
Citation: Assari, M.R.; Assareh, E.;

Agarwal, N.; Setareh, M.; Alaei, N.;

Moradian, A.; Lee, M.

Energy-Exergy–Economic (3E)

-Optimization Analysis of a Solar

System for Cooling, Heating, Power,

and Freshwater Generation System

for a Case Study Using Artificial

Intelligence (AI). Energies 2023, 16,

4873. https://doi.org/10.3390/

en16134873

Academic Editors: Bartłomiej Igliński
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Abstract: In this research, analysis of a cogeneration system harnessing solar energy with the purpose
of producing electricity and freshwater is carried out. A parabolic trough collector (PTC), a reverse
osmosis (RO) desalination system and a steam Rankine cycle are considered as the primary modules of
the system. Optimization is conducted on the basis of the Non-Dominated Sorting Genetic Algorithm
II (NSGA-II), while the Engineering Equation Solver (EES) is used to cope with the presented
thermodynamic model. Sensitivity analysis of different key parameters including pump and turbine
efficiencies, pump and turbine inlet pressures, evaporator pinch point and inlet temperature and,
finally, solar radiation are calculated. A location with high solar energy potential is selected to explore
the feasibility of installing the designed system. The case study results show that the maximum level
of freshwater production happens during June and July due to an increased sunlight and ambient
temperature. Annual electricity and distilled water production of 260,847.6586 MW and 73,821.34 m3

are calculated, respectively. Furthermore, the optimum results regarding the cost rate and exergy
efficiency were found to be 35.26 $/h and 12.02%, respectively.

Keywords: solar energy; parabolic trough solar collector; exergy efficiency; cost rate

1. Introduction

In recent years, scientists have strived to build and develop alternative technologies to
respond to the energy demands as well as energy crises. In addition to increasing security
and independence at the national level, solar energy reduces the environmental pollution
and has a significant impact on the conservation of environmental resources and also fossil
deposits. In a 2021 research study [1], the uses of different solar thermal collectors to
satisfy the electrical requirements of a power plant are compared. The utilization of the
sun’s power is performed as a way to heat up the feed water of the boiler and, as a result,
reduce fuel consumption and exergy destruction of the power plant. A parabolic solar
collector and a linear one were studied and their performance was evaluated. The results
of exergy analysis for the two types of solar collectors showed that the parabolic trough
collector (PTC) outperforms the other one. Kumargupta et al. [2] designed a proposed
system including an organic Rankine cycle with a triple pressure level absorption system
and a PTC. This system produces electric energy and cooling at two different temperatures
simultaneously. The results showed that when the ambient temperature increases from
5 ◦C to 35 ◦C, the energy production is reduced to 6.8 MW. In addition, exergy efficiency
decreased from 54.9% to 36.7% while representing an increase in the cost. Alirahmi et al. [3]
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discussed a new energy system, which functions by harnessing solar and geothermal
energy to produce electricity, heating, cooling, hydrogen and freshwater. The results
showed that the exergy efficiency of the system and the total cost of the unit reach 29.95%
and 129.7 GJ/h, respectively, at the optimal level. Keshavarzadeh and Ahmadi [4] worked
on the multi-objective optimization of a solar energy system. In their study, they used
various optimization techniques. Multi-objective optimization was used to investigate the
two objective functions of exergy efficiency and total cost rate. They used techniques such as
MPSO, IBEA, SPEA and NSGA-II for optimization. Qureshi et al. [5] worked on the energy
and exergy analyses of a cogeneration system based on solar renewable energy for electricity
and hydrogen production. The results showed that the proposed system has 25.07% energy
efficiency and 31.01% exergy efficiency. The highest efficiency of energy and exergy for
1000 MW of input heat from the solar receiver was obtained, equal to 33.53% and 41.49%,
respectively. Behzadi et al. [6] performed a multi-objective design optimization of a solar-
based system for electricity and hydrogen production. The optimization of this research was
performed by a genetic algorithm. In their research, a thermoelectric generator was used
instead of a condenser to increase exergy efficiency and electricity production, increase the
amount of hydrogen production and reduce the cost rate. The results of the study showed
that the proposed thermoelectric system has higher exergy efficiency, higher hydrogen
production rate and a lower total cost rate. Yuksel et al. [7] investigated the thermodynamic
assessment of a modified organic Rankine cycle (ORC) and parabolic trough collector (PTC)
for hydrogen production. In their research, solar energy is converted into heat energy by
using a parabolic collector, and then the heat energy produced in the modified ORC is used
to generate electricity. Then the electricity is used to produce hydrogen. It was possible to
produce hydrogen, cooling and electricity. Gholaminian et al. [8] studied the multi-objective
optimization of a geothermal-based organic Rankine cycle with a thermoelectric generator
that was used to produce electric energy and hydrogen. The thermal energy of the organic
processed fluid was absorbed from the brine of geothermal water passed between the
evaporator and the superheater. The working fluid of the organic cycle after passing
through the salt water turbine and producing power is returned to the evaporator before
being pumped. [8]. Haideranjad et al. [9] presented an extensive method for enhancing
a biomass-assisted geothermal power plant with freshwater generation. The combustion
of urban solid waste was utilized to improve the performance of the system, and the
exhaust gases of urban solid waste combustion were used as the main source of energy
for the multi-purpose desalination subsystem. The results showed that the energy and
exergy efficiency of the system can reach 13.9% and 19.4%, respectively, while the cost
rate of the entire system was estimated at 285.3 $/h. Ghorbani et al. [10] used a water
treatment supplier, water heater and parabolic trough solar collector in water and electric
energy production factories. To provide input heat, the structure of parabolic trough
solar collectors was used, and to supply the cooling system of the organic Rankine cycle
condenser, a degassing operation was used again. This energy production system is capable
of producing 3628 kg/h of freshwater and 459.9 MW of electric power. Kian Fard et al. [11]
worked on the exergy and exergoeconomic evaluation of hydrogen and distilled water
production based on geothermal energy and using two organic Rankine cycles, reverse
osmosis or desalination system, and an electrolyzer. The total investment costs for the
reverse osmosis water treatment supplier unit were found to be 56% with economic analysis.
The cost rate of freshwater production was calculated to be 32.73 cents/m3. Alirahmi
and Asareh [12] investigated and analyzed the energy, exergy and exergoeconomics and
multi-objective optimization of a multi-generation energy system including production
of hydrogen, freshwater, cooling, heating and hot water as well as electricity production
in Dezful, Iran. Two objective functions of this research, exergy and total cost, were
introduced, which were optimized with the genetic algorithm. In the Pareto frontier, the
best point was selected with the TOPSIS decision criterion, which obtained the best value
for the exergy efficiency of 31.66% and the total unit rate of 21.9 GJ/$. Assareh et al. [13]
worked on a renewable system based on the use of solar and geothermal energy boosted
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with thermoelectric generators (TEG) for electricity, cooling and desalination production.
In this system, instead of a condenser, thermoelectric generators were used to increase
the electricity produced by SRC. The results showed that the use of TEG instead of the
condenser led to a decrease in the total cost rate and an increase in the exergy efficiency of
the system. Razmi et al. [14] investigated an efficient and environmentally friendly power
generation system based on compressed air storage, an organic Rankine cycle and a vapor
compression refrigeration cycle. The results showed that the overall exergy efficiency and
exergy destruction of the components were 49.17% and 1419 kW, respectively, where the
pressure regulating valve and air turbine have the highest irreversibility and exergy loss.

The purpose of this research is to model and optimize a cogeneration system by
harnessing solar power and using a PTC to feed more solar energy and improve the system’s
performance. A thermodynamic model of the system is presented. Further, the governing
equations are solved by the Engineering Equation Solver (EES). Then, the parametric study
for investigating the impact of different parameters is carried out. Afterwards, the system is
optimized using the multi-objective algorithm (NSGA-II) to determine the optimum points.

2. Methodology
2.1. Energy System

The schematic of the proposed solar system is showed in Figure 1. It consists of a
parabolic trough solar collector, steam Rankine cycle and reverse osmosis desalination
system. It is worthy to notice that the length and width of PTCs have a direct impact on the
amount of heat transfer. The heat transfer produced from the collector is applied according
to the characteristics of the solar system. The task of the parabolic solar collector is to
convert solar radiant energy into thermal energy. The parabolic solar collector absorbs
the radiant energy of the sun and then transfers significant heat to the working fluid of
the collector. This energy is then directed to the steam Rankine cycle for utilization. The
steam Rankine cycle is used to generate electricity and consists of four pieces of equipment:
an evaporator, a turbine, a condenser and a pump. In this research, after achieving the
temperature of 300 ◦C at point 1, the working fluid enters the Rankine cycle, and at point 4,
it enters the turbine and causes it to rotate, which produces electricity. It is necessary to
mention that the saturated steam with a quality of 1 leaves the evaporator and goes to
the Rankine cycle steam turbine and produces electricity. At point 5, a water fluid with
lower pressure and temperature enters the condenser and then enters the pump, and
this cycle is repeated again. At points 12 and 13, a reverse osmosis desalination system
is used. Desalination of seawater is one of the important issues and parameters; as a
result, seawater enters the reverse osmosis desalination unit and finally freshwater is
supplied. The electricity required by the reverse osmosis desalination unit is provided by
the electricity produced by the system, and this is one of the advantages of the proposed
system. The reverse osmosis unit is responsible for purifying water and separating salts
from salty seawater. In this system, the pressure is used to reverse the osmotic flow of water
through a semi-permeable membrane to produce pure water and remove ions, molecules
and larger particles dissolved in the water.

2.2. Thermodynamic Modeling and Evaluation

A balance of mass and energy should be considered for every control volume. There-
fore, the assumptions and constraints in our study are as follows:

1. A steady state setting;
2. An isentropic condition is considered for both pumps and turbines;
3. The pressure drop in pipelines is insignificant [15];
4. The outlet of the condenser is saturated liquid and the outlet of the evaporator is

saturated vapor [15];
5. Variations of kinetic and potential energy are insignificant [16].
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Figure 1. Schematic of the proposed system.

Table 1 shows all input and operating parameters regarding the thermodynamic
analysis.

Table 1. Input data [3,12,13].

No. Parameter Symbol Value

1 Ambient temperature T0 25 [◦C]
2 Pressure P0 101.3 [kPa]
3 Sun temperature Tsun 5800 [◦C]
4 Input temperature to evaporator T1 300 [◦C]
5 Inlet flow rate to evaporator

.
m1 10 [kg/h]

6 Solar radiation intensity Gb 850 [W/m2]
7 Transmissivity of collector cover tau 0.96 [-]
8 Turbine efficiency ηturbin 0.85 [-]
9 Pump efficiency ηpump 0.9 [-]
10 Evaporator pinch point ppEva 5 [◦C]
11 Condenser pinch point ppCond 5 [◦C]
12 Input pressure to turbine P4 1500 [Kpa]
13 Input pressure to pump P6 100 [Kpa]
14 Input pressure to evaporator P1 250 [Kpa]
15 Heat loss collector coefficient Ul 3.82 [W/m2.◦C]

The general form of the first rule of thermodynamics is given according to the following
equation. Table 2 shows the energy balance equation for each part, which is derived by
using the first law of thermodynamics.

.
Q −

.
W + ∑i

.
mi

(
hi +

v2
i

2
+ gZi

)
− ∑e

.
me

(
he +

v2
e

2
+ gZe

)
=

dEcv

dt
(1)
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Table 2. Energy balance.

System Components Energy Balance

Turbine
.

Wturbine =
.

m4 × (h4 − h5)
Condenser Qcond =

.
m5 × (h5 − h6)

Evaporator QEva =
.

m7 × (h4 − h7)

Pump No. 1
.

Wpump1 =
.

m2 × (h3 − h2)

Pump No. 2
.

Wpump2 =
.

m6 × (h7 − h6)
Solar collector Qsc =

.
m3 × (h1 − h3)

Equation (2) is used to calculate the net energy of the system:

.
Wnet =

.
W turbine −

.
Wpump1 −

.
Wpump2 (2)

2.3. Parabolic Solar Collector Analysis

Using the following equations, the amount of useful energy produced in the PTC is
obtained by both Equations (3) and (4) as follows [7,17,18]:

.
Qu =

.
m1
[
Cp,c × T1 − Cp,c × T3

]
(3)

.
Qu = nptcFR[SAap − ArUL(T3 − T0)] (4)

S is estimated according to Equation (5) [13]:

S = GbτCτPα (5)

In addition, F1 and FR parameters are specified by the following equations [7,18]:

FR =

.
mcCp,c

ArUL

[
1 − exp

(
− ArULF1

.
mcCp,c

)]
(6)

F1 =
1

UL

1
UL

+ Do,r
h f i

+
(

Do,r
2k ln Do,r

Di,r

) (7)

2.4. Reverse Osmosis Analysis (RO)

The output power of the reverse osmosis pump is calculated from the following
equation [19–21]:

PoutputPower =
.

Wturbine × 0.3 (8)

The fresh water rate can be estimated as follows:

Fresh Water Rate = (p1 × PumpPower2 + p2 × PumpPower + p3)/(PumpPower + q1) (9)

Fresh Water Rate =
.

m11 (10)

Table 3 shows the coefficients of Equation (9) for calculating the freshwater rate:

Table 3. Coefficients of freshwater rate equation [12,13].

Coefficients Value

p1 0.06739 (-)
p2 183.2 (-)
p3 130.2 (-)
q1 867.3 (-)
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2.5. Exergy Analysis

In order to perform the exergy analysis, Equations (11)–(14) are considered:

·
ExQ + ∑

in

.
minexin =

·
ExW +

·
ExD + ∑

out

.
moutexout (11)

Here,
·

ExW =
.

W (12)

·
ExQ = Qj

(
1 − T0

Tj

)
(13)

ex = exph + exch (14)

2.6. Economic Evaluation

Equation (15) refers to the capital recovery factor (CRF) [22]:

CRF =
i(1 + i)n

(1 + i)n − 1
(15)

where i is assumed to be 0.1 and n is 20.
Equation (16) expresses the cost rate for each part [22]:

.
Zk =

ZkCRFϕ

N
(16)

where ϕ is indicative of the maintenance factor for the system and its value is equal to 1.06.
In this regard, N is the number of working hours of the system. In Table 4, the equations
related to the cost calculation of the desired system components are written.

Table 4. Cost balance and auxiliary equations for all system components [3,13,14].

Equation No. Component Equation

17 Turbine ZTur = 4750
(

.
W

0.75
turbine

)
+ 60

(
.

W
0.95
turbine

)
18 Condenser ZCond = 1773 × .

m5

19 Evaporator ZEva = 276
(

A0.88
Eva
)

20 Pump No. 1 ZPump1 = 3500
(

.
W

0.41
Pump1

)
21 Pump No. 2 ZPump2 = 3500

(
.

W
0.41
Pump2

)
22 Solar collector ZPTC = 240AP

23 Reverse osmosis ZRO = 0.98
.

m12

3. Results and Discussion
3.1. Validation

Due to the fact that the designed system is a new system and has not been investigated
before, there is not much data for a verification. In order to validate and check the correct-
ness of the written code, a comparison of the current study and the results of Ref. [23] has
been performed and is presented in Table 5. As the results show, the modeling has a proper
validity.



Energies 2023, 16, 4873 7 of 17

Table 5. Comparison between results by present code and by Nafey and Sharaf [23].

Parameter Unit Current Research Nafey and Sharaf [23] Difference (%)

Wpump, RO kW 1122 1131 0.796

Mf m3/h 485.9 485.9 0

SR - 0.9944 0.9944 0

Xb ppm 64,180 64,180 0

Xd ppm 252 250 0.8

∆P kPa 6856 6850 0.088

3.2. Sensitivity Analysis

Sensitivity analysis has the ability to consider every studied parameter and probable
result, thus assisting crucial decisions. Table 6 shows a range of design parameters for
sensitivity analysis and parametric study of the system. This range has been selected for
the system’s analysis according to the investigations carried out in previous studies.

Table 6. Range of the design parameters.

Design Parameters Upper Limit Lower Limit

Efficiency of pump (%) 0.95 0.75
Efficiency of turbine (%) 0.95 0.75
Turbine inlet pressure (kPa) 1600 1400
Pump inlet pressure (kPa) 110 90
Evaporator pinch point (◦C) 5 15
Solar radiation (W/m2) 400 900
Evaporator inlet temperature (◦C) 400 300

In order to calculate the results of this stage, the amount of growth or decrease in
changes of production power, fresh water production rate, exergy efficiency and cost rate
are compared to the rise in the design parameters introduced in Table 7. In this table,
the highest and the lowest values of each output were obtained, and then the growth or
decrease in percentage of each output was calculated.

Table 7. Sensitivity analysis.

No. Parameter Toral Work (kW) Rate of Fresh Water
(m3/h) Exergy Eficency (%) Cost Rate ($/h)

1 Efficiency of pump
Max: 606.9
Min: 606.3
Difference = 0.09%

Max: 34.04
Min: 34.01
Difference = 0.08%

Max: 12.31
Min: 12.3
Difference = 0.08%

Max: 35.44
Min: 35.43
Difference = 0.02%

2 Efficiency of turbine
Max: 678.5
Min: 535.1
Difference = 26.72%

Max: 37.55
Min: 30.43
Difference = 23.39%

Max: 13.76
Min: 10.85
Difference = 26.82%

Max: 36.33
Min: 34.51
Difference = 5.27%

3 Turbine inlet pressure
Max: 620.1
Min: 592.5
Difference = 4.65%

Max: 34.69
Min: 33.32
Difference = 4.11%

Max: 12.58
Min: 12.02
Difference = 4.65%

Max: 35.6
Min: 35.24
Difference = 1.02%

4 Pump inlet pressure
Max: 623.2
Min: 591.6
Difference = 5.41%

Max: 34.85
Min: 33.28
Difference = 4.71%

Max: 12.64
Min: 12
Difference = 5.33%

Max: 35.64
Min: 35.24
Difference = 1.13%

5 Evaporator pinch point
Max: 608.3
Min: 606.8
Difference = 0.24%

Max: 34.11
Min: 34.03
Difference = 0.23%

Max: 12.34
Min: 12.31
Difference = 0.25%

Max: 35.45
Min: 35.43
Difference = 0.05%

6 Solar radiation
Max: 643.1
Min: 497.8
Difference = 29.37%

Max: 35.83
Min: 28.52
Difference = 25.63%

Max: 12.32
Min: 12.26
Difference = 0.48%

Max: 35.9
Min: 33.98
Difference = 5.65%

7 Evaporator inlet temperature
Max: 360
Min: 340
Difference = 5.88%

Max: 34.26
Min: 34.03
Difference = 0.67%

Max: 12.4
Min: 12.31
Difference = 0.73%

Max: 35.5
Min: 35.43
Difference = 0.19%
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It can be concluded from Table 7 that, in the present research, the most influential
decision variables having effects on the performance of the system are the turbine input
pressure and turbine efficiency. The reasons for such changes in the system outputs
compared to the growth or decrease of the design parameters can be stated as follows:

• Power production and exergy efficiency are directly related to each other, so by
increasing or decreasing the power production of the system, the value of exergy
efficiency increases or decreases as well.

• With the increase in the production capacity of the system and the need for larger
equipment and more maintenance, the cost rate of the system also increases.

• The performance and efficiency of solar collectors depend more on the intensity
of solar radiation than any other factor because all the power required to produce
energy is provided by solar collectors from sunlight, and the higher the amount of
solar radiation, the more efficient the solar collectors will be. It is also found that
increasing or decreasing the performance of the solar collector has a direct effect on
the performance of the system because the energy required by the Rankine cycle is
provided by solar energy.

• With the increase in solar radiation, the flow rate of the input fluid to the solar collectors
increases, and as a result, the output work of the subsystems also increases. With the
increase in the flow rate, the total output work will also increase and vice versa.

• With the increase in the temperature of the evaporator, the input enthalpy to the steam
Rankine cycle turbine also increases, and as a result, the total work increases with the
increase in enthalpy and vice versa.

• As the pinch point temperature of the evaporator increases, its amount of heat transfer
decreases; as a result, with the decrease in heat transfer from the evaporator to the
steam Rankine cycle, the work output of the entire system does not increase much.

• Increasing or decreasing the amount of heat transfer has a direct relationship with the
work of the whole system.

• By increasing the input pressure of the steam Rankine cycle turbine, the enthalpy of
the fluid also increases at this point, and as a result, it increases the total work of the
turbine and steam Rankine cycle, which increases the total work for this cycle.

• By increasing the input pressure of the steam Rankine cycle turbine, the output
pressure from the turbine rises as well. The output pressure from the turbine increases
the input energy to produce the power of the system, so with the increase in the input
pressure of the turbine, the energy production also increases.

3.3. Parametric Study

A primary challenge of designing sustainable energy systems is to determine the
optimum point of techno–economic viability and also to find out about different variables
having impacts on the energy system.

In Figure 2 examines the impact of increasing turbine efficiency on the system’s per-
formance. Turbine efficiency means the ratio of practical power to total power. According
to Figure 2, due to the increase in the efficiency of the turbine, the work output of the entire
system and the rate of freshwater produced by the system increases, and considering that
the output work and exergy efficiency are directly related to each other, we see an increase
in the exergy efficiency of the system. Moreover, due to the increase in turbine efficiency,
the cost rate of the system has also increased. The cause of such an increase in the cost rate
lies in the rise in the work of the entire system, and a requirement for more equipment
leads to increasing the system’s costs.

In Figure 3, the effect of increasing the intensity of solar radiation on the performance
of the system is investigated. The energy radiated from the surface of the sun is spread
in the form of light and heat. The intensity of the sun’s radiation increases and decreases
with the sunrise and sunset, but it should be noted that its main changes are greater
when the distance of the earth from the sun changes. Solar radiation determines the
energy production performance of a solar system. The performance and efficiency of solar
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collectors depend more on the intensity of solar radiation than any other factor because all
the power required to produce energy is provided by solar collectors from sunlight, and the
higher the amount of solar radiation, the more efficient the solar collectors will be. From
Figure 3, it is evident that due to the increase in the intensity of the sun’s radiation, the work
rate of the whole system and the rate of freshwater produced by the system increase. It
should be noted that the sun’s radiation on the energy storage plate in renewable systems is
one of the factors that has a very considerable effect on the performance of systems that use
solar collectors. In other words, with the increase in solar radiation, the flow rate of the fluid
entering the solar collectors increases, and as a result, the output work of the subsystems
also increases. With the increase in the flow rate, the total output work will also increase,
and vice versa. Moreover, we see an increase in the cost rate and exergy efficiency. With the
increase in production capacity, the costs of system repairs and maintenance increase.
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diation, the flow rate of the fluid entering the solar collectors increases, and as a result, 
the output work of the subsystems also increases. With the increase in the flow rate, the 
total output work will also increase, and vice versa. Moreover, we see an increase in the 
cost rate and exergy efficiency. With the increase in production capacity, the costs of 
system repairs and maintenance increase. 
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Figure 2. The effect of turbine efficiency on system outputs. (a) Work and fresh water (b) Exergy
efficiency and cost rate.

Figure 4 examines the effect of increasing the input pressure of the turbine from
1400 kPa to 1600 kPa on the system outputs, which include the total work, rate of desalina-
tion production, exergy efficiency and cost rate. It can be seen that due to the increase in the
input pressure of the turbine, the work rate of the entire system and the rate of freshwater
produced by the system increases. Clearly, the exergy efficiency and system cost rate are
also increasing due to an improvement in the system’s performance and the increase in
hidden and apparent costs of the system. Additionally, with the rise in the input pressure of
the steam Rankine cycle turbine, the output pressure of the turbine also increases. The rise
in the output pressure from the turbine increases the input energy to produce the power of
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the system, so with the increase in the input pressure of the turbine, the output power also
increases. As a result, the exergy efficiency of the system also increases due to the increase
in total output power, and of course, the cost of the system also increases with the increase
in production power.
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Figure 3. The effect of solar radiation on system outputs. (a) Work and fresh water (b) Exergy
efficiency and cost rate.
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Figure 4. The effect of the turbine input pressure on the system outputs. (a) Work and fresh water
(b) Exergy efficiency and cost rate.

4. Case Study

Due to the suitable location of Abadan, a southern city of Iran, in terms of suitable
solar potential and high radiation of solar energy, and due to the existence of suitable
conditions for this research, this city was chosen for the study. Next, for the city of Abadan,
the hourly changes in air temperature and solar radiation throughout the year are shown
in Figure 5. The information about Abadan city is extracted from Metanorm software 7.3.
As shown, in the summer season, we see the highest temperature and the highest strength
of solar radiation in Abadan.
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Case Study Results

The effects of both Abadan’s air temperature and solar radiation on the solar system
during one year are investigated, and the results are depicted in Figure 6 It is apparent that
the highest amount of total output work occurs in July and June. Figure 7 shows that the
maximum production of freshwater happens during July and June due to the increased
sunlight and ambient temperature. Annual energy and freshwater rate production are
summarized in Table 8.
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Table 8. Outputs over a year.

Parameter Total Power (kW) Freshwater Water (m3)

Value 260,847,658.6 73,821.34

5. Optimization Study
5.1. NSGA-II Algorithm

In the multi-objective optimization, the goal is to determine the conditions in which
several objective functions are optimized together. In the optimization of thermodynamic
problems, there are certain objective functions, which should be minimized or maximized
according to the task. In this research, on the basis of the Non-Dominated Sorting Genetic
Algorithm II (NSGA-II), maximization of the exergy efficiency and minimization of the cost
rate are carried out.

5.2. Optimization Results

In the present study, the optimization of the target functions was performed by increas-
ing excess returns and reducing cost rates. To perform the multi-objective optimization, a
code is written to connect the engineering equation solver (EES) with Matlab, which links
two platforms in the Dynamic Data Exchange (DDE) method. Table 9 outlines the amount
permissible for the design variables used for the optimization.

Table 9. Design variables and their span of changes.

Optimization Variable Upper Limit Lower Limit

T1 (◦C) 400 300
P4 (kPa) 1700 1300
Pinch point evaporator (◦C) 6 4
Turbine efficiency (%) 0.9 0.7

Figure 8 shows the Pareto efficiency of the solar system. All solution points are
determined to be optimal. Furthermore, a simple geometric method is used to select the
best point.
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The estimated values of exergy efficiency, cost rate, input temperature to evaporator,
input pressure to the turbine, evaporator pinch point and turbine efficiency are summarized
in Tables 10 and 11.

Table 10. The optimal result of the objective functions.

Target Function Value

Exergy efficiency (%) 12.02
Cost ($/h) 35.26

Table 11. Optimization parameters.

Optimization Parameter Value

T1 (◦C) 345.05
P4 (kPa) 1505.22
Evaporator pinch point (◦C) 5.62
Turbine efficiency (%) 0.82

6. Conclusions

In this research, the optimization, assessment and modeling of a multi-energy system
based on solar power and the utilization of a parabolic trough solar collector were discussed.
The products of this energy system included freshwater and electricity. The investigated
system consists of parabolic trough solar collector subsystems, a steam Rankine cycle and a
reverse osmosis desalination system. Thermodynamic software (EES) is employed to solve
the governing equations for the problem and to model the system. Then, according to the
results obtained from the system analysis, the best and most effective design parameters of
the system’s performance, including the turbine efficiency, turbine inlet pressure and solar
radiation intensity, were introduced. The city of Abadan was selected as a study case in
this research by examining the suitable potential of solar energy. Furthermore, the effects
of changes in the ambient temperature of the studied city and variations in the intensity
of solar radiation on the work output, freshwater production and exergy efficiency of the
system are investigated. In order to optimize the designed system, a version of genetic
algorithm (NSGA-II) is considered to determine the value of optimization goals. The Pareto
Figure is obtained to determine the best values for the objective functions of the problem,
which are the efficiency of the exergy of system and the cost of the system. Finally, the
most optimized values of the exergy efficiency and cost rate are calculated to be 12.02%
and 35.26 $/h, respectively.
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Nomenclature

Aap Aperture area, m2

Ar Receiver area, m2

T Temperature, ◦C
p Pressure, kPa
.

Q Heat transfer rate, kW
A Area, m2

.
Ex Exergy, kW
F Feed water mass flow rate, kg/s
CP Specific heat of air and water at constant pressure, kJ/kg.K
Cp,c Specific heat of working fluid, kJ/kg.K
Do,r Receiver’s outside diameter, m
Di,r Receiver’s inside diameter, m
Gb Solar radiation intensity, W/m2
.

mc Mass flow rate in the collector, kg/s
.

Qu Collector heat gained, kW
.

m Mass flow rate, kg/s
S Absorbed solar radiation, Wm−2

nptc Number of collectors
s Specific entropy, kJ/kg.K
U Overall heat transfer coefficient, kW/m2.K
UL Heat loss coefficient
h Specific enthalpy, kJ/kg
h f i Heat transfer coefficient
x Salinity, ppm
Z Investment cost, $
.
Z Cost rate, $/h
FR Heat removal factor
F1 Collector efficiency factor
K The ratio of specific heat
W Power, kW
Subscripts
PTC Parabolic trough collector
ORC Organic Rankine Cycle
RO Reverse Osmosis
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Abbreviations
pp Pinch point
tur Turbine
eva Evaporator
0 Dead state
I In
e Out
ph Physical
ch Chemical
cv Control volume
cond Condenser
sc Solar collector
Greek symbols
η Efficiency
γ Correction factor for diffuse radiation
τC Transmissivity of the cover glazing, cm2/s
τP Effective transmissivity of the parabolic trough collector, cm2/s
α Absorptivity of receiver
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