, we found that the interest in ML-based ECEV studies has
started in 2008. Most of them were published in the last 4 years, where the production is
growing at an accelerated rate since 2016. The selected ML-based ECEV studies combine
two subjects: EV and computer science. Thus, we found a diversity in the identified sources.
Consequently, researchers can use diverse sources that focus on these two fields for future
publications.

Moreover, the selected ML-based ECEV studies are distributed between two research
types [175]: evaluation research (analysis) and solution proposal (design). Most of these
papers (67%) are evaluation research studies that are undertaken to show how the ML-
based algorithms used to evaluate ECEV are implemented in practice and determine the
benefits and drawbacks of various existing implementations [175]. The rest of the papers
(33%) are studies to design a new method or an improvement of an existing method, by
showing the applicability of the proposed solution and the possible benefits using simple
examples [175]. This result shows that the main concern of researchers in the EV domain
is to analyze the ECEV models, while relatively few studies propose and design new
approaches to enhance ECEV based on ML.

3.2. Datasets and Their Preparations
3.2.1. What Datasets Are Used?

To empirically validate and evaluate the effect of datasets on minimizing ECEVs, a set
of 54 different datasets are identified in the selected ML-based ECEV studies. Figure 2
presents the evolution over the years of the most investigated datasets in the selected papers.
Driving cycles (e.g., urban dynamometer driving schedule [132], highway fuel economy
test [163], etc.) are the most adopted datasets in 70 studies. They include a variety of regions
using different vehicle categories over various road types [141] and contribute to develop
the powertrain for vehicles [129,163]. We observe also that since 2017 driving cycles had the
most marked growth. The slowdown in 2022 is because only three months of the year are
considered. Then we have datasets based on the Global Positioning System (GPS) which
are used in 36 studies. They help to measure and determine the position of the vehicle
during a trip [32]. In the third position, datasets based on the Internet of Things (IoT) are
used in 24 studies. They are a way for vehicles to communicate between them using vehicle-
to-vehicle, and with the road infrastructure using vehicle-to-infrastructure communications
networks in order to estimate and predict the vehicle speed under various conditions [172].
Then follow big data-based datasets which are used in 12 studies, whose main advantage
is to accelerate the learning curve. The more data an ML model receives, the more it
learns and the more accurate it becomes. The remaining studies use other datasets such as
performance measurement system (PeMS) and the next-generation simulation (NGSIM)
datasets, in 3 studies each one. The distribution of datasets in the selected ML-based ECEV
studies is shown in Table 1.
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Analyzing vehicle energy consumption from multi-modal sensor data, including
GPS, IMU, steering wheel, and wheel speed, presents significant challenges, particularly
in achieving time and space synchronization, which are crucial for ML applications. To
enhance the readability from an ML perspective, it is essential to address these challenges
by exploring research directions. One such direction is improving vehicle localization
using on-board sensors and incorporating vehicle lateral velocity estimation [176]. This
integration of data sources can provide more accurate spatial information, enabling better
modeling and prediction of energy consumption patterns. Additionally, estimating IMU
yaw misalignment by fusing information from automotive onboard sensors and an adaptive
Kalman filter can enhance the accuracy of ML models in capturing vehicle dynamics [177].

Table 1. Datasets used in two or more of the selected studies (MQ1-a).

Datasets References N◦ of Studies

Driving cycles
[20–25,27–31,33–39,44,45,49,53,55,57,60,65–67,69,70,73,77,78,85,88–

91,94,97,98,102,104,105,113,119,121,129,130,132–
137,139,141,145,146,149,153,157,160,161,163,165,168,169,173,174]

70

GPS-based datasets [21,26,32,34,42,50–52,58,63,64,68,72,78,79,81–83,87,93,95,97,111,124–
127,131,138,145,147,149,159,166,167,170] 36

IoT-based datasets [44,47,56,64,81,85,95,106–
108,110,117,122,125,126,128,134,136,138,140,144,149,155,172] 24

Big data-based datasets [19,41,43,54,75,96,102,107,109,145,147,170] 12

PeMs [93,112,116] 3

NGSIM [108,142,150] 3

Some of the datasets are available online for researchers, such as: MnDOT IRIS (http:
//data.dot.state.mn.us, (accessed on 20 March 2021)), dataset of real-world driving to assess
driver workload (https://www.hcilab.org/research/hcilab-driving-dataset, (accessed on
22 March 2021)), driving dataset for EVs powered by intelligently managed supercapacitor-
battery systems (http://www.chargecar.org/data, (accessed on 20 March 2021)), Peachtree
Street dataset (https://www.webpages.uidaho.edu/ngsim/ATL/ATL.htm, (accessed on

http://data.dot.state.mn.us
http://data.dot.state.mn.us
https://www.hcilab.org/research/hcilab-driving-dataset
http://www.chargecar.org/data
https://www.webpages.uidaho.edu/ngsim/ATL/ATL.htm
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21 March 2021)), and a dataset of Tesla S model collected from an open-source German
website Spritmonitor (https://www.spritmonitor.de/, (accessed on 20 March 2021)) using
web scraping technique which is a simple way to extract all the data and information from
any website available on the World Wide Web in the form of images, data, and table. The
collected datasets are ready-to-use without the need for complex coding to convert HTML
data to data in the form of Excel, XML, CSV, or JSON.

Other datasets are private and not accessible to the public, such as data provided
by Google maps, which is due to the privacy of the vehicle information. The identified
datasets have different natures. For instance:

• Traffic flow data [127,153], which is a series of data points, indexed in time order,
gathered from different sources and applications such as Nokia Here [19] and Google
maps [54].

• Weather data [54] gathered from different Application Programming Interfaces (API)
to collect weather-related data such as temperature, sunset, speed, and direction.

• Sensors data (i.e., cameras, radar) [106,108,149].
• Geographic data retrieve information from geographic information system (GIS) [107],

GPS, and OpenStreetMap (OSM) [83].

In ML, the priority is not to choose the best algorithm, but to collect enough data.
Indeed, data are crucial for ML testing, validation, and monitoring of algorithms, with the
objective of building a predictive model. However, even with sufficient data, real-world
data are often incomplete and inconsistent and hence must be supplemented and improved.
Otherwise, ML models will be failures. Moreover, the low availability of data is still a
major gap.

3.2.2. How Datasets Are Prepared?

For ML algorithms to be properly trained and provide the expected results, the data
used must be clean, accurate, and complete. Thus, it is also necessary to understand
the data by which ML operates. A classification of data preprocessing tasks is proposed
in [178]: data integration, data transformation, data reduction, and data cleaning. Figure 3
shows a distribution of these preprocessing tasks in the selected studies over the years. The
total of percentages in Figure 3 exceeds 100, because some publications study more than
one data preprocessing task. As shown in this figure, data preprocessing tasks were little
investigated until 2017 and their use has been steadily increasing since 2018, mostly data
integration. The slowdown in 2022 is because only three months of the year are considered.
Table 2 shows each of the four categories of preprocessing tasks used in the selected studies.
The studies not shown in Table 2 do not provide any data preprocessing task.

Table 2. In which selected studies is used each of the four categories of preprocessing tasks (MQ1-b).

Preprocessing Tasks References N◦ of Studies

Data integration
[19–22,24–28,30–36,38,41,43,44,48–58,62–65,68–72,78,79,83–

89,92,93,95,96,98,102–104,106–111,114–117,119–122,124–129,131,134–
136,138,140,142–147,149,151–153,155,158,161,163,166,167,169–174]

105

Data transformation
[20,21,32,36,41,45–49,51,52,62–

64,68,69,75,88,92,94,95,103,109,116,120,121,133,136,138,141,144–
147,151,152,156,158,160,162,164,166,169,170,173]

46

Data reduction [20,38,48,49,51,52,62,83,85,91,94,95,107,115–
117,120,121,135,138,141,146,147,149,151,152,158,169,170] 29

Data cleaning [20,21,41,48,51,52,54,103,116,121,135,138,141,147,149,151,152,158,170] 19

https://www.spritmonitor.de/


Energies 2023, 16, 4897 9 of 39sEnergies 2023, 15, x FOR PEER REVIEW  9 of 39 
 

 

 

Figure 3. Distribution of data preprocessing tasks in the selected studies over the years 2008 to 2022 

(MQ1‐b). 

*As only the first quarter of 2022 is considered, we have multiplied the values of 2022 by 4 to make 

them consistent with those of the other years. 

Table 2. In which selected studies is used each of the four categories of preprocessing tasks (MQ1‐

b). 

Preprocessing Tasks  References  N° of Studies 

Data integration 

[19–22,24–28,30–36,38,41,43,44,48–58,62–65,68–72,78,79,83–

89,92,93,95,96,98,102–104,106–111,114–117,119–122,124–129,131,134–

136,138,140,142–147,149,151–153,155,158,161,163,166,167,169–174] 

105 

Data transformation  

[20,21,32,36,41,45–49,51,52,62–

64,68,69,75,88,92,94,95,103,109,116,120,121,133,136,138,141,144–

147,151,152,156,158,160,162,164,166,169,170,173] 

46 

Data reduction 
[20,38,48,49,51,52,62,83,85,91,94,95,107,115–

117,120,121,135,138,141,146,147,149,151,152,158,169,170] 
29 

Data cleaning  [20,21,41,48,51,52,54,103,116,121,135,138,141,147,149,151,152,158,170]  19 

Data integration tasks are most widely employed in 67% (105 papers) of the selected 

studies. The objective is to merge data from many sources into a unified data storage. The 

motivation  is  that  separate  data  are  insufficient  while  their  combination  generates 

information that can be sufficient for ML. For instance, Foiadelli et al. [54] combine data 

of  six  separate databases  of  various  routes  from  six different  regions  under different 

weather conditions. Another way for combining multiple datasets is used in [125] where 

two  datasets  are  used  separately.  Several  prediction models  are  trained  on  the  first 

dataset, and then the best performing model is re‐trained in the second dataset. However, 

by using data integration to merge these two datasets, it will give access to a large amount 

of  training data and help  increase  the performance of  the accuracy. There  are  several 

approaches to address the issue associated with insufficient data, which constitute a key 

obstacle to deploy ML models. Data augmentation is a helpful approach for designing an 

ML model since  it allows  researchers  to  increase  the size of  the  learning data without 

having  to  acquire new data  [125].  Fusion  of multi‐source dataset,  including historical 

Figure 3. Distribution of data preprocessing tasks in the selected studies over the years 2008 to 2022
(MQ1-b). * As only the first quarter of 2022 is considered, we have multiplied the values of 2022 by 4
to make them consistent with those of the other years.

Data integration tasks are most widely employed in 67% (105 papers) of the selected
studies. The objective is to merge data from many sources into a unified data storage.
The motivation is that separate data are insufficient while their combination generates
information that can be sufficient for ML. For instance, Foiadelli et al. [54] combine data of
six separate databases of various routes from six different regions under different weather
conditions. Another way for combining multiple datasets is used in [125] where two
datasets are used separately. Several prediction models are trained on the first dataset, and
then the best performing model is re-trained in the second dataset. However, by using data
integration to merge these two datasets, it will give access to a large amount of training
data and help increase the performance of the accuracy. There are several approaches
to address the issue associated with insufficient data, which constitute a key obstacle to
deploy ML models. Data augmentation is a helpful approach for designing an ML model
since it allows researchers to increase the size of the learning data without having to acquire
new data [125]. Fusion of multi-source dataset, including historical velocity data, video,
or image information, also can significantly enhance the training and performance of ML
models in optimizing energy consumption [179]. By combining different data sources, the
model can capture a more comprehensive understanding of the underlying patterns and
relationships within the energy system.

Concerning data transformation, Figure 3 shows that it is used in 29% (46 papers) of
the selected studies. Most of the 29% use feature scaling (also known as data normalization)
using techniques such as min–max. Feature scaling has various advantages [164] such
as: (1) it prevents features with higher numeric values from dominating those with lower
numeric values, and (2) it avoids numerical complications throughout the calculation. It is
recommended that each attribute should be linearly scaled to the range [−1, +1] or [0, +1].
Moreover, some ML algorithms are sensitive to feature scaling since they exploit distances
or similarities between data samples. The ML algorithms that require feature scaling are
mostly artificial neural networks (ANN), SVM, and k-nearest neighbors (KNN) [180,181].
On the other hand, the majority of studies ignore the importance of feature scaling and
waste the opportunity to have better training to increase the performance of ML models.
Only four studies [121,136,141,145] do not mention which techniques have been used for
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normalization. However, most of the selected studies do not use data transformation,
which is essential to have an accurate dataset, since it can improve the convergence rate
and eliminate the negative influence of one factor over another (i.e., to give features equal
chances) [160].

Concerning data reduction, Figure 3 shows that it is used in 18% (29 papers) of the
selected studies. Of these studies, [83,94,121] apply feature selection using different types of
methods, while [95,117,120] use feature extraction, and only one study [115] uses Pearson
correlation coefficient.

Concerning data cleaning, Figure 3 shows that it is used in only 12% (19 papers) of
the selected studies. The objective is to remove incorrect, corrupted, duplicate, outlier,
or incomplete information within a dataset. This result highlights the question of how
studies ensure good quality of information. Data cleaning is especially relevant for studies
that deal with data from different sources and manipulate IoTs or big data where the
transmitted information is exposed to many noises, such as the absence or failure of a
sensor in a certain period of time, the weather, data stability, etc. [116,120]. As provided
in [182,183], an interesting process that helps minimizing the impact of noise and bias in
the raw vehicle data and provides more reliable estimates of the true state variables of the
vehicle’s motion is Kalman filter. Based on this process, the authors of [182] proposed an
autonomous vehicle sideslip angle estimation algorithm based on consensus and vehicle
kinematics/dynamics synthesis. The results confirm that the proposed method is accurate
in various automated driving conditions.

Furthermore, for classification problems, data may be unbalanced. An unbalanced
dataset means a dataset with a minority class. In such a case, the model may try to fit
the majority class and then provide a biased prediction, which may result in a false sense
of accuracy (misleading accuracy). However, only one study [152] deals with the data-
balancing task using a proposed anchor (baseline) based strategy. The authors of [152]
find that solving the unbalance distribution of data achieves high performance. Moreover,
to deal with unbalanced datasets, there are many class-rebalancing techniques used in
the literature in other fields such as: over-sampling, under-sampling, and the synthetic
minority oversampling technique (SMOTE), etc. [184,185].

3.3. Features Adopted to Build the Models

The aim here is to identify the features (i.e., context variables) used to improve ECEV.
Various factors that influence ECEV should be controlled and taken into consideration. In
order to organize knowledge and facilitate the review results, it will be more suitable to
group all available features into categories according to their similarity and their sharing
of the same characters. Thus, all features are classified in a way that helps in predicting
the energy consumption of an EV when travelling on a road. Five categories of context
variables are identified, which implies a five-dimensional vector space. These context
variables are the main contributors to the energy consumed [99,114]:

• Vehicle context refers to vehicle characteristics that have a significant impact on energy
consumption, such as battery state of health, battery state of charge, battery capacity,
motor maximum power, vehicle mass, etc.

• Weather context contains weather indicators, such as temperature and humidity, that
influence the amount of energy consumed.

• Traffic context quantifies the state of traffic on a road segment within a given time
frame, such as traffic flow information, distance occupancy, time band, weekday, etc.

• Road segment context refers to the properties of the road segment that impact energy
consumption in a direct or indirect way, such as traffic lights, speed limit, number of
lanes, etc.

• Driver profile context refers to the driver’s habits, physical condition, and personality
of the driver. It also refers to the user’s driving attitude (e.g., more or less aggressive).

Figure 4 presents the evolution over the years of the context variables (features)
studied in the selected papers. The figure shows that traffic context is the most widely
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used (85%), followed in order by the other contexts: road (71%), vehicle (56%), weather
(24%), and driver profile (17%). The total of percentages in Figure 4 exceeds 100, because
some publications study more than one context. Moreover, from the figure, we found
that contexts were little investigated until 2016 and their use has been steadily increasing
since 2017. Traffic and road segment contexts arouse the most interest, followed by vehicle
context. The slowdown in 2022 is because only three months of the year are considered.
Table 3 shows in which selected studies is used each of the five contexts. The studies not
shown in Table 3 do not provide any information about the context type.
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Table 3. In which selected studies is used each of the five contexts (MQ2).

Contexts References N◦ of Studies

Traffic context [19–22,25–39,41–52,54–58,60,62–73,75,77–79,81–89,91–99,101,103–
111,114–120,122,124–151,153,155–160,163–172] 134

Road segment context

[19,20,22–25,27–39,41,43–49,53–55,57,60,62,65–
67,69,70,72,73,75,77,78,84–87,89,90,94–

99,101,105,107,108,111,114,115,122–141,143–145,147–149,151–
153,155–161,163–174]

111

Vehicle context

[20,22–25,27–31,33–39,41,43–49,53–55,57,60,62,66,67,69,70,72–79,81–
83,90,91,93,96,99,100,102,105,111,113,114,120–122,129,130,134,137–

140,143–145,147,149,151,152,154,155,158,160–162,165–
168,170,171,173,174]

88

Weather context [19,20,23,26,35,41,43,48,51,52,54,64,68,71,75,83,87,99,103,105,111,114,
120,125,126,130,137,138,145,147,149,151,152,166,170,171,174] 37

Driver profile context [20,26,35,41,54,59,64,86,93,96,99,103,105,109,111,114,122,130,137,143,
145,151–153,155,170] 26
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From the selected studies, speed is noticed as a principal component to optimize the
energy consumption of the vehicle. It can be exploited in two ways. First, as a feature used
as input for ML algorithm. The speed profile, used as input, has an important impact factor
along the selected route, since it influences the required propulsion energy and the travel
time, which determines the necessary energy. Other features could be generated from the
speed such as acceleration, deceleration, average speed, speed standard deviation, average
acceleration, average deceleration, etc., [87] that help to train ML algorithms to optimize
energy consumption. Second, speed can be exploited as an output for the predictive ML
model. The speed could be used as the final result to be predicted by controlling the vehicle
speed to have a better consumption of the energy. The mapping between the features
and vehicle speed is highly nonlinear and complex. Moreover, the challenge is to choose
the minimum information that is available with speed, taking into consideration all the
provided features to have an accurate predictive model. However, until today researchers
do not have a clear vision of the exact and sufficient features that should be applied in ML
algorithms with the objective to minimize energy consumption.

Thus, several studies [96,111] build their ML models based on more than ten features
as inputs, without giving importance to prioritizing their features and keeping the most
essential ones. The authors of [96] propose an ML-based method for predicting ECEV
in real-world driving circumstances. The test results show that a value of 0.159 kWh of
root mean square error (RMSE) and 12.68% of mean absolute percentage error (MAPE) is
obtained under real-world driving circumstances. Moreover, the selection of the inputs
becomes more important when the number of features is very large [9]. Globally, all features
to create a predictive model maybe not needed, only those features that are important
and have a direct influence on the output should be used. On top of that, selecting the
right features enables the ML algorithms to train faster, reduces the complexity of a model,
increases the accuracy of the model, and decreases the overfitting. To this end, identifying
the relevant features to use as inputs should be realized using feature selection methods
and features engineering. If possible, it is therefore relevant to find an optimal choice of
the features.

3.4. Types of Roads Investigated

MQ5 is about the types of roads that have been studied in the ECEV. From observations,
the energy optimization using ML could be studied at three different levels of routes:

• Highway which provides a high speed of movement and is typically a long-term travel
(e.g., few hours, few hundreds of km).

• Rural has a high mobility but a low degree of access and is typically a medium-term
travel (e.g., some minutes, few km).

• Urban (local) has a high degree of access but lower mobility and is typically a short-
term travel (e.g., few hundred seconds, few km).

Figure 5 presents the evolution over the years of the use of the three categories of
road types in the selected papers. The figure shows that 81% (127 papers) of the selected
studies use “urban” roads to experiment ML models, followed by “highway” with 52%
(82 papers), and “rural” with 33% (52 papers). The total of percentages in Figure 5 exceeds
100, because some publications study more than one road type. Moreover, from the figure,
we found that until 2016, few studies investigate road types, and from 2017 there has been a
continuously growing interest in studying road types. Urban roads have attracted the most
marked interest in 2021. The slowdown in 2022 is because only three months of the year
are considered. Table 4 presents the three categories of roads used in the selected studies.
The studies not shown in Table 4 do not mention the road type used in their experiments.
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Table 4. In which selected studies is used each of the three categories of roads (MQ3).

Road Types References N◦ of Studies

Urban [19,20,22–38,41–45,47,49–58,60,65–73,77–79,83,85–92,94–108,110,111,113–
115,117,119–123,125–141,143–147,149–151,153,155–161,163–170,172–174] 127

Highway

[19–22,24,25,27,28,30,32–35,38,44,45,49,53–55,57,60,64,66,69,70,73,84,86,88–
91,93–99,101,102,105,107,108,112,113,115–119,121,122,124–126,129–

132,134,135,137,139,141,142,144,146,149–151,157,161–
163,165,166,169,170,172,173]

82

Rural
[19,22,24,25,27,28,30,33–35,38,44,45,49,53–55,57,60,66,69,70,90,91,94–

96,98,99,102,103,105,107,115,116,119,130–
132,134,137,139,141,144,146,151,157,165,166,169,170,173]

52

Distinguishing between highway, urban, and rural consumption is justified by the
fact that each road type requires a distinct way of driving [186]. In the city, shorter trips
home to work, driving the kids to school, going to the supermarket and the mall, etc.,
are made. In this case, repetitive stops at traffic lights, stops, pedestrian crossings, school
crosswalk, shops, incidents on the road, and traffic jams happen. Even when moving,
driving is performed in a transient mode, such as accelerating, decelerating, and braking.
However, on the highway, longer journeys, without regular stops are the pattern, which
means vehicles run more at a steady speed. The rural is less investigated due to the lack of
infrastructures in rural areas compared to urban areas. Furthermore, the effects of the road
type on rolling resistance, and therefore on energy consumption, are not well established
yet. The authors in [187] demonstrate that the energy consumption throughout a driving
cycle is directly affected by the accelerating stages, and that EV consumes less energy when
driving more slowly [188].



Energies 2023, 16, 4897 14 of 39

3.5. ML Algorithms, Configuration and Software Tools Used
3.5.1. ML-Based Algorithms Used and How They Are Tuned

Many algorithms have been used in the literature to generate models that help in
minimizing ECEV. The aim of this section is to identify those algorithms that are ML-based
and determine how they are tuned. The identified algorithms are presented in Table A2 (in
Appendix A), while Figure 6 shows the distribution of categories of the algorithms at three
levels. Purely statistical algorithms are also considered in Figure 6 and Table A2, because
they are used in studies that also use ML algorithms and compare the two categories (ML,
statistical). The total percentage in each of the three levels of Figure 6 exceeds 100%, because
some publications study more than one category of that level.
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Figure 6. Distribution of categories and subcategories of ML and statistical algorithms (MQ4-a).

Statistical algorithms adopt a predefined form of function that relies on the indepen-
dent variables and the dependent variables. Only 17% (27 out of 156 studies) use statistical
algorithms, where the Markov chain (MC) is used in 12 empirical studies. Due to the fact
that MC does not generally use many inputs, it does not produce strong prediction results
compared to the ML model [125].

In [125,127], ML and statistical algorithms are considered and compared for speed
prediction of hybrid EV. In general, ML algorithms provide more accurate predictions, while
statistical algorithms can produce sure information for the prediction results. The authors
of [127] demonstrate that MLP performs efficiently as a prediction method compared to
other algorithms such as auto-regressive (AR). The authors of [125] find that the long
short-term memory (LSTM) deep neural network shows the best performance among auto-
regressive moving average (ARMA), nonlinear auto-regressive eXternal model (NARX),
LSTM, MC, and conditional linear gaussian. Compared to ML and deep learning (DL),
auto-regressive integrated moving average (ARIMA) requires less historical data to make
predictions with high accuracy and low complexity [93]. However, it does not give good
results for vehicle speed prediction [125]. Statistical algorithms are easy to understand and
fast to learn. However, they are considered black-box solutions and highly dependent on
the dataset [93,116].

The use of ML algorithms in the 156 selected studies is motivated by the difficulty of
handling complex data and the ability of ML to perform better in various fields such as
face recognition [189], e-health [190], and software engineering [11]. Let us consider the
three categories of ML algorithms [9] (SL, UL, RL) introduced in Section 1.3.

Supervised learning (SL): Of the 156 selected studies, 106 (68%) use SL algorithms.
Three main types of SL algorithms are identified: individual ML algorithms, ensemble ML
algorithms, and DL algorithms.

Individual ML algorithms (IMLs): are the most widely used in 86 studies (81% of
106) due to their high performance in several ECEV studies [54,114,115,127]. Among the
86 studies, ANN algorithms are the most used with 58 studies. ANN algorithms have
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gained great attention since they are exploited to design energy management strategies
(EMSs) based on ML [141]. ANN is the approach that most closely resembles the behavior of
a human neuron, since it is inspired by the way the human brain processes information [91].
Generally, the selection of input and output variables for an ANN significantly affects the
network performance and its utilization/generalization [87]. For instance, Vatanparvar
et al. [86] implemented a driving behavior model using ANN based on the historical
information about drivers’ reactions and route speed from google maps. The results show
that the model proposed using ANN achieves a higher accuracy if the future vehicle speeds
are known. In such a case, the controller can save up to 82% of the maximum energy and
can improve the battery lifetime. Other types of ANN are used in various studies such
as back propagation neural network (BPNN) and MLP in 12 and 10 studies, respectively.
The main reasons behind using different types of ANN are their ability to deal with large
amounts of data and high performing results [144]. However, with all these benefits, ANN
algorithms are of a “black box” nature, i.e., it is difficult for academics and specialists to
understand why ANN algorithms make the outcomes they do, since the numeric values
produced by the ANN are difficult to trace back [87]. After ANN, the second most widely
used individual ML algorithm is support SVM in 27 studies. SVM is a well-known ML
algorithm used for both classification and regression problems [95]. Its performance has
been analyzed in different contexts, and proven to be more sensitive to hourly fluctuations
and giving better performance [95]. Sixteen studies use decision trees (DT) and fourteen
other studies use k-nearest neighbor (KNN).

Ensemble ML algorithms (EMLs): are SL algorithms that combine at least two base
models in order to have better accurate models. The shift towards using ensemble algo-
rithms has emerged recently since no individual learning algorithm can be considered the
best and most accurate in all applications. Thus, combining the results of each individ-
ual model generated using training samples helps in reducing the error rate [86]. Only
twenty-five studies (twenty-three percent of one hundred and six) use ensemble algorithms
where random forest (RF) is the most used algorithm in eight studies, followed by gradient
boosting decision tree (GBDT) in six studies, adaptive boosting (AdaBoost), bagging, and
extreme gradient boosting (XGBoost) in three studies each one, light gradient boosting
machine (LightGBM) and stacked generalization in one study each one. As already known,
different EML algorithms may have different biases and make different assumptions about
the dataset in the training phase. A potential solution is to combine multiple EML al-
gorithms to create a more robust and accurate prediction model. This solution can help
increase the stability, robustness, and handle complex relationships of the prediction model.
Since it will aggregate predictions from multiple models, it could also handle noise, outliers,
and uncertainties in the data more effectively.

DL algorithms: inherit the benefits of traditional neural networks [119]. It can examine
the deeper possible link between historical and future driving data, which is very relevant
for predicting short-term vehicle speed [119]. A total of 31 studies (29% of 106) use DL
algorithms. LSTM is the most used algorithm in DL category in seven studies, followed
by recurrent neural networks (RNN) and deep neural network (DNN) in five studies
each. The prediction methods based on DL can add a memory function to their neurons
to realize information memory, investigate the characteristics of data, and learn from
multi-level features [119]. For instance, Du et al. [119] propose a DL model using RNN
and LSTM algorithms to estimate the future vehicle speed. The results show that LSTM
performs well when dealing with the time series produced by vehicle speed data. Xu
et al. [88] study game-theoretic energy management with velocity prediction for hybrid EV,
combining engine generator, battery, and ultracapacitor. The authors explore and combine
the effects of two kinds of DL algorithms on velocity prediction: recurrent neural network
(RNN) is combined with long short-term memory (LSTM), which results in a method
called RNN-LSTM. The results suggest that using RNN-LSTM performs better with up to
a 6.84% decrease in battery power variation and 8.21% increase in battery usage power
compared to the basic game-theoretic strategy without velocity prediction. Moreover, it can
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produce little energy from the engine generator and higher battery–ultracapacitor average
energy difference.

Unsupervised learning (UL): Of the 156 selected studies, only 3 studies (2%) [111,133,156]
use UL algorithms. Kretzschmar et al. [111] present an approach using the x-means
algorithm to predict the energy loss of an EV in a safe way for urban roads. In fact, the
clustering process creates a constant converging error value. To this end, the authors of [111]
create a lightweight and adaptable model that eliminates the need for recurring modelling.
Shi et al. [133] propose a new EMS by combining the kernel fuzzy C clustering (KFCM) and
multi neural network (MNN). The results reveal that the proposed EMS is a quasi-optimal
control strategy and achieves good learning ability for dynamic planning. Zhang et al. [156]
develop a new EMS using expectation maximum (EM) clustering algorithm and SVM
to train the used dataset. The authors of [156] use cloud computing and the internet of
vehicles to solve the conflict between fuel efficiency optimization vs. battery state of health
preservation, and between global optimality vs. real-time capability. The results show that
the proposed EMS can minimize, in real time, the battery life loss and the total cost of fuel.

Reinforcement learning (RL): Of the 156 selected studies, 51 (33%) use RL algorithms.
Han et al. [65] propose a new model using double deep Q-learning (DDQL) to optimize the
fuel consumption and compare it to the conventional deep Q learning-based model. The
results show that the suggested method outperforms the conventional deep Q learning-
based strategy and reaches 93.2% level of dynamic programming benchmark. The main
benefit of the DDQL algorithm is its good performance in the battery state of charge
retention with different initial values. He et al. [76] aim to control the driving behavior
and reduce the energy consumption by managing the acceleration pedal travel changing
travel on each step of an acceleration process. The authors of [76] train and compare two
RL algorithms Q-learning (QL) and deep Q-learning (DQL). The results suggest that DQL
is more stable and that it may be able to give a more stable control approach suited for
practical use. Xu et al. [105] present a RL-based EMS for hybrid EV using QL algorithm.
The authors of [105] split the torque between the engine and electric machine by integrating
the QL in the EMS. The results suggest that QL-based EMS can reduce the fuel consumption
of the EV, and the increasing number of states improves fuel economy. Through these
studies, the usefulness of RL which mainly focuses on QL algorithms and its derivatives
(deep Q-learning, double Q-learning, etc.), could be understood, because it takes into
account that the environment changes regularly and learns by assuming that the system is
moving optimally.

Figure 7 shows the evolution over the years of the use of ML-based algorithms in
the selected papers. ML-based algorithms were little studied until 2016 (19 studies), and
from 2017 there has been a continuously growing interest in using the different categories
of ML-based algorithms. The use of various ML-based algorithms is motivated by the
desire the obtain high performance prediction models. Individual algorithms have always
attracted the greatest interest. The decrease in 2022 is because only three months of the year
are considered.

Table 5 presents the main advantages and challenges of different categories of ML
algorithms in ECEV field.
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Table 5. Advantages and challenges of ML-based ECEV algorithms (MQ4-a).

Category of
Algorithms Advantages Challenges Ref.

IML

- IMLs are most used in the literature, and
they are simple to use.

- IMLs have a lower time complexity
compared to other categories of algorithms.

- The size of the dataset affects
the performance of the model,
which means that the predictive
ability and effectiveness of an
IML decreases as the
dimensionality increases.

- IMLs suffer from a weak
performance in an unbalanced
dataset that contains labels with
various probabilities of
occurrence and in multi-label
classification.

[9,131,171]

EML

- EMLs can outperform IMLs when
handlining massive data by combining two
or more ML algorithms (e.g., IML
algorithms) to produce one optimal
predictive model.

- EMLs have higher predictive accuracy for
solving multi-label classification tasks, they
can help to reduce variance and bias using
bagging and boosting algorithms,
respectively.

- EMLs are not always better, for
example, a model with high
variance leads the model to
overfit, and high bias leads to
underfitting.

- It is hard to find a good balance
between variance and bias, a
wrong selection of parameters
leads to lower predictive
accuracy than an IML.

[102,138,152,191,192]

DL

- DL algorithms work effectively with large
and complicated datasets.

- DL can be adaptable to new problems
because of their flexibility.

- DL handles noisy and complex data,
particularly when using multi-source
datasets, since they add a spatial
dimension to the analysis, allowing the
model to understand the physical context
and environmental factors that influence
energy consumption for better learning.

- DL algorithms, such as feature
concatenation, allow the model to effectively
integrate and extract relevant information
from different sources, enhancing its ability
to capture complex dependencies and
improve its overall performance.

- DL algorithms require a vast
amount of data in order to
perform better than another ML
algorithm.

- By reason of the complexity of
neural networks, training and
adjusting parameters are
exceedingly costly.

[44,119,193]

UL

- UL algorithms are less complex in
comparison with other categories, there is
no need for deep preparation of the data
before the training of the model.

- For UL, it is frequently simpler to obtain
unlabeled data.

- The generated predictions of UL
are not always beneficial to the
system, because there is no label
measure to confirm their utility
and they require human
intervention to evaluate the
performance of the model.

[111,133,156,194]

RL

- RL algorithms are auto-evaluators since
they can fix the error that happened during
the training phase, the chances of the same
error occurring again are extremely low.

- They are good for dealing with complex
situations.

- RL algorithms require a high
infrastructure for the training
process to train in a
reasonable time.

- RL algorithms need to develop
relevant benchmarking to
conduct comparison studies
between models to determine
the effectiveness of RL.

[65,76,132,195]
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In summary, the state-of-the-art technology has revealed that electric energy storages
have very complex properties which, in some studies, might infer the consumption mod-
els used [111]. Thus, choosing the best ML algorithms is highly important due to their
direct influence on ECEVs. This choice may be completed by identifying the strengths
and weaknesses of each ML algorithm used for ECEV in terms of complexity, computa-
tion time, interpretability, and scalability which have not been conducted in the previous
studies. For example, DL algorithms can handle noisy data and outliers to some extent
due to their ability to learn complex relationships [9]. This advantage is approved in other
applications, such as detecting tassels in RGB UAV imagery, and leverages the power of
DL to achieve accurate object detection [193]. Thus, it could be interesting to explore the
insights gained from the above work with the analysis of traffic context to explore the rela-
tionship between traffic conditions and energy consumption in electric vehicles. Moreover,
the performance of ML algorithms is highly influenced by their hyperparameters. Thus,
optimizing them is required. Of the selected studies, only 22 studies use optimization
methods, 10 studies use Grid search (GS) [43,51,52,71,83,106,141,158,164,165], 5 studies the
use genetic algorithm [96,100,115,140,169], 4 studies [36,160,165,173] use particle swarm op-
timization (PSO), and 2 studies use random search [132,146]. Other optimization methods
are less used such as Bayesian optimization [132], Fine-tuning [138], least mean squared
(LMS) optimization [162], lightning search algorithm, backtracking search optimization,
and gravitational search algorithm [160], each one being used in only one study. GS is an
optimization method that is based on searching all the possible combinations of parameter
values of a given technique and evaluating them, and the best combination is considered
when fitting on a dataset [141,164]. The genetic algorithm is an optimization and search
method that simulates an evaluation process in order to minimize or maximize a target
function [96].
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3.5.2. Software Tools and Programming Languages

Techniques and tools used to predict EV energy consumption are computationally
intensive and require software tools for their use. Figure 8 shows the evolution over
the years of the most used software tools and programming languages in the selected
papers while Table 6 presents the tools used for each study. We note that some studies do
not provide the tool used, therefore they are not presented in Figure 8 and Table 6. The
most used tool is Matlab® in 63 of the selected studies (40%). Developed by MathWorks
(https://www.mathworks.com/products/matlab.html, (accessed on 13 February 2021)),
Matlab® is a simple to use platform for developing algorithms, models, and analyzing
datasets. The second most used tool is Weka (https://www.cs.waikato.ac.nz/ml/weka/,
(accessed on 14 February 2021)) (in only two studies) provides several ML algorithms for
use in data mining area, which includes several ML tasks such as classification, regression,
clustering, association rules for SL, data preparation, and data visualization. From the
results, there seem to be few support tools for ECEV algorithms. In general, the tools are
limited in their use since they do not give various choices for possible parameters of ML
algorithms, which could limit the appropriate usage of ML algorithms in the industry. We
note that contrary to research studies (see Figure 8), programming languages are more used
than Matlab and Weka in the industry since they offer more choices to construct ML models.
From Figure 8: 18% of the 156 selected studies use software prototypes developed in
Python, since it is simple, consistent, and based on open-source libraries of ML algorithms,
such as Tensorflow, Keras, and Scikit learn, two studies use C++, only one study uses C#,
and another single study uses R language.
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We can also notice from Figure 8 that until 2016, few studies (only 11 studies) indicate
the software or language used. Since 2017, Matlab and Python have by far been the largest
and most growing use. The decrease in 2022 is because only three months of the year
are considered.

https://www.mathworks.com/products/matlab.html
https://www.cs.waikato.ac.nz/ml/weka/
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Table 6. Tools and programming languages used in the selected studies (MQ4-b).

Tools/Prog. Lang. Ref. N◦ of Studies

Matlab
[19,22–25,28,35,36,38,47,57,58,62,63,66–68,73,76,79–82,86,89,97,98,100–

102,105,108,110,113,115,121–126,130,133–136,141,143,145,150,153,155–157,160–
162,164,165,169,171,172,174]

63

Weka [83,103] 2

CANalyzer [104,130] 2

VISSIM [50,117] 2

SUMO [40,56,72,122,128,143,172] 7

PSAT [90,91,94] 3

Python [26,30,34,35,48,51,52,54,55,59,62,65,71,81,82,84,88,116,122,125,126,132,136,140,
141,147,148,152,158] 29

C++ [99,124] 2

C# [131] 1

R language [167] 1

Other tools are used for simulations to accelerate the vehicle configurations and model
vehicle powertrains, such as the Powertrain Systems Analysis Toolkit (PSAT) in [90,91,94].
Traffic simulation software is used to simulate complex vehicle interactions and handle
large networks, such as the microscopic traffic simulator SUMO in [122,128,143,172] and
the traffic simulation software VISSIM in [117]. To analyze and simulate network commu-
nication, the vector CANalyzer software tool is used in [104,130].

3.6. Evaluation Measures and Validation Methods

To determine how accurate the ML algorithms are, a set of 32 evaluation measures are
used in the studies to evaluate the ML algorithms’ performances. Figure 9 presents the
6 evaluation measures that are most used over the years, where the total of percentages
exceeds 100, because some publications study more than 1 evaluation measure, while
Table 7 presents in which selected studies is used each of the 6 evaluation measures. Note
that Table 7 includes only the evaluation measures that are used in more than five studies.
Root mean square error (RMSE), which is a measure of precision based on sample errors [32],
is the most frequently used with 41% (64 studies). RMSE is followed by mean absolute
error (MAE) with 22% (35 studies), mean square error (MSE) with 16% (25 studies), mean
absolute percentage error (MAPE) with 15% (23 studies), coefficient of determination (R2)
with 5% (12 studies) and correlation coefficient (R) with 5% (8 studies). Additionally, as can
be seen from Figure 9, evaluation measures were little studied until 2016, and from 2017
there has been a continuously growing interest in studying evaluation measures, mostly
RMSE. The decrease in 2022 is because only three months of the year are considered.

Table 7. In which selected studies are used each of the five evaluation measures (MQ5).

Evaluation Measures Ref. N◦ of Studies

RMSE [19–21,26,32,33,41,43,50,52,56,63,68,70–72,84,87–89,93,95,96,98,100,101,103,104,107–
110,112,115–124,127–129,136,142,145–148,151–155,157,159,160,169–172] 64

MAE [19,26,33,35,41,44,51,52,64,68,71,72,84,86,88,92,95,96,107,109,113,116,119,120,123,125,
126,140,147,151–154,160,166] 35

MAPE [26,43,64,78,83,84,88,93,95,109,110,114,116,143,144,147,151,152,154,160,164,167,170] 23
MSE [26,35,57,59,64,68,80,87,90,91,95,97,113,118,121,130,133,134,138,140,147,153,160,165,171] 25

R [32,38,54,87,99,100,115,154] 8
R2 [35,41,48,51,52,71,100,145–147,169,170] 12
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The same indicator is used in MAE and MAPE, and also the same indicator is used
in RMSE and MSE [196]. However, most studies use RMSE and MAPE rather than MSE
and MAE, respectively, to reduce the amount of calculation [95,107]. The lower value of
MAE, MAPE, RMSE, and MSE implies higher accuracy of the associated model [160,172].
Moreover, a higher value of R and R2 is considered desirable [170]. Other evaluation
measures are less used such as accuracy and max absolute relative error (MaxARE), each
one being used in only two studies. From the analysis of the results, to select the more
appropriate evaluation measure for each context, we may consider several elements such as
the objectives of each ML algorithm (if it is a regression problem, or a classification problem,
etc.), and the characteristics of the datasets, especially for the classification task where the
dataset can be either balanced of unbalanced.

Concerning the validation methods, 25 of the selected studies use them to assess the
prediction accuracy of ECEV models. As can be seen in Figure 10, the cross-validation
method is the most frequently used in 15 studies [36,47–49,64,71,102,106,109,111,115,120,
121,160,164], followed by 10-fold cross-validation in 10 studies [41,43,51,52,83,103,141,
147,165,170], 5-fold cross-validation in 6 studies [91,94,108,152,158,167], then 3-fold cross-
validation in 3 studies [92,93,152]. Less studied cross-validations methods are not shown
in Figure 10, such as 1-2-4-fold cross validation [152], 6-fold cross validation [137], 8-fold
cross validation [146], 9-fold cross-validation [122], and leave-one-out cross-validation [83]
which are in only 1 study each. The cross-validation methods are used for the estimation
of the general error [94]. cross-validation has the advantage to yield more robust results.
It makes full use of the data, i.e., all available data are used both for training and testing.
Hence, the diversity and adequacy of the evaluation are achieved [43].
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3.7. Resolution Approaches and Training Architectures

The aim is to determine and assess the resolution approaches and training architectures
used in the selected studies. Figure 11 shows the evolution over the years of the two most
used resolution approaches in the selected papers: ML-based speed profile prediction, and
ML-based EMS, while Table 8 shows the resolution approaches used in each of the 156
selected studies. A total of 32% of the 156 selected studies (50 papers) use ML to develop
an EMS (ML-based EMS), while 22% of the selected studies (35 papers) deal with energy
management using ML for EV by predicting the speed profile which is the factor that most
influences energy consumption for EV. The use of ML-based speed profile prediction has
been studied since 2008, but by few papers until 2016. From 2017, both approaches are used.
We note a decrease in the use of ML-based speed profile prediction since 2020 compared
to the use of ML-based EMS which increases in 2021. This increase can be explained by
the interest of ML-based ECEV researchers, not only to predict speed profile, but also to
integrate the predicted speed in an EMS to obtain the energy consumed. The decrease
in 2022 is because only three months of the year are considered. The remaining 46% of
studies use ML to optimize the energy by using different aspects such as the state of charge
prediction [154], the travel-time prediction [164], etc., without presenting a well-defined
strategy for energy management.

Speed prediction is the topic where researchers most apply ML algorithms to EVs
till 2019. For instance, Chen et al. [98] propose an EMS for hybrid EVs that structures
the energy management algorithm into two levels for optimal energy distribution. They
propose and evaluate a neural network model based on radial basis function over six
driving cycle datasets using RMSE evaluation measure. The results demonstrate that the
proposed EMS may enhance fuel efficiency and increase the accuracy of speed prediction
in hybrid EVs. Liu et al. in [125] apply several deterministic and stochastic approaches for
hybrid EV speed prediction. The results suggest that LSTM performs best in terms of MAE
measure. An improved study has been published later by the same authors in [126] that
proposes the integration of the best model presented in [125] into their EMS to increase the
fuel economy and minimize energy consumption for hybrid EVs. Most ML-based speed
profile studies predict speed values to address a regression time series problem rather than
predicting the speed in a continuous domain; hence, an infinite number of possible values.
A complementary study that may be promising is to investigate the use of ML algorithms
for classification problems for fully EV, where the objective is to predict the category (or
class) of the speed in a finite (hence discrete) domain. Recently, the researchers began to
investigate this issue. For instance, the authors of [141] propose a driving mode predictor
(DMP)-based EMS which calculates automatically the power to take from the battery and
the supercapacitor as two different sources of energy for EV, in real time, based on the
speed history. The authors of [141] develop an ML-based method to design a DMP that
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predicts the driving mode in real-time considering four classes: low, medium, high, and
extra-high. The obtained DMP is integrated into an EMS and validated. The results show
that the proposed DMP-based EMS achieves up to 39% current fluctuation reduction and
86% peak current decrease in a critical period over a real-world driving cycle. Thus, the
proposed DMP-based EMS will be a good choice to save the battery lifespan for EVs.
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Table 8. Resolution approaches used in each of the selected studies (MQ6).

Resolution
Approaches References N◦ of Studies

ML-based EMS [23–25,27,29–31,33,35–37,39,40,42,45,49,53,55,58,60,61,65–67,69,70,73,74,77,88,
90,91,98,100,104,105,113,126,129,132,133,135,136,139,141,146,149,156,166,174] 50

ML-based speed
profile prediction

[19–21,26,28,32,44,50,56,63,72,84,89,92,93,95–97,101,112,115–119,122–
125,127,128,131,142,153,159] 35

Other ML-based
approaches Other studies in [19–174] 71

Since 2020, there has been a considerable rise in research interest in ML-based EMS, to
improve the performance of EMS for EVs. The approach consists of combining ML and
optimization methods by applying learning procedures where both the predictions and the
energy consumption are jointly optimized. The authors of [29] introduce an ML-based EMS
for EV. The TD3 algorithm is used to create an intelligent EMS for EVs that is integrated
with a heuristic rule-based local controller to minimize excessive torque allocations in
electric motors, while considering battery charging characteristics. In [37], the authors
propose an ML-based EMS with a hierarchical structure for the DQL algorithm to obtain
the optimal energy management solution. The experimental findings suggest that the
proposed ML-based EMS consumes less energy, compared to existing RL models. The
authors of [27] propose a self-supervised reinforcement learning-based EMS for HEV based
on a DQL algorithm. The results show that the proposed RL-based EMS achieves faster
training convergence and lower fuel consumption compared to the traditional approach.
Moreover, the authors found that the fuel economy of the proposed model may be able to
achieve a global optimum under their new driving cycle.
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Traditionally, ML is performed offline, which is termed as offline learning. Figure 12
presents the distribution of offline and online architectures over the years in the selected
ML-based ECEV studies, and Table 9 lists in which selected studies are used offline and
online training architectures. A total of 26% of the selected studies use offline ML algorithms
to minimize battery degradation and energy consumption, especially for hybrid vehicles,
while only two studies (3%) use an online learning [106,142]. The remaining 71% of studies
do not indicate which training architecture they use. Moreover, the offline architecture has
been used since 2008 but its use has only grown since 2018. The online architecture has
been used since 2019 by a few studies (one per year). We cannot draw any conclusion from
the decrease in 2022 as only three months of the year are considered.

sEnergies 2023, 15, x FOR PEER REVIEW  25 of 39 
 

 

for optimal control settings based on 11 driving cycles. The proposed model performs 

within less than 0.15% compared to the optimal dynamic programming. The authors of 

[107] propose an offline approach based on vehicle speed prediction using statistical and 

ML  algorithms.  The  results  suggest  that  BPNN  performs  better  than  SVM,  and  the 

accuracy  is  about  95%.  Jiang  and  Fei  [122]  present  an  offline  two‐level  approach  for 

motorway vehicle speed prediction using two algorithms: NN and Hidden Markov. In 

the first level, the proposed model is trained using historical traffic data and vehicle speed 

information.  In  the  second  level,  the Hidden Markov algorithm  is used  to predict  the 

speed using traffic predictions from NNs estimated in the first level. 

However,  predictors  based  on  offline  ML  algorithms  have  several  drawbacks 

[106,142]:  (1)  their performance  is highly dependent on  the  initial dataset used  for  the 

training and the predictive model  is constant even  if the driving conditions of EVs are 

changing, (2) they produce only one final and non‐changeable model, with all the datasets, 

and (3) their performance, under any new driving conditions, should be reassessed and 

tested. Moreover, the offline ML models cannot adapt to the changeable driving situations 

and novel conditions because of the lack of an updating mechanism, which results in poor 

performance [106,142]. 

In  light of  the  aforementioned  research gaps,  and  for more  adaptability  to novel 

driving conditions and environments, an online ML model can be a  relevant  solution. 

Instead of designing once for all the predictors from the initial available data (which is the 

case of the offline ML), online ML consists of regularly updating the predictor by regularly 

considering the new data collected from the vehicle. Intuitively, the more the vehicle is 

used,  the more  the predictor understands  the driving  conditions  and  can  adapt  to  its 

evolutive environment. 

 

Figure 12. Training architectures investigated over the years 2008 to 2022 (MQ6). 

*As only the first quarter of 2022 is considered, we have multiplied the values of 2022 by 4 to make 

them consistent with those of the other years. 

Table 9. In which selected studies are used offline and online training architectures (MQ6). 

Training architecture  References  N° of studies 

Offline 

[23,32,35,38,45,47,49,51,55,57,59,73,79–

83,86,88,91,94,103,107,109,110,116,122,128,131,133,134,136,141,149,156,157,1

59,161,162,169] 

40 

Online  [31,33,74,106,142]  5 

   

Figure 12. Training architectures investigated over the years 2008 to 2022 (MQ6). * As only the first
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with those of the other years.

Table 9. In which selected studies are used offline and online training architectures (MQ6).

Training Architecture References N◦ of Studies

Offline [23,32,35,38,45,47,49,51,55,57,59,73,79–83,86,88,91,94,103,107,109,110,116,122,
128,131,133,134,136,141,149,156,157,159,161,162,169] 40

Online [31,33,74,106,142] 5

The building models perform the training offline, which means that the prediction
model is constructed once in the training phase and cannot be updated with new data.
Therefore, over time, when the model gets out-of-date and does not work perfectly in the
way that it should, it becomes necessary to re-train the model with more or newer data
and then update the system which includes the new model. The authors of [94] present
a vehicle power controller by proposing an offline ML algorithm to build a knowledge
base for optimal control settings based on 11 driving cycles. The proposed model performs
within less than 0.15% compared to the optimal dynamic programming. The authors
of [107] propose an offline approach based on vehicle speed prediction using statistical and
ML algorithms. The results suggest that BPNN performs better than SVM, and the accuracy
is about 95%. Jiang and Fei [122] present an offline two-level approach for motorway
vehicle speed prediction using two algorithms: NN and Hidden Markov. In the first level,
the proposed model is trained using historical traffic data and vehicle speed information.
In the second level, the Hidden Markov algorithm is used to predict the speed using traffic
predictions from NNs estimated in the first level.

However, predictors based on offline ML algorithms have several drawbacks [106,142]:
(1) their performance is highly dependent on the initial dataset used for the training
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and the predictive model is constant even if the driving conditions of EVs are changing,
(2) they produce only one final and non-changeable model, with all the datasets, and
(3) their performance, under any new driving conditions, should be reassessed and tested.
Moreover, the offline ML models cannot adapt to the changeable driving situations and
novel conditions because of the lack of an updating mechanism, which results in poor
performance [106,142].

In light of the aforementioned research gaps, and for more adaptability to novel
driving conditions and environments, an online ML model can be a relevant solution.
Instead of designing once for all the predictors from the initial available data (which is the
case of the offline ML), online ML consists of regularly updating the predictor by regularly
considering the new data collected from the vehicle. Intuitively, the more the vehicle is used,
the more the predictor understands the driving conditions and can adapt to its evolutive
environment.

4. Current Trends, Future Perspectives, and Validity
4.1. Current Trends

A set of 156 ML-based studies of ECEV has been rigorously selected and analyzed
using SMS. The search has been conducted in six digital libraries. The analysis of the
156 papers results in answering a set of six MQs. The answers to the MQs elaborate the
following trends (which are discussed in detail in Section 3):

1. Several datasets are used in the literature, especially traffic flow data, weather data,
sensors data, and geographic data. For data preprocessing, four main tasks are iden-
tified where data integration is the most widely used data preprocessing technique,
followed by data transformation.

2. The features used as inputs for ML-based algorithms are classified into five categories
of context variables. The most widely used context is that of traffic, followed by road
segment context, then vehicle context, weather context, and driver profile context.

3. Most of the selected studies use “urban” roads to experiment ML models, followed
by “highway” and “rural”.

4. ML algorithms are most used for ECEV compared to statistical ones. Most of ML
algorithms use SL (68%), while RL and UL are only used in 33% and 2% of studies,
respectively. For software tools, MATLAB® is the most widely used tool for ECEV.
However, some studies use software prototypes developed in Python and based on
open-source libraries of ML algorithms.

5. RMSE is the most frequently used evaluation measure, followed by MAE, and MAPE.
6. Most of the selected studies do not present a well-defined EMS and few studies use

an ML-based EMS or ML-based speed profile prediction. Most of the selected studies
deal with hybrid EVs while few studies deal with fully EVs. Only five studies use
an online architecture for ML, 26% use an offline architecture, while the remaining
studies do not mention the architecture used.

In our answers to the six MQs in Section 3, we have illustrated in nine figures the
evolutions over the years of various elements. Table 10 presents the most used element
over the years based on our answers to MQs. The nine columns of the Table 10 synthesize
information from the nine figures, respectively. The nine columns (identified by the
corresponding MQ and figure) show, respectively, the elements most used or studied over
the years in the subjects of the following list:

• Datasets investigated (MQ1-a, Figure 2);
• Data preprocessing tasks investigated (MQ1-b, Figure 3);
• Context variables investigated (MQ2, Figure 4);
• Road types investigated (MQ3, Figure 5);
• ML-based algorithms investigated (MQ4-a, Figure 7);
• Software tools and programming languages used (MQ4-b, Figure 8);
• Evaluation measures investigated (MQ5, Figure 9);
• Resolution approaches investigated (MQ6-a, Figure 11);
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• Training architectures investigated (MQ6-b, Figure 12).

Table 10. Elements most used over the years based on our answers to MQs for the 156 selected
papers.

Years MQ1-a
Figure 2

MQ1-b
Figure 3

MQ2
Figure 4

MQ3
Figure 5

MQ4-a
Figure 7

MQ4-b
Figure 8

MQ5
Figure 9

MQ6-a
Figure 11

MQ6-b
Figure 12

2008 GPS Data int. Traffic
Road s.

Urban, Rural,
Highw.

Indiv.

C # - ML-SPD
Offline

2009 Driv. c. Data tr.
Data red.

PSAT -
2010 GPS

Traffic

Urban Matlab MAPE -

2011 PeMS Data int. Urban
Highw. PSAT

RMSE ML-SPD

2012

Driv. c.

Data red. Highw. MSE
ML-EMS
ML-SPD

Offline

2013 Data tr.
Data int.

Traffic
Road s.
Vehicle Urban

C++,
Weka MAE, MSE -

2014 GPS PeMS

Data int.

Traffic
Driver pr.

Matlab C++
Weka MAPE ML-SPD

Offline

2015 GPS Traffic Highw. R RMSE ML-EMS
ML-SPD

2016 Driv. c.
Bigdata

Traffic
Driver pr.

Urban Matlab

RMSE
MAE

MAPE
-

2017 Driv. c. Road s.

RMSE

ML-SPD

2018 Driv. c.
GPS Traffic

ML-EMS

2019

Driv. c.

ML-SPD

2020 Road s.
ML-EMS2021

Traffic
2022 * Reinf. MSE

* For 2022, only the first three months of the year are considered.

4.2. Future Perspectives

The manner that this review analyzes the papers by answering relevant MQs helps in
identifying the main gaps of the papers over a specific area, thereby making the available
evidence more accessible to decision-makers and researchers. From our own perspective
after analyzing the 156 selected papers, we could suggest exploring the following avenues:

• Search for appropriate datasets (driving cycles, real data, etc.): researchers should focus
on expanding the available datasets by incorporating real-time data from connected
vehicles and advanced sensors.

• Reliable and high-quality data are crucial for ML analysis. The quality of the data used
directly affects the performance and accuracy of ML models. So, improving the dataset
using data preprocessing techniques such as data transformation, data augmentation,
data cleaning, and data integration is very important and should enhance the accuracy
and relevance of ML models.

• Explore the integration of multiple context variables, such as traffic, road segment,
vehicle, weather, and driver profile information, to create comprehensive ML models
and to select the right features to quickly generate a prediction model with a good
accuracy and reduced complexity and overfitting.

• Train the proposed models in different road types to generate results that hold for
various categories of routes.

• Explore and evaluate advanced ML algorithms, including DL and EML algorithms,
and compare them with other ML algorithms to ensure selecting the appropriate
models with the best performance.
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• Integrate ML algorithms with optimization techniques to optimize their parameters
and generate more accurate training models with low complexity and computation
time, and high interpretability and scalability.

• Develop and select suitable and robust evaluation measures that capture specific ECEV
requirements and challenges, and validation methods based on the problem and the
type of the dataset to avoid biased results.

• Define the problem to be solved as a classification problem, so that the result to be
predicted belongs to a finite set.

• Use online ML algorithms to regularly update the prediction models by considering
continuously the new data collected from the vehicle.

By considering these future perspectives, researchers can contribute to the advance-
ment of ML-based ECEV studies and develop more accurate and efficient energy manage-
ment strategies for electric and hybrid vehicles.

4.3. Validity of the Survey

Below, we present two threats we have identified to the validity of this survey, along
with our suggested mitigation solutions.

Construct threat: it is about the risk of missing relevant studies. To mitigate this risk,
bibliographical references of each selected study should also be scanned, and we also apply
several inclusion and exclusion criteria.

Internal threat: it is about the risk of bias in analyzing relevant papers. To mitigate
this risk, the data must be extracted and analyzed very carefully and rigorously.
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Appendix A

Table A1. List of acronyms.

AdaBoost Adaptive Boosting

ANN Artificial Neural Network

API Application Programming Interfaces

AR Auto-Regressive

ARIMA Auto-Regressive Integrated Moving Average

ARMA Auto-Regressive Moving Average

ARX Auto Regressive with Exogenous

BP-LSTM Back Propagation-Long Short-Term Memory

BPNN Back Propagation Neural Network

CART Classification and Regression Trees

https://github.com/bewiv/DB_EMEC_EV_UML
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Table A1. Cont.

CNN Convolutional Neural Network

DCNN Deep Convolutional Neural Network

DDPG Deep Deterministic Policy Gradient

DEGWO Differential Evolution and Grey Wolf Optimizer

DL Deep Learning

EC Exclusion Criteria

ECEV Energy Consumption of Electric Vehicle

ELM Extreme learning machine

EM Expectation Maximum

EML Ensemble ML Algorithm

EMS Energy Management Strategy

EV Electric Vehicle

Fully EV Fully Electric Vehicle

GBDT Gradient Boosting Decision Tree

GIS Geographic Information System

GP Gaussian Processes

GPS Global Positioning Systems

GRU Gated Recurrent Unit

GS Grid Search

HMP Historic Mean Prediction

Hybrid EV Hybrid Electric Vehicle

IC Inclusion Criteria

IM Interpolation Method

IML Individual ML Algorithm

IoT Internet of Things

IRIS Intelligent Roadway Information System

KF Kalman Filter

KLMS Kernel Least Mean Squares

KNN K-Nearest Neighbors

KRLS Kernel Recursive Least Squares

LDA Linear Discriminant Analysis

LightGBM Light Gradient Boosting Machine

LMS Least Mean Squares

LSSVM Least Square SVM

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MaxARE Max Absolute Relative Error

MC Markov Chain

MeanARE Mean Absolute Relative Error



Energies 2023, 16, 4897 29 of 39

Table A1. Cont.

MedAPE Median Absolute Percentage Error

ML Machine Learning

MLP Multi-Layer Perceptron

MQ Mapping Question

MSE Mean Square Error

NARX Nonlinear Auto-Regressive eXternal

NEDC New European Driving Cycle

NGSIM Next-Generation Simulation

OSM OpenStreetMap

PCA/PCR Principal Component Analysis/Regression

PeMS Performance Measurement System

PSAT Powertrain Systems Analysis Toolkit

PSO Particle Swarm Optimization

R Correlation Coefficient

R2 Coefficient of Determination

RBM Restricted Boltzmann Machine

RF Random Forest

RL Reinforcement Learning

RLS Recursive Least Squares

RME Relative Mean Error

RMSE Root Mean Square Error

RNN Recurrent Neural Networks

RNN-LSTM Recurrent Neural Network LSTM

RW Random Walk

SL Supervised Learning

SMOTE Synthetic Minority Oversampling Technique

SMS Systematic Mapping Study

SoC Battery State of Charge

SoH Battery State of Health

ST Space Time

SVM Support Vector Machines

UDDS Urban Dynamometer Driving Schedule

UL Unsupervised Learning

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

WLTC Worldwide Harmonized Light Duty Driving Test Cycle

XGBoost eXtreme Gradient Boosting
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Table A2. Algorithms used in the selected studies (MQ4).

Type Algorithms Ref. # of Studies Total

Supervised
Learning (SL)

Deep
Learning (DL)

Recurrent Neural
Networks (RNN)

RNN [35,84,85,119,129,151] 6

31

Fine-Grained RNN [68] 1

Gated Recurrent Unit (GRU) [35,151] 2

Long Short-Term
Memory (LSTM)

LSTM [26,35,44,47,56,59,62,63,68,72,75,
88,95,119,125,126,136,151]

21

Bidirectional LSTM
Network [35,68,117,151]

Back Propagation-LSTM
(BP-LSTM) [95,96,116]

Recurrent Neural
Network LSTM
(RNN-LSTM)

[88,117]

Convolutional Neural
Network LSTM
(CNN-LSTM)

[44]

Convolutional Neural Network (CNN) [116,151] 2

Deep CNN (DCNN) [136] 1

Restricted Boltzmann Machine (RBM) and SVR
(RBM-SVR) [110] 1

Deep Neural Network (DNN) [21,44,47,51,75,124,138,146] 10

DL Networks: Deep Belief Network-Based
Stacked Autoencoder [124] 1

Deep Restricted Boltzmann Machines (DBM) and
Sequence Pattern Predicting Capability of

Bidirectional LSTM (BLSTM) (DBMBLSTM)
[128] 1

DL Combined with the Median Filter
Preprocessing (DLM8L) [116] 1

Ensemble

Random Forest (RF) [44,47–49,51,71,78,86,102,137,
138,147,152,154,170] 16

25

Extra Trees (ET) [44] 1

Gradient Boosting Decision Tree (GBDT) [36,102,120,145,152,154,167] 7

Adaptive Boosting (AdaBoost) [68,102,137,138,171] 5

eXtreme Gradient Boosting (XGBoost) [41,43,51,52,138,152] 7

Bagging [44,68,137,152,171] 5

Light Gradient Boosting Machine (LightGBM) [41,78,152] 3

Voting Ensemble [51,71] 2

Stacked Generalization [51,147] 2

Individual

Linear Regression [44,48,64,68,78,102,103,131,138,
152,171] 11

86

Multiple Linear Regression [41,44,52,87,109,120,140,145,151] 9

Logistic Regression [141] 1

Naïve Bayes (NB) [57,68,141] 3

Bayesian Network [143] 1

Artificial Neural
Network (ANN)

ANN
[35,38,41,46,50,85,87,90,91,93,94,
101,106,109,122,130,133,144,151,

152,164,169,171]

58
Radial Basis Function

(RBF) Neural Networks
(RBF-NN)

[20,89,98,108,128,129,145]

RBF-NN with Wavelet
Transform [98]
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Table A2. Cont.

Type Algorithms Ref. # of Studies Total

Adaptive Neuro Fuzzy
Inference System (ANFIS) [19,118,162]

Multilayer feed forward
NN (MFFNN) [99,118,121]

Back Propagation NN
(BPNN)

[95,96,100,104,107,115,117,128,
129,134,142,159]

Multilayer Perceptron
(MLP)

[54,71,84,108,112,127,138,141,
145,181]

NARX NN [97]

Stacked Autoencoder
(SAEs) [116]

ST-ResNE [151]

Feed Forward NN [86]

Extreme Learning
Machine (ELM) [155]

Recurrent Nonlinear
Autoregressive with

Exogenous Inputs NN
(RNARX-NN)

[160]

Support Vector
Machines (SVM)

SVM
[47,49,51,57,68,71,78,83,84,95,

103,107,110,115,116,137,138,141,
145,151,156,158,164,171] 27

Least Square SVM
(LSSVM) [100,165]

Decision Trees (DT) [44,47,48,54,57,68,78,102,109,
120,130,137,141,145,147,158] 16

K-nearest neighbors (KNN) [44,48,57,78,102,109,113,116,137,
141,147,148,158] 14

Principal Component Analysis/Regression
(PCA/PCR) [109] 1

Least Mean Squares
(LMS)

LMS [106]

1Kernel LMS (KLMS) [106]

Fixed budget quantized
KLMS (QKLMS-FB) [106]

Recursive Least
Squares (RLS)

RLS [106]

1Kernel RLS (KRLS) [106]

RLS Tracker KRLS-T [106]

Fuzzy Logic (FL)

FL [32,113,123,142]

6
Fuzzy Inference System

(Mamdami) [131]

Interval Type-2 Fuzzy
System (IT2FS) [153]

Differential Evolution And Grey Wolf Optimizer
(DEGWO) [110] 1

Linear Discriminant Analysis (LDA) [57,137,141] 3

Unsupervised
Learning (UL)

X-means [111] 1

4
K-means [49] 1

Kernel Fuzzy C-Means [133] 1

Expectation Maximum (EM) [156] 1
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Table A2. Cont.

Type Algorithms Ref. # of Studies Total

Reinforcement
Learning (RL)

Multi-Step Markov [113] 1

51

Deep Q-learning (DQL) [25,27,29,31,34,37,40,42,45,53,60,
65,74,76,77,80,132,139,149,150,166] 21

Double Deep Q-learning (DDQL) [29,30,59,61,65,69] 6

Duel Deep Q-learning [29] 1

Q-Learning [22–24,28,33,39,67,70,76,79,80,105,
113,135,157,161,163,166,168,173] 20

Deep Deterministic Policy Gradient (DDPG) [27,29,55,58,62,74,80–82,139,174] 11

TD3 [29,59,73,80] 4

Trust Region Policy Optimization (TRPO) [59] 1

Distributed Proximal Policy Optimization (DPPO) [60] 1

Markov-Chain Monte Carlo [63,79] 2

Queue-Dyna [66] 1

The Asynchronous Advantage Actor Critic (A3C) [60] 1

Statistical

Markov [20,32–34,62,104,122,123,125,128,
129,142,157,159,169] 15

27

Auto Regressive (AR) [123,127] 2

AR with Exogenous (ARX) [142] 1

Non-Linear ARX (NARX) [86,97,125] 3

Space Time (ST) [84] 1

ARIMA [84,116,125,164] 4

VAR [84] 1

Gaussian Processes (GP) [108,125,171] 3

Kalman Filter (KF) [118] 1

Game Theory [88] 1

Historic Mean Prediction (HMP) [164] 1

Interpolation Method (IM) [145] 1

Random Walk (RW) [172] 1
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