
Citation: Sagawa, D.; Tanaka, K.

Machine Learning-Based Estimation

of COP and Multi-Objective

Optimization of Operation Strategy

for Heat Source Considering

Electricity Cost and On-Site

Consumption of Renewable Energy.

Energies 2023, 16, 4893. https://

doi.org/10.3390/en16134893

Academic Editor: Javier Contreras

Received: 1 December 2022

Revised: 30 May 2023

Accepted: 3 June 2023

Published: 23 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Machine Learning-Based Estimation of COP and
Multi-Objective Optimization of Operation Strategy for Heat
Source Considering Electricity Cost and On-Site Consumption
of Renewable Energy
Daishi Sagawa * and Kenji Tanaka

School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
* Correspondence: sagawa@ioe.t.u-tokyo.ac.jp

Abstract: Air conditioning is a significant consumer of electricity in buildings, accounting for around
40% of the total consumption. While previous studies have focused on planning methods to minimize
electricity costs, recent years have seen an increasing need for energy management methods that
consider environmental performance, such as CO2 emissions, alongside economic efficiency. This
study proposes a mechanism to support stakeholders’ decision-making by calculating Pareto solutions
based on the multi-objective optimization of economic and environmental characteristics for entities
that own renewable energy generation facilities. Unlike many existing studies that assume a specific
equation for COP (Coefficient of Performance) estimation, this study adopts a nonparametric COP
estimation method using machine learning, resulting in a more realistic and flexible modeling
of the system. The study also presents a model for selecting an operation strategy that balances
environmental and economic goals, incorporating a thermal storage facility to improve the renewable
energy rate. Specifically, we proposed and compared methods for calculating solutions using only the
GA (Genetic Algorithm) and a two-step optimization method combining a GA and gradient-based
optimization method, confirming the superiority of the two-step optimization method. The case
study unveiled unique operational profiles corresponding to cost-saving, renewable-energy, and
balanced orientation points, suggesting the existence of specific strategies tailored to each orientation.
The findings of this study can help stakeholders make more informed decisions regarding energy
management in air conditioning systems, with benefits for both the environment and the bottom line.

Keywords: machine learning; multi-objective optimization; heat source; renewable energy

1. Introduction
1.1. Background

Air conditioning is a critical component in buildings and consumes a significant
amount of electricity, accounting for around 40% of the total energy usage. In central heat
source air conditioning, heat generated by the equipment is transferred to air conditioners
through pipes, where the air and heat medium exchange heat to cool or heat the air.
In large-scale central heat source systems, there are multiple heat source devices, and
their operation and shutdown must be scheduled according to the demand for heat. To
optimize the efficiency of daily energy equipment operation, energy consumers need to
consider various factors, such as fluctuations in renewable energy generation due to weather
conditions, fluctuations in equipment efficiency, fluctuations in electricity prices, and the
use of energy storage and thermal storage facilities. Furthermore, during the equipment
installation phase, it is essential to determine the appropriate scale of the equipment to
be installed. With the increasing focus on the introduction of renewable energy and the
establishment of decarbonization targets, energy management methods based on multi-
objective optimization have gained attention. These methods aim to address not only
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economic efficiency, but also environmental efficiency, such as reducing CO2 emissions
and achieving other environmental goals. In this study, we propose a multi-objective
optimization approach to develop a strategy for the daily operation of existing HVAC
(Heating, Ventilation, and Air Conditioning) equipment. The proposed method aims to
minimize power costs while maximizing on-site consumption of renewable energy. It
takes into account various variable factors such as equipment efficiency and solar power
generation to reflect the reality of daily operations. To verify the effectiveness of our
proposed approach, we conduct a case study using actual operating data of multiple heat
source equipment and thermal storage units at an airport.

Overall, our study presents a method to support stakeholders in decision-making
related to energy management in the air conditioning domain. It offers a more realistic and
flexible modeling of the system by using a nonparametric COP (Coefficient of Performance)
estimation method based on machine learning, which is then incorporated into the opti-
mization equation. By doing so, we can achieve a better balance between the environmental
and economic performance in HVAC operations, which is crucial for promoting sustainable
energy consumption.

1.2. Related Work

This section focuses on the optimization of heat source equipment, with a particu-
lar emphasis on thermal energy storage devices. These devices act as a form of energy
storage and can shift the electricity demand, similar to how storage batteries function.
As such, this section not only reviews studies on the optimization of heat source equip-
ment, but also considers research on the optimization of electricity management, including
storage batteries.

In the operation strategy of heat source equipment, demand shift can be achieved
by using thermal energy storage (TES: Thermal Energy Storage) equipment such as ice
thermal storage tanks. Existing TES systems are often operated on a fixed schedule and do
not take advantage of their load shifting capability; appropriate demand shifting with TES
and storage batteries can reduce costs by utilizing the price difference in time-of-use (TOU:
Time Of Use) electricity rates and the surplus of renewable energy [1–4] and suppressing
annual peaks in electricity demand [5–7].

Studies using multi-objective optimization in the field of energy storage and thermal
storage include minimizing the cost of electricity and the probability of power loss through
the operation of storage batteries [8–10], respectively; Abdelkader et al. [8], Ould Bilal
et al. [9], and Yang et al. [10] have investigated the impact of stand-alone environments on
energy prosumers consisting of wind-solar PV systems, storage batteries, and electricity
demand. They formulated the cost of electricity and the probability of power loss, and
by employing a genetic algorithm, they solved a multi-objective optimization problem
aiming to minimize both. This approach facilitated the identification of facility installations
that are both economically viable and robust. This optimizes parameters, such as the size
of the wind power, solar power, and storage battery installations and the angle at which
they are installed, and not for day-to-day operational strategies. Additionally, due to the
stand-alone environment, the system’s behavior regarding a power purchase from the grid
was not considered. Another multi-objective optimization study from the environmental
and economic point of view of storage batteries is the multi-objective optimization [11,12],
which considers CO2 emissions and power usage costs. The object being optimized here is
not the charging and discharging schedule, but rather the capacity and other parameters of
the facility while the heat storage and heat dissipation and the charging and discharging are
rule-based and fixed. Therefore, this is not a discussion of day-to-day operational strategies.
Thus, in the multi-objective optimization of energy systems, including storage batteries,
which are similar to the heat source and thermal storage equipment that are the subject
of this study, the scale of the system installation that achieves both environmental and
economic performance through multi-objective optimization has been calculated, but the
effects were obtained through a multi-objective optimization of operational strategies at a
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certain installation scale. However, there is still room for research on the effects that can
be obtained with a multi-objective optimization of operational strategies at a certain scale
of installation.

As for the optimization of the system, including heat source and thermal storage
equipment, which is the subject of this study, [13–15], Ascione et al. [13] used a genetic
algorithm to minimize the primary energy demand and investment cost in a house with
renewable energy, a Pareto solution that minimizes the primary energy demand and invest-
ment cost in a house with renewable energy. The system was calculated to support optimal
decision making on the balance between the environmental and economic characteristics of
the stakeholders. However, this is an optimization for determining the installed capacity of
each facility, and there is room for research on the effects that can be obtained through the
multi-objective optimization of operational strategies; Navidbakhsh et al. [14] modeled an
ice thermal energy storage (ITES) system that incorporated phase change material (PCM)
as a partial cold storage material and used ice. A multi-objective optimization of the air
conditioning system, including the ice thermal energy storage system, was performed.
The objective functions of the multi-objective optimization are exergy efficiency (energy
use efficiency) and total cost. In addition, CO2 emissions are also quantified, but they are
not considered as objective functions of the multi-objective optimization. Lee et al. [15]
performed an optimization of the installed equipment using the particle swarm algorithm
to minimize the life cycle cost of air conditioning equipment, including ice thermal storage
systems, and found the ice thermal storage air conditioning system. They studied and
analyzed the increase in electricity consumption and CO2 emissions due to the use of ice
thermal storage air-conditioning systems. Here, the parameters related to the operational
strategy and equipment installation were optimized simultaneously. However, CO2 emis-
sions were not the objective function of the optimization, and CO2 emissions were only
quantified for the optimization results in pursuit of economic efficiency. In addition, the
efficiency COP of air conditioning equipment is fixed and does not consider changes in
the COP due to the external environment; Zhou et al. [16] constructed a multi-objective
optimization model based on the improved firefly algorithm (IFA) for the rational allocation
of cooling load between chillers and ice thermal storage tanks. Energy consumption loss
rate and operating cost are set as objective functions and minimized. The use of renewable
energy within the energy system is not considered, and it is assumed that the consideration
of the COP of the chiller depends only on the magnitude of the output and can be expressed
as a quadratic function of the magnitude of the output.

In reality, the COP of a chiller varies with external factors, such as the season and
temperature, and there is room for improvement in terms of realistic modeling. Therefore,
a planning method for heat source equipment is required that takes into account the COP
characteristics that vary depending on the load ratio and the weather conditions of the day
and time. The load ratio indicates the ratio of the actual load to the maximum capacity
of the system. Although there is a manufacturer’s nominal COP curve for heat source
equipment, it shows the relationship between the output and COP under limited conditions,
and in order to use it, it is necessary to interpolate the values under the conditions, and
since the COP changes as the heat source equipment deteriorates over time, it is necessary
to take into account the actual operating data of power consumption and output heat
quantity, as well as the weather conditions and settings at that time. Therefore, the data-
driven approach, which calculates the COP based on actual operating data of the power
consumption and output heat quantity, as well as weather conditions and settings at the
time, can calculate the COP in line with actual conditions. As an example of the data-driven
approach, a method of operation optimization based on a COP estimation by a multivariate
linear regression [17] has been proposed, but the linear model has limitations in expressive
power and does not take into account variations in the COP with the load ratio. There is
also a study [18] that modeled power consumption using MLP (Multi-Layer Perceptron)
and performed operation planning based on particle swarm optimization, but no study of
methods for various modeling has been conducted.
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Ren et al. [19] proposed a particle swarm optimization of the hourly partial load ratio
of the chiller and the cooling ratio of the ice thermal storage tank for the purpose of energy
consumption, operating cost, and energy loss. Zheng et al. [20] solved MINLP (mixed
integer non-linear programming) by setting up an objective function that linearly com-
bines economic efficiency, environmental impact, and annual EB indices with an entropy
weighting method. Lo et al. [21] solved MINLP (mixed integer non-linear programming),
which in effect has only one objective function and does not allow stakeholders to select an
operational strategy from the Pareto solution, and proposed an optimal dispatch model for
thermal storage air conditioning systems to minimize costs under dynamic rates. Again,
no consideration was given to the use of renewable energy.

As we have seen, various studies have been conducted to help stakeholders make
decisions on the scale of equipment installation based on their own criteria from the
Pareto optimal solution at the stage of equipment installation, but there is room for further
study on how to support similar decision making in operational strategies. Therefore, this
study establishes a mechanism to support stakeholders’ decision-making by calculating
Pareto solutions based on a multi-objective optimization of economic and environmental
characteristics for entities that own renewable energy generation facilities. In addition,
while many studies assume that a COP estimation is a quadratic equation, this study aims
to achieve a more realistic and flexible modeling of the system by adopting a nonparametric
COP estimation method using machine learning and incorporating the estimation function
into the optimization equation.

1.3. Contribution of This Paper

The novelty of this study is to develop a mechanism to support stakeholders’ decision-
making through the calculation of Pareto solutions by multi-objective optimization of
economic and environmental characteristics for entities that own renewable energy genera-
tion facilities. In particular, we adopt the ratio of renewable energy to energy consumption
(RE ratio) as an indicator of environmental performance, taking into account the recent
trend toward decarbonization, and the cost of electricity as an indicator of economic per-
formance. This enables the selection of an operational strategy that considers the balance
between how much the on-site consumption of renewable energy can be increased and how
much the cost of electricity can be reduced. In other words, by selecting daily operational
strategies from the Pareto front, the economic and environmental use efficiency of existing
facilities can be improved in line with stakeholder intentions. This approach proves benefi-
cial as the Pareto front represents a set of points where RE ratio and cost are in equilibrium.
Hence, by choosing a point from this set that aligns with their preferred balance, users can
devise equipment operation plans that cater as closely as possible to their intent.

1.4. Structure of This Paper

Section 2 describes COP estimation; Section 3 describes the method for optimizing
the operating strategy in the case of only heat source equipment considering only eco-
nomic efficiency as a preparation for multi-objective optimization; Section 4 describes the
multi-objective optimization method for economic and environmental efficiency; Section 5
describes the case study.

2. Methodology
2.1. Machine Learning Based COP Estimation

COP is an indicator of the energy efficiency of a device and is generally expressed
as “the amount of energy output from the device”/“the amount of energy input to the
device”. In this context, COP can be defined as COP = “heat output of the heat source
equipment”/“power consumption of the heat source equipment”. Since the value of COP
varies depending on weather factors, such as temperature and the magnitude of the output
of the heat source equipment, it was necessary to determine the COP function while taking
into account the weather conditions of the day and time. Therefore, a machine learning
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model was constructed to estimate the COP using the load ratio “r” to the maximum output
and the temperature “T” as inputs. The load ratio “r” was a key parameter in our model,
representing the proportion of the current output of the heat source equipment relative to
its maximum possible output. This ratio allowed us to normalize the output across different
heat source equipment, accounting for variations in capacity. By considering this ratio in
conjunction with the current temperature “T”, our model could estimate the COP under
various weather conditions and output levels. In the optimization process, we adjusted the
value of “r” to find the optimal balance between output and energy efficiency while the
temperature “T” was set using forecast data, as shown in Equation (1).

COP(T, r) = fT(r) (1)

We used RBF kernel of SVR (Support Vector Regressor), polynomial kernel of SVR,
MLP (Multi-Layer Perceptron), K-Neighbors Regressor (K-nearest neighbor method), and
Random Forest as representative machine learning methods. The reproduction accuracy of
these methods was compared in a case study. In addition to the accuracy, the shape of the
function fT that composed them was considered to be an important factor in the subsequent
optimization calculations. This was because if this COP function was a multimodal function,
it might affect the convergence of the optimization. In more detailed modeling, it was
desirable to input coolant temperature and other parameters, but it was easy to increase
the number of input parameters in machine learning, and a similar approach should
be sufficient.

2.2. Optimization of Operating Strategies for Economic Efficiency in the Case of Heat Source
Equipment Only

This section describes a method for optimizing the operation of a heat source equip-
ment for the purpose of economic efficiency only in the absence of a heat storage device
as a prerequisite knowledge for the next section: multi-objective optimization method for
operational strategy considering economic and environmental efficiency.

Using the COP model estimated in the previous step, the optimization equation could
be written as follows. Equation (2) was the objective function, which aimed to minimize
the amount of electric energy consumed by the operation of the heat source equipment
(refrigerator) for cooling. Equations (3) and (4) were the constraints. Equation (3) required
that the heat demand could be met while Equation (4) defined a lower limit for the load
ratio because there was a minimum load ratio for the chiller.

minimize
N

∑
i=1

ui,t
Piri,t

COPi(Tt, ri,t)
(2)

Subject to
N
∑

i=1
ui,tPiri,t ≥ Dt

(3)

rlower ≤ ri,t ≤ 1 (4)

Each symbol was defined as follows:
Pi: Maximum output of chiller i [GJ]
Tt: Temperature at time t [◦C]
ui,t ∈ [0, 1]: Whether or not refrigerator i was operating at time t
ri,t: Output ratio of chiller i at time t
COPi(Tt, ri,t): COP at temperature Tt, output ratio ri,t for refrigeration unit i
Dt: Heat demand to be supplied [GJ]
rlower: Lower limit of settable output ratio
N: Number of heat source devices
The solution was calculated using the flow shown in Figure 1. The thermal storage

system was not taken into account here, so the plan could be formulated independently
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for each time. The 0 and 1 variables for availability were prepared in advance, and ri,t
was calculated for each combination, turning the mixed integer problem into a nonlinear
programming problem. The total number of combinations with and without operation was
2N, which was O (2N). However, since the number of N refrigeration units in an individual
air-conditioning system was assumed to be up to about 10 at most, the calculation was as-
sumed to be realistic as far as the air-conditioning system was concerned. In the calculation
of ri,t, Sequential Least Squares Programming (SLSQP) was used. In general, Piri,t

COPi(Tt , ri,t)
.

in the objective function may have been a non-convex function because it depended on
the COP function to be estimated, but if we assumed that increasing the output ri,t will
increase the power consumption and Piri,t

COPi(Tt , ri,t)
. was a monotonically increasing function

with respect to ri,t, it could be optimized with a gradient-based method.
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2.3. Multi-Objective Optimization Method Reflecting Economic and Environmental

This paper describes a method for developing an operation strategy that reflects
economic and environmental concerns when, in addition to heat source equipment, the
operation of a thermal storage device that enables a shift in the timing of electricity con-
sumption is included. Thermal storage devices use electricity to produce hot water or ice,
which is then stored and used to shift the timing of electricity consumption by extracting
heat at an arbitrary point in time. In the case where the surplus of solar power genera-
tion could be sold to an electric power retailer, we formulated Equations (5) to (14) as a
multi-objective optimization that took into account both the economic efficiency and the
self-consumption of solar power generation to the maximum extent possible. Equations
(5) and (6) were the objective functions of the multi-objective optimization. Equation (6)
maximized the amount of solar power generation consumed on site. Equation (7) showed
the constraints of meeting the heat demand, and Equation (8) showed the relationship
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between the amount of heat storage and the hourly heat storage and heat release. Equation
(10) represented the upper and lower limits of the heat storage capacity.

minimize
M

∑
t

pretail
t

(
et − sused

t

)
+ sused

t ppv_cost
t − ssurplus

t ppv_sell
t (5)

Maximize
M

∑
t

sused
t (6)

Subject to
N
∑

i=1
Piri,t + |bt|− ≥ Dt

(7)

It+1 = bt + It (8)

0 ≤ It ≤ Iupper (9)

−Pmelt ≤ bt ≤ Pf reeze (10)

Here,

et = K
{

N
∑

i=1

Piri,t
COPi(Tt , ri,t)

+ |bt |+
COPf reeze

+ |bt |−
COPmelt

}
(11)

st = sused
t + ssurplus

t (12)

|bt|+ =

{
bt i f bt > 0

0 else
(13)

|bt|− =

{
−bt i f bt < 0

0 else
(14)

Each symbol was defined as follows:
st: Self-owned solar power generation at time t [kWh]
sused

t : Amount of st consumed at home [kWh]
ssurplus

t : Amount of electricity sold as surplus out of st [kWh]
COPf reeze: COP at thermal storage (constant)
COPmelt: COP at heat dissipation (constant)
bt: Amount of heat stored and dissipated (+ indicates heat stored—indicates heat

dissipated) [GJ].
It: Heat storage at the start of time t [GJ]
Iupper: Upper limit of heat storage [GJ].
K: Unit conversion factor for converting [GJ] to [kWh]
pretail

t : Unit price of electricity purchased from retailers [yen/kWh]
ppv_sell

t : Unit price for selling PV power surplus [yen/kWh].
ppv_cost

t : Cost of PV power generation [yen/kWh].
Pf reeze: Upper limit output for heat storage [GJ].
Pmelt: Upper output limit for heat dissipation [GJ].
In the optimization calculations, the solution without the heat storage device for

each time was first calculated as the initial solution using the approach in Section 3, and
then, the multi-objective optimization genetic algorithm NSGAII (Elitist Non-dominated
Sorting Genetic Algorithm) [22] was used to compute the solution. Among the constraints,
Equations (7) and (9) were added to the objective function as penalty terms. Equations (8)
and (10) were incorporated as relationships between design variables.
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In addition to the method of determining the heat storage and heat radiation plans and
the output plan of each heat source component using only the GA in Figure 2, a two-step
optimization method was proposed and verified by generating only the heat storage and
heat radiation plans using the GA and determining the output plan of each heat source
component using SLSQP for the generated heat storage and heat radiation plans, as shown
in Figure 3. The first method using only a GA was a two-step optimization method that
used a GA to generate only the heat storage and heat dissipation plans, as in Figure 3. The
former method, using only GA, simultaneously searched both b_t: heat release/storage
and r_(i,t): output ratio of chiller i at time t using GA and obtained a Pareto solution for the
electricity cost and the amount of renewable energy consumed on-site. In this method, the
constraints in Equations (8) and (10) could be expressed in terms of relationships among
design variables while the constraints in Equations (7) and (9) were added to the objective
function as penalties. Therefore, a search was conducted for solutions that did not satisfy
the two constraints, which made the search inefficient. On the other hand, in the latter
two-stage optimization method, after the heat storage and heat dissipation plans were
formulated by the GA, the output plan of each heat source component was optimized by
SLSQP to satisfy the constraint conditions in Equation (7) so that a solution that satisfied
the constraint conditions in Equation (7) was always output. The constraint condition
in Equation (9) was added to the objective function as a penalty in the same way. The
b_t: heat release and heat storage was calculated by GA, the required heat demand was
recalculated, and r_(i,t): output of chiller i at time t was calculated by the flow on the right
side of Figure 3. The flow on the right side of Figure 3 was almost the same as the output
calculation in the base model, and the bifurcation condition took the heat dissipation into
account. Equation (3) was used as the constraint for SLSQP. The latter approach had the
advantage that the search space of the GA could be narrowed because the GA only searched
for the heat storage and heat dissipation plans, and the output plan of each heat source
component was calculated using SLSQP. In both approaches, the initial solution without
heat storage devices was first calculated for each time using the base model method, and
then, the multi-objective optimization GA, NSGAII (Elitist Non-dominated Sorting Genetic
Algorithm) [22], was used for the calculation.
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Figure 3. Two-step multi-objective optimization with GA and SLSQP.

3. Case Study
3.1. Data Condition Setting

A case study of the method described above is conducted using actual operating data
of air-conditioning equipment in a large-scale facility. An overview of the data used is
shown in Tables 1 and 2.

Table 1. Data period and number of devices.

Data Period 1 January 2021 to 31 December 2021

Number of chillers 4

Number of thermal storage unit 1

Table 2. Specifications of heat source equipment and thermal storage devices.

Chiller No. Maximum Cooling Capacity [GJ/h]

Chiller 1 25.3

Chiller 2 25.3

Chiller 3 25.3

Chiller 4 15.2

Thermal storage unit 12.7

3.2. Case Studies of Methods for Estimating COP Based on Actual Operational Data

The COP is estimated for four chillers using one year of operating data. Chillers 1 and
2 are turbo chillers, and chillers 3 and 4 are inverter turbo chillers. The latter is characterized
by a maximum COP at a load ratio of 30 to 40% when the temperature is low.
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These four chillers were modeled and evaluated with k-partition cross-validation
(k = 10), and the results are shown in Tables 3–6, respectively. The error indices are MAE:
Mean Absolute Error, RMSE: Root Mean Squared Error, and MAPE: Mean Percentage Error.
Overall, the accuracy of SVR’s RBF kernel is relatively good. Next is the K-nearest neighbor
method. Figures 4 and 5 show the results of estimating the COP of chiller 4 using these
two methods: Figure 4 with the SVR:RBF kernel shows a smooth line while Figure 5 with
the K-nearest neighbor shows a line where the COP is not stable with respect to the output
ratio. Although this function is used as a part of the objective function, the SVR: RBF kernel
is used here because it is preferable to use smoother lines because unstable lines are more
likely to lead to local solutions since the gradient information of the objective function is
used to solve the optimization problem.

Table 3. List of COP estimation errors for each method: Chiller 1 (in ascending order of MAE).

Model MAE RMSE MAPE

SVR(C = 1, kernel = ‘rbf’) 0.189 0.246 0.030

K-Neighbors Regressor (n_neighbors = 20) 0.191 0.249 0.030

Random Forest Regressor (max_depth = 10) 0.201 0.259 0.032

SVR (C = 1, kernel = ‘poly’) 0.201 0.258 0.032

MLP 0.352 0.411 0.055

Table 4. List of COP estimation errors for each method: Chiller 2 (in ascending order of MAE).

Model MAE RMSE MAPE

SVR (C = 1, kernel = ‘poly’) 0.201 0.255 0.030

K-Neighbors Regressor (n_neighbors = 20) 0.209 0.264 0.031

SVR (C = 1, kernel = ‘rbf’) 0.210 0.263 0.031

Random Forest Regressor (max_depth = 10) 0.221 0.286 0.033

MLP 0.340 0.407 0.050

Table 5. List of COP estimation errors for each method: Chiller 3 (in ascending order of MAE).

Model MAE RMSE MAPE

MLP 0.615 0.757 0.065

SVR (C = 1, kernel = ‘rbf’) 0.618 0.757 0.064

K-Neighbors Regressor (n_neighbors = 20) 0.635 0.778 0.066

Random Forest Regressor (max_depth = 10) 0.636 0.789 0.067

SVR (C = 1, kernel = ‘poly’) 0.914 1.088 0.093

Table 6. List of COP estimation errors for each method: Chiller 4 (in ascending order of MAE).

Model MAE RMSE MAPE

SVR (C = 1, kernel = ‘rbf’) 0.586 0.738 0.056

K-Neighbors Regressor (n_neighbors = 20) 0.603 0.760 0.058

Random Forest Regressor (max_depth = 10) 0.605 0.763 0.058

MLP 0.622 0.783 0.059

SVR (C = 1, kernel = ‘poly’) 1.016 1.244 0.112
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Assuming that increasing the output ratio ri,t increases the energy consumption, we
mentioned that ri,t

COPi(Tt , ri,t)
in the objective function is a monotonically increasing function

with respect to ri,t, but in reality, based on the estimated COP, when ri,t
COPi(Tt , ri,t)

was plotted,

a monotonically increasing line was obtained as shown in Figure 6. Optimization can be
performed for this COP function using a gradient-based optimization method.
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3.3. Case Study of a Heat Source Equipment Operation Planning Method Considering
COP Variation

The actual operation history is compared with the cost of operation using the planning
method, which takes into account the variation of the COP using the proposed method, to
verify how much cost reduction can be achieved by the proposed method. The learned COP
model estimated previously is used, and Table 7 shows the results of power consumption
reduction by the proposed method in the case of the COP model SVR. The actual power
consumption of the actual chiller operation (“Actual” in the table) and the power consump-
tion based on the estimated COP model (“Actual: COP Adjusted” in the table) are set as
the comparison targets. “Actual after COP Adjustment” is prepared. “Actual after COP
Adjusted” is intended to ensure the equality of the comparison since the energy consump-
tion from the proposed method is calculated based on the estimated COP. For example, if
the estimated COP function is inaccurate, and the COP is estimated to be higher than it
should be, the power consumption in the “Proposed Method” will be improperly evaluated
as small. To solve this problem, the “Actual after adjustment for COP” is calculated by
dividing the chiller output by the estimated COP and comparing it with the “Proposed
Method”. Although PV power generation forecasts, heat demand forecasts, and energy
price forecasts are required to develop an actual operational strategy, here, for the sake of
proof of concept, forecast values are assumed to be actual values for simplicity. The results
for the actual and COP-adjusted results also show that the proposed method can reduce
the electricity consumption by approximately 4% per year. Calculated at 14 yen/kWh, this
amounts to about 4.1 million yen per year. Table 8 shows the results of power consumption
reduction by the proposed method in the case of the COP model KNN. As shown in Table 9,
KNN takes about three times longer to calculate the plan than the COP model SVR. This
may be due to the fact that the COP estimation function with KNN is multimodal, which
causes the gradient-based SLSQP calculation to fall into a local solution. It is also thought
that the computation took longer for the same reason.
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Table 7. Comparison of proposed and actual electricity consumption and electricity prices (for COP
model SVR).

Item Actual Actual after
Adjustment for COP Proposed Method

Electricity
consumption [MWh] 7326 7320 7030

Electricity cost
[thousand yen] 102,600 102,500 98,400

Reduction rate [%]
(vs. actual) - - 4.04

Reduction rate [%]
(vs. actual after COP

adjustment)
- - 3.96

Table 8. Comparison of proposed and actual electricity consumption and electricity prices (for COP
model K-nearest neighbor).

Item Actual Actual after
Adjustment for COP Proposed Method

Electricity
consumption [MWh] 7326 7302 7092

Electricity cost
[thousand yen] 102,600 102,200 99,300

Reduction rate [%]
(vs. actual) - - 3.20

Reduction rate [%]
(vs. actual after COP

adjustment)
- - 2.88

Table 9. Difference in computation time of planning methods by COP estimation model.

COP Estimation Model Computing Time [s]

SVR: RBF 445

KNN(k = 20) 1154

The specific operational schedules generated are examined here. Figure 7 presents the
operational schedule for a given day while Figures 8 and 9 depict the schedules proposed by
our methodology with the SVR and KNN COP models, respectively, for the same day. The
color scheme in these figures indicates the ratio of operation intensity to maximum output.
Figures 10 and 11 show the heat demand and temperature variations, respectively, for the
same day. As can be inferred from Figure 7, the actual operation bases itself on chiller No.3,
adjusting the operation of other chillers in line with the heat demand changes. However, the
proposed operation schedule based on the SVR COP model, as shown in Figure 8, operates
primarily on chillers No.2 and No.3. The main difference appears in the comparatively
smaller demand period of late night to early morning. While the actual operations mainly
involve chillers No.3 and No.4, with chiller No.1 serving as a supplement, the proposed
methodology instead primarily operates chillers No.2 and No.3, with No.4 serving in a
supplementary capacity. Figure 12 presents the COP curves of each chiller at a temperature
of 26 degrees. Here, chiller No.3 consistently exhibits the highest COP, followed closely by
No.2. Hence, based on the COP estimated from the data, it is rational under these weather
conditions to prioritize chiller No.2 over No.4. This reasoning is reflected in the schedule
generated by our proposed methodology. Moreover, chiller No.4 is more efficient than
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No.1 when the output ratio is small, but this is reversed around a 75% output ratio. Thus,
under these weather conditions, there is a need to switch between chillers No.1 and No.4
according to the heat demand size. Our proposed method prioritizes chiller No.1 when the
daytime heat demand is high and then switches to chiller No.4 in the evening when the
heat demand decreases, demonstrating rational decision-making. It is difficult to consider
both weather conditions and output ratio simultaneously in operations based on intuition
and experience. Therefore, a scheduling methodology, such as our proposed one, which is
based on an equipment efficiency model derived from actual data, is effective.
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3.4. Case Study of an Operational Planning Method Capable of Exploring Trade-Offs between
Environmental and Economic Performance

In this section, we conduct a multi-objective optimization comparison using two
methods. The first method, depicted in Figure 2, uses the GA exclusively to decide on the
heat storage and release plan, along with the output plan for each heat source equipment.
The second method, represented in Figure 3 employs a two-stage optimization approach.
Table 10 lists the set values of the constants used in this case study. We assume a sce-
nario where the price of power purchased from the retail business remains consistent at
14 JPY/kWh, regardless of the time of day. As for the rate when selling surplus power
generated by the PV system, we have considered the purchase price by a retail business for
non-FIT (Feed-In Tariff) power. We assumed that 12 MW of PV was installed.
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Table 10. Setting Constants in Case Studies.

COPf reeze: COP (constant) for heat storage
(Calculated from actual operation data) 4.48

COPmelt: COP at heat dissipation
(Calculated from actual operation data) 23.8

Iupper: Capacity of heat storage [GJ]. 200

It: Heat storage capacity at the start of time t [GJ]. 0

pretail
t : Unit price of electricity purchased from retailers [yen/kWh] 14

ppv_sell
t : Unit price for selling PV power surplus [yen/kWh]. 12

ppv_cost
t : Cost of PV power generation [yen/kWh]. 8

Pf reeze: Upper limit output for heat storage [GJ]. 38.0

Pmelt: Upper output limit for heat dissipation [GJ]. 38.0

We examine how the Pareto front changes when altering the number of exploratory
steps for two optimization techniques. Figure 13 depicts the evolution of the Pareto front
using a method that solely utilizes the Genetic Algorithm (GA). Multiple heat storage and
release plans, along with operation plans for a given day, are plotted with the Renewable
Energy (RE) rate on the y-axis and the cost ratio (minimized power consumption cost
divided by total cost) on the x-axis. As the number of explorations increases, the Pareto
front shifts towards the upper left, indicating an improvement with higher RE rates and
lower costs. Until 3000 explorations, the Pareto front significantly improves, and after
this point, the improvements gradually continue as the number of explorations increases.
Beyond 7000 explorations, however, there seems to be little improvement. Figure 14 illus-
trates the evolution of the Pareto front using a two-stage optimization method. Compared
to Figure 13, the Pareto front is positioned more towards the upper left overall, indicat-
ing superior exploratory performance. Additionally, until 3000 explorations, the Pareto
front significantly improves, then it converges, demonstrating the two-stage optimization
method’s efficiency per exploration.

Energies 2023, 16, x FOR PEER REVIEW 18 of 28 
 

 

costs. Until 3000 explorations, the Pareto front significantly improves, and after this point, 
the improvements gradually continue as the number of explorations increases. Beyond 
7000 explorations, however, there seems to be little improvement. Figure 14 illustrates the 
evolution of the Pareto front using a two-stage optimization method. Compared to Figure 
13, the Pareto front is positioned more towards the upper left overall, indicating superior 
exploratory performance. Additionally, until 3000 explorations, the Pareto front signifi-
cantly improves, then it converges, demonstrating the two-stage optimization method’s 
efficiency per exploration. 

 
Figure 13. Pareto front transition for methods using only GA. 

 
Figure 14. Pareto Front Transition for Two-Step Optimization Method. 

1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000
10,000

1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000
10,000

Figure 13. Pareto front transition for methods using only GA.



Energies 2023, 16, 4893 17 of 26

Energies 2023, 16, x FOR PEER REVIEW 18 of 28 
 

 

costs. Until 3000 explorations, the Pareto front significantly improves, and after this point, 
the improvements gradually continue as the number of explorations increases. Beyond 
7000 explorations, however, there seems to be little improvement. Figure 14 illustrates the 
evolution of the Pareto front using a two-stage optimization method. Compared to Figure 
13, the Pareto front is positioned more towards the upper left overall, indicating superior 
exploratory performance. Additionally, until 3000 explorations, the Pareto front signifi-
cantly improves, then it converges, demonstrating the two-stage optimization method’s 
efficiency per exploration. 

 
Figure 13. Pareto front transition for methods using only GA. 

 
Figure 14. Pareto Front Transition for Two-Step Optimization Method. 

1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000
10,000

1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000
10,000

Figure 14. Pareto Front Transition for Two-Step Optimization Method.

To compare and evaluate the differences between the Pareto solutions calculated by
the two methods at the same search count, Figure 15 illustrates the Pareto solutions for
both methods for search counts ranging from 1000 to 10,000. As depicted in the figure, the
two-stage optimization method (labeled “2 step method” in the figure) generally positions
the Pareto curve to the upper left more so than the method using only the GA (labeled
“Only GA” in the figure). This demonstrates that the two-stage optimization method can
achieve a higher RE ratio at a lower cost.

Figure 16 illustrates the Pareto frontiers for the method using only the Genetic Al-
gorithm (GA) after 10,000 searches (represented by the black dotted line in the figure),
and the two-stage optimization method after 1000 (blue), 2000 (orange), 3000 (green),
and 10,000 (light blue) searches. As can be observed, the Pareto frontier obtained after
3000 searches using the two-stage optimization method (represented by the solid green line
in the figure) is positioned further to the upper left compared to the frontier achieved after
10,000 searches using the GA-only method. This indicates that the two-stage optimization
method can generate superior Pareto frontiers with fewer search iterations.

In the method using only the GA, 10,000 searches take 5766 s, averaging 0.577 s per
search. Conversely, the two-stage optimization method takes 12,293 s for 10,000 searches,
averaging 1.23 s per search. This is approximately 2.13 times the time per search. This
increased time is due to the two-stage processing of the algorithm, involving GA search and
optimization through Sequential Least Squares Programming (SLSQP). However, as shown
in Figure 16, a better Pareto frontier is reached with 3000 searches using the two-stage
optimization method than with 10,000 searches using only GA. In Table 11, 10,000 searches
using the GA-only method take 5766 s while 3000 searches using the two-stage optimization
method take 3761 s. This suggests that the two-stage optimization method can reach a
superior Pareto frontier in just 65.2% of the time needed by the GA-only method. Despite
the increased processing time per search, the two-stage optimization method demonstrates
superior efficiency in a Pareto frontier search per unit of time because it can arrive at better
solutions with fewer searches compared to the GA-only method.
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Next, we will examine the details of the solutions produced by the two-stage opti-
mization method. Figure 17 includes a plot of the results of 10,000 searches using the
two-stage optimization method, including both Pareto-optimal solutions and sub-optimal
solutions (those that are not Pareto-optimal). The color of the points represents red points
for Pareto-optimal solutions that satisfy the constraints, light red points for Pareto-optimal
solutions that do not satisfy the constraints, blue points for sub-optimal solutions that
satisfy the constraints, and light blue points for sub-optimal solutions that do not satisfy
the constraints. Here, the points representing the non-use of heat storage devices indicate
the lowest cost solutions. This suggests that under these price settings, running the heat
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storage device is generally unprofitable due to the low Coefficient of Performance (COP)
of the heat storage device. Furthermore, under this setting, where the price of electricity
purchased from the retailer remains constant regardless of the time of day, there is no
cost reduction effect through demand shifting by using heat storage devices. Similarly,
under these pricing conditions (electricity sale price and purchase price), selling surplus
PV power generated by the user to the retailer is more economical than storing it. Hence,
there is no cost reduction effect through the utilization of surplus PV. Therefore, the pattern
of not operating the heat storage device is the most economical. In the Pareto-optimal
solutions that satisfy the constraints (represented by red points), the cost and RE rate rise
at almost a constant ratio. When the RE rate reaches around 82%, there are no longer any
Pareto-optimal solutions that satisfy the constraints. From the Pareto-optimal solutions
satisfying the constraints (red points), one would select the heat storage and dissipation
schedule and the operation schedule for each heat source device. The Pareto point with the
lowest cost is (cost ratio, RE rate) = (1.00, 0.52) and the Pareto point with the highest RE
rate is (cost ratio, RE rate) = (1.34, 0.82). In other words, it is found that if a cost increase of
34% is permitted, the RE rate can be improved by about 30%.
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Table 11. Execution time of the two methods per number of searches.

Number of Search [Times].
Execution Time [s]

Only GA 2 Step Method

1000 470 1239

2000 960 2493

3000 1473 3761

4000 2013 4964

5000 2582 6156

6000 3178 7320

7000 3795 8502

8000 4424 9702

9000 5079 10,950

10,000 5766 12,293
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Figure 18 shows the power consumption, heat supply, and heat storage in the operation
plan for the cost-saving oriented point (cost ratio, RE rate) = (1.00, 0.52). Figure 19 shows
the operating schedule of the heat source equipment No.1 to 4 and the heat storage device
under the same cost-saving oriented plan. There is no heat storage or dissipation, and heat
demand is met solely through the operation of the heat source equipment.

Figure 20 shows the power consumption, heat supply, and heat storage in the operation
plan for the renewable-energy oriented point (cost ratio, RE rate) = (1.34, 0.82). It can be
seen that surplus PV during the day is stored up to the maximum amount of ice that can be
stored, and heat dissipation begins from the evening when the surplus power generation
ceases. Although a slight amount of heat storage can be observed around 1–2 am, it does
not contribute to improving the renewable energy ratio, nor does it contribute to cost
reduction. Therefore, this is not an optimal strategy and suggests that there is room for
further exploration of solutions. Figure 21 shows the operating schedule of the heat source
equipment No.1 to 4 and the heat storage device for the same Pareto point. Considering
the amount of heat supplied by heat dissipation from evening to night, the operating level
of the heat source equipment is confirmed to be lower than that in Figure 19. Moreover,
Figure 22 presents the power consumption, heat supply, and heat storage in the operation
plan for a point with a balance between the cost and renewable energy orientation (cost
ratio, RE rate) = (1.15, 0.65). While it absorbs surplus renewable energy during the day,
it does not store as much as the renewable-energy oriented plan. Figure 23 shows the
operating schedule of the heat source equipment No.1 to 4 and the heat storage device for
the same cost-renewable energy balance oriented plan. The amount of heat dissipation at
night is not as significant as in the renewable-energy oriented plan.
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By deriving Pareto solutions from multi-objective optimization, it is possible to deter-
mine the heat storage and dissipation strategy and the operation plan of the heat source
equipment that an entity should adopt according to the entity’s orientation, be it cost-saving,
renewable-energy, or cost-renewable energy balance oriented.

4. Conclusions

In this study, we constructed a system to support the decision-making process of enti-
ties owning renewable energy generation facilities by calculating Pareto solutions through
a multi-objective optimization that balances economic and environmental objectives. We
adopted a non-parametric COP estimation method using machine learning, and by inte-
grating the estimation function into the optimization formula, we achieved a more realistic
and flexible system modeling, demonstrating that an approximate annual cost reduction
of 4% is possible from the current operation. Moreover, when adding a thermal storage
facility, we set the proportion of renewable energy in power consumption as the RE rate,
an environmental index and the electricity bill as an economic index.

By solving the multi-objective optimization of operation strategies with these as ob-
jective functions, we were led to Pareto solutions and constructed a model for selecting
operation strategies considering the balance of objective functions. Specifically, we pro-
posed and compared methods for calculating solutions using only the GA and a two-step
optimization method combining GA and SLSQP, confirming the superiority of the two-step
optimization method. The case study unveiled unique operational profiles corresponding
to cost-saving, renewable-energy, and balanced orientation points, suggesting the existence
of specific strategies tailored to each orientation. As a result, we built a model that allows
stakeholders to select daily operation strategies according to their preferences.

It should be noted that the optimization method used here is based on the genetic
algorithm, and its optimality is not guaranteed; hence, there is a possibility that better
Pareto solutions may exist.

5. Future Work

One limitation of this method is that it may require approximately a year’s worth of
data to train a model that can estimate the Coefficient of Performance (COP). However, the
real value of this approach becomes evident when the manufacturer’s COP curve starts to
diverge from reality over time due to deterioration or other factors. It is assumed that by
this point, sufficient data will have been accumulated. If sufficient data cannot be prepared
to train the COP model, it is still possible to carry out a subsequent optimization using
the manufacturer’s COP curve as an alternative. In such a case, a future task would be to
determine the extent to which this approach deviates from reality.

In addition, we aim to delve deeper into the optimization of parameters for our
non-MLP models, including the SVR model. The parameters for these models were kept
fixed in our current study. However, we recognize the potential impact that parameter
optimization could have on the performance of these models. Specifically, for the SVR
model, we will look into optimizing parameters like the regularization parameter ‘C’ and
the kernel functions, which could significantly affect the model’s accuracy. We also plan to
explore different kernels beyond the ‘rbf’ kernel used in this study. Moreover, we plan to
extend our investigations to other machine learning models and optimization techniques.
This would allow us to compare and contrast the effectiveness of various models and
strategies, potentially leading to more robust and efficient solutions.

Lastly, we anticipate refining our data collection and handling methods. This would
include obtaining more precise information about data quality and sensor accuracy, which
can further enhance our model’s predictive ability and overall reliability.
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