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Abstract: Advanced production methods utilize complex fluid iteration mechanisms to provide
benefits in their implementation. However, modeling these effects with efficiency or accuracy is
always a challenge. Machine Learning (ML) applications, which are fundamentally data-driven, can
play a crucial role in this context. Therefore, in this study, we applied a Hybrid Machine Learning
(HML) solution to predict petrophysical behaviors during Engineered Water Injection (EWI). This
hybrid approach utilizes K-Means and Artificial Neural Network algorithms to predict petrophysical
behaviors during EWI. In addition, we applied an optimization process to maximize the Net Present
Value (NPV) of a case study, and the results demonstrate that the HML approach outperforms
conventional methods by increasing oil production (7.3%) while decreasing the amount of water
injected and produced (by 28% and 40%, respectively). Even when the injection price is higher,
this method remains profitable. Therefore, our study highlights the potential benefits of utilizing
HML solutions for predicting petrophysical behaviors during EWI. This approach can significantly
improve the accuracy and efficiency of modeling advanced production methods, which may help the
profitability of new and mature oil fields.

Keywords: Hybrid Machine Learning; Engineered Water Injection; wettability alteration

1. Introduction

Artificial Intelligence (AI) technologies are increasingly being applied in the oil and gas
industry due to the challenges of handling large volumes of data [1,2]. Machine Learning,
a subset of AI, has the advantage of efficiently processing large amounts of data and
providing reliable solutions to various problems. According to [2], the number of papers on
Machine Learning has been growing exponentially in recent years. Additionally, the current
digital transformation acts as a catalyst for the widespread usage of these techniques [3].

Reservoir modeling and simulation require a numerical approach based on physical
laws, such as mass conservation, thermodynamics, hydraulic diffusivity, etc. Although
these tools are considered reliable, their results only estimate the actual measured data.
Some physical phenomena have nonlinear behavior, making them complex to model. On
the other hand, an alternative approach based on the relationship between the data is more
advantageous in some applications, such as reservoir petrophysical behaviors [4–6].

Moreover, including physicochemical interactions in the simulation process, such
as Enhanced Oil Recovery (EOR) injections, makes numerical estimations even more
challenging. In this case, using laboratory data in the numerical model is an alternative, but
this ties the solution to specific tools, limiting reproducibility to the process of generating
laboratory data [7]. The EOR Engineered Water Injection (EWI) technique, which controls
the salinity of the injected water to increase the volume of recovered oil, is an example of
injection with a complex geochemical background [8]. This ionic control achieves polar
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iterations with the rock, altering its natural wettability properties and facilitating fluid
permeability [9–11].

The geochemical behavior that occurs with injection adds more complexity to its
numerical solution. Understanding these limitations, we proposed an approach through a
hybrid ML solution that can learn the relationship between the variables of relative perme-
ability, salinity (formation and injection), and mineralogy, becoming able to incorporate the
changes of Kr related to the injection method.

To simplify the modeling of Engineered Water Injection, we implemented a solution
with two complementary Machine Learning tools (K-Means and Artificial Neural Networks)
to establish a relationship among salinity, relative permeability, and mineralogical content.
Thus, we have a reliable approach with ML to reproduce the production simulation such
as with conventional geochemical modeling. In this case, we initially used a clustering
method to classify the original relative permeability (Kr), and subsequently, with a given
injection salinity, predicted a new Kr curve. The use of these two specific ML tools defines
the approach as Hybrid Machine Learning (HML).

Finally, we tested the quality of the EWI modeling pipeline with HML in an iterative
optimization process. Thus, we selected a benchmark, Unisim-II, applying two injection
processes: (i) with common water and (ii) with engineered water. Using the economic
scenario proposed in the benchmark, we maximized the NPV with 30 years of production
in both cases, increasing only the cost of the engineered water by 35%. In these tests, EWI
had the highest profit increase (approximately 39%), compared to the previous injection.
This performance is attributed to a 7.3% increase in oil recovery, as well as reduction in
water injection volume (by 28.5%) and water production (by 40%).

2. Materials and Methods
2.1. Data Collection

The construction of the database involved using 30 templates obtained from the CMG
collection, primarily designed for training and learning purposes, and are based on the well-
established SPE Solution Problems benchmark problems in the industry. Each template
underwent 50 simulations following a geochemical modeling approach [12]. To increase the
complexity of the simulations and account for the effects of other variables, we randomly
varied the salinity of formation water and the mineralogy percentages. This approach
allowed us to generate a final dataset comprising 1500 simulation samples with a broad
range of formation water compositions and mineralogy conditions while preserving the
model characteristics for adequate generalization of scenarios during the training stage.
The synthetic data generation strategy through simulation took approximately one month
to complete. Finally, the dataset was ready for the KrModule, which produced the target
variables for the next steps in its pipeline.

2.2. KrModule Procedure

After simulating the synthetic cases, we utilized the KrModule algorithm to obtain the
updated relative permeability. This algorithm works by iteratively adjusting the Kr of a
model with conventional waterflooding until it generates results comparable to the corre-
sponding EWI case (as shown in Figure 1). The KrModule is a solution developed by [12]
that has been adapted for this study. In our implementation, we retained the geochemical
configuration proposed by the original author, which includes the configuration for relative
permeability reduction and interpolation, as well as the aqueous and mineral reactions.
However, in this study, we introduced random variations in the mineral percentages and
formation water content for each simulation case, which made it possible to incorporate
this information into the training dataset. In comparison with the study presented in refer-
ence [12], we also made modifications to the optimizer applied in the KrModule, aiming
for improved convergence of results. Thereby, we replaced the Genetic Algorithm (GA)
with a Particle Swarm Optimization (PSO) algorithm, which is used to minimize the error
between the production curves.
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Figure 1. KrModule schema.

The Particle Swarm Optimization (PSO) method was employed to enhance a set of
candidates or particles that move in an exploratory space through velocity and position
adjustments. At each iteration, all particles are adjusted by moving toward the direction of
the current best case. Once the module application was complete, we generated the new
relative permeability, which reflected the effects of EWI in the simulation. Therefore, we
structured the dataset as follows:

Input:

• Kr original;
• Injection salinity concentration;
• Formation salinity concentration;
• Mineralogy.

Output:

• Kr adjusted.

In our dataset of relative permeability curves for multiple samples, we observed that
the water salinity and mineral content were repeatedly recorded for each data point on
the curve. This led to a large dataset, which can cause training issues such as overfitting.
To mitigate this problem, we transformed the actual relative permeability curves into the
Brooks–Corey [13] equation parameters (Equations (1) and (2)), which provided a concise
representation of the curves and synthesized all information from each sample into a
single row. This transformation eliminated the repeated data, which improved the model
training performance.

Kro = krocw × ((1 − Sw − Sor)/(1 − Scw − Sor))no (1)

Krw = krwor × ((Sw − Swcrit)/(1 − Swcrit − Sor))nw (2)

2.3. Hybrid Machine Learning Method

The central characteristic of the HML method involves utilizing two distinct ML
algorithms. In the first stage, an unsupervised clustering process is employed, utilizing the
K-Means algorithm from the Scikit-learn framework. The K-Means method groups data
sets based on their similarity patterns. It is noteworthy that this algorithm does not require
output labels, relying solely on the training process to identify those connections. In this
stage, we conducted an elbow and silhouette analysis to determine the optimal number of
clusters. The analysis results indicated that three clusters were the ideal number, which
also corresponded to the number of wettability types. The other hyperparameters were
set by default. Only Kr original was used as input data, thereby focusing this clustering
process on the three possible groups based on input Kr.
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Next, the entire data frame is divided into three parts based on the labels assigned in
the clustering phase. For this stage, we opted for using Multi-Layer Perceptron (MLP) Arti-
ficial Neural Networks (ANNs) from Scikit-learn, allowing for performance comparisons
with the solution proposed by [12]. Three ANNs were trained, each using one of the three
corresponding new datasets (as illustrated in Figure 2). The ANN architecture consists of
multiple layers of interconnected nodes (neurons). The input layer receives the data, and
the output layer produces the network’s output. Between those layers, there are one or
more hidden layers that perform mathematical transformations on the data. During the
training process, the network’s weights are adjusted based on the difference between the
actual and expected outputs, minimizing its error [13,14].
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Before training the ANNs, the data set undergoes a standardization process. We used
a mathematical transformation called Standard Scaler, which aims to center the data’s
mean at zero and normalize the standard deviation. This helps to address the issue of data
sets with vastly different feature scales, which can cause variables with high variance to
overlap with the Objective Function during training, resulting in poor training performance.
Equation (3) below summarizes the transformation process:

Z = (X − µ)/σ (3)

The hyperparameters of the neural networks were adjusted to enhance validation
outcomes. We employed a model selection technique called Grid Search Cross Validation
that systematically evaluated different combinations of ANN configurations and computed
a score for each one. This enabled us to rank the results based on their predictive per-
formance, as measured by the Normalized Mean Squared Error (NMSE) and R2 metrics.
Finally, we selected the best configuration for each ANN.

The configuration and training of the K-Means model and the neural networks were
completed. Then, the HML was ready to be engaged in the case study optimization process.

2.4. EWI and Water Optimization

The optimization process employed in this study aimed to maximize the NPV. To
facilitate comparative analysis, we conducted two optimization runs—one using common
water, and the other using EWI. To calculate the NPV, we adapted the economic scenario
from the case study. The variables optimized were the well parameters: (i) flow rate and
(ii) pressure. However, in the case of EWI, we included (iii) salinity concentrations of the
injected water as an additional variable. Therefore, we had:

• Production rate;
• Production pressure;
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• Injection rate;
• Injection pressure;
• Salinity concentrations (Na, Cl, SO4, Ca, and Mg), just in the EWI scenario.

The Particle Swarm Optimization (PSO) solution was chosen considering its simple
implementation, fast convergence, and the fact that it is ideal for continuous space formula-
tion problems. It is also a metaheuristic method, which avoids premature convergence to
local minima.

For the EWI scenario, we combined HML with optimization, which was performed
in two steps. First, the K-Means model identified the original relative permeability group
(or label). Then, the neural network corresponding to the group was loaded. The neural
network used the salinity set at each iteration with the original Kr to predict the new curve
(Figure 3).
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2.5. Case Study
2.5.1. UNISIM-II Benchmark

For this project, we selected a benchmark based on a field in the Brazilian Pre-Salt.
We chose the Unisim-II model, which was developed by the Unisim research group at
Unicamp [15]. This case study’s structure combines data from the Ghawar and Tupi fields,
which has dimensions of 5000 × 5000 × 150 m, with 16 faults and a Super-K zone [16].

The production system defined in this model provides operating ranges for the in-
jectors and producers, and these operational limits were used in the optimization phase
(Table 1).

Table 1. Wells’ operational conditions, adapted from [16].

Type Vertical Producer Vertical Injection

Max. water rate (m3/day) - 5000
Max. oil rate (m3/day) 20 -

Max. liquid rate (m3/day) 2000 -
BHP (kgf/cm2) Min 190 Max 350



Energies 2023, 16, 4849 6 of 16

To improve the performance, we utilized a simplified version of Unisim-II, which was
also used by [12]. This portion of the model comprises a representative field location with
dimensions of 6 × 6 × 30 cells (Figure 4). The well configuration follows [12] and includes
producer and injector wells placed in opposite corners of the model (one quarter of a five-
spot pattern). Additionally, we adapted the economic scenario to match the proportions of
the benchmark cut fraction, as shown in Table 2.
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Table 2. Economic scenario for reduced model [12].

Type Variables Value

Price (USD/STB)
Oil 54.76
Gas 0.70

Cost (USD/STB)

Oil production 10.952
Gas production 0.4675

Water production 1.1
Engineered water injection 1.98

Water injection 1.1

Investment (USD millions)
Drilling and completion vert. well 22.8/m
Connection vertical well platform Data

Platform Equation

For the advanced injection with engineered water, we assumed a saline composition
of the formation and its mineralogy. The benchmark was based in two carbonate reservoirs
in which the mineralogy was 50% calcite and 50% dolomite, the most abundant minerals
in this type of rock. For the ionic configuration of the formation water, we decided on
35,000 ppm of NaCl, 200 ppm of sulfate (SO4

2−) and magnesium (Mg2+), and 1000 ppm of
calcium (Ca2+). The benchmark does not have these available data, so we defined these
variables to proceed with the study.

2.5.2. KrModule PSO Parameters

The KrModule uses Particle Swarm Optimization (PSO) to adjust relative permeability
with an Objective Function (OF) to reduce error between oil and water production curves.
Each sample is the model with the geochemical modeling simulated. By comparing the
original results, the optimizer changes in relative permeability to achieve the minimum OF.
This optimizer was set as shown in Table 3.
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Table 3. PSO in KrModule configuration.

PSO Features Values

Particle number 10
Interaction number 12

Exploration factor (K) 1
Cognitive component (ϕ1) 2.05

Social component (ϕ2) 2.05
Damping factor (Wdamp) 1

Constriction coefficient (chi) Equation (4)

For the constriction coefficient calculation, Equation (4) is shown below:

chi = 2 × K/|2 − (ϕ1 + ϕ2) − ((ϕ1 + ϕ2)2 − 4 × (ϕ1 + ϕ2))1/2| (4)

2.5.3. Hybrid Machine Learning Parameters

The present study employed two Machine Learning models, each with specific hy-
perparameters. The K-Means model was implemented with the following settings in
the pipeline:

• Number of clusters: 3;
• Method for initialization: random;
• K-Means algorithm: Lloyd.

The cluster number was determined through elbow and silhouette analyses. We
employed a random state initialization method to introduce some level of randomness
during the training process. For the K-Means algorithm, we selected Lloyd based on
the package documentation, which indicates it is a more suitable algorithm for poorly
defined clusters. We conducted preliminary tests to evaluate the impact of modifying the
default parameters but found that such modifications did not significantly influence the
clustering outcome. Then, the remaining parameters were set to their default values from
the Scikit-learn package.

The ANN application differed in that the models were optimized using the Grid
Search Cross-Validation (CV) method. The following parameters were used to configure
the ANN models:

• Hidden layer size: 5 to 25;
• Activation function: logistic, tanh;
• Solver: lbfgs, sgd, adam;
• Learning rate: constant, invscaling, adaptive;
• Random state: 42.

All parameters had more than one option for tuning, and multiple combinations
were explored to obtain the best configuration. For the hidden layer size, we followed
the structure provided by [12], using a single layer with 10 to 25 neurons. Two activation
functions were tested: the logistic sigmoid, one of the most common and computationally
efficient activation functions, and the hyperbolic tangent, a nonlinear function capable of
processing complex input–output relationships.

To explore the solvers and learning rate parameters, we tested all available options in
the multi-layer perceptron model from Scikit-learn. To ensure that all ANNs were trained
using the same deterministic randomness in the weights and bias, we set the random state
to 42. All other settings for the ANN, except for those specified in the parameter list, were
maintained at their default values for this application.

3. Results and Discussion
3.1. K-Means Clusterization Results

Initially, we classified the relative permeability into three groups using K-Means. Next,
we utilized a dimensionality reduction method called Principal Component Analysis (PCA)
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to simplify the feature set. This statistical technique converts the original variables into
a new set while maintaining the original variation as much as possible. We applied the
reduction from eight to three components—one being the cluster labels. Thus, this allowed
us to create a 2D visualization to display the data distribution by each cluster (Figure 5).
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Figure 5. PCA plot segmented by clusters.

The optimal number of clusters was determined to be three using the elbow method
and the silhouette analysis, as shown in Figures 6 and 7. The elbow method helps to identify
the ideal number of clusters by plotting the distortion values against the number of clusters.
The “elbow” point is where the curvature of the plot changes direction, in other words,
the optimal value. This approach aims to strike a balance between capturing the data’s
variability with enough clusters without overfitting or having too many clusters with little
information. On the other hand, the silhouette analysis calculates how similar each data
point is to its cluster compared to others, with a score range of −1 to 1, where a higher score
indicates a better match to its cluster. The optimum cluster size is the maximum silhouette
value, which in this case also corresponded to three clusters (Figure 7).
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After analyzing the silhouette plot, we observed that the maximum score was 0.22,
which corresponded to a cluster number of three. This result supported the selection
of three clusters for the classification stage. However, the plot also indicated that the
clusters were not well defined, indicating that the data points within each cluster were not
very similar. Although the maximum silhouette value was below the commonly accepted
threshold of 0.5 for a well-defined cluster, the data could still be grouped based on their
similarities, even if they did not fit perfectly into distinct clusters. To better understand the
characteristics of each cluster, we compared their centroids, which represent the overall
attributes of all data points within the cluster (Figure 8).
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Figure 8. Centroids’ clusters as relative permeability curves.

We note here characteristics that we sought to segment at the beginning of the cluster-
ing process. The choice of three clusters in this step was not random. We used quantities
of options for qualitative types of wettability, oil-wet, water-wet, and intermediate-wet,
following other applications that define wettability analysis by the relative permeability
curve shapes [17,18].

The features that define different wettability according to [17] method were grouped
by the algorithm independently, and we can observe them through clustering centroids.
Cluster 00 (in blue) has the most water-wet characteristics, with the intersection point of
the Kr curves greater than 0.5 of Sw (second Craig’s rule), lower residual oil saturation
(approximately 0.67 Sw), and an oil permeability curve with a lower angulation level,
indicating a slower reduction in oil permeability as Sw increases. Cluster 01 (in green)
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has a residual oil saturation (Sor) below 0.5 Sw, a Kr–Oil curve with a large slope, and the
beginning of water mobility already at low saturation (Sw at 0.25). The intermediate class
is represented by cluster 02, which has characteristics between the two cases, but with the
Kr–Oil starting point higher than Kr–Water, and both curves have the highest slopes.

3.2. Neural Network Results

We trained the neural network using the cross-validation method, splitting the data
into 70% for training, 15% for testing, and 15% for validation. We followed the common
practice in Machine Learning that recommends allocating a larger proportion (between
60–80) of data for training than for testing and validation. Therefore, we selected this
proportion arbitrarily for further steps. The hyperparameters were obtained through grid
search exploration, as shown in Table 4. Although the optimal network configurations did
not show significant differences, their application improved the performance of predictions
in all cases (Figure 9). This systematic testing of neural network configurations ensures the
reliability of their performance. On the other hand, in their validation process, [12] tested
two learning algorithms with a smaller range of neurons in the hidden layer, resulting in a
narrower exploration of hyperparameter adjustments.

Table 4. Grid Search CV with final optimization in each case.

Hyperparameters Net 00 Net 01 Net 02

Hidden layer size 12 10 11
Activation logistic logistic logistic

Solver lbfgs lbfgs lbfgs
Learning rate adaptative adaptative adaptative
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Figure 9. Net 00 R2 score vs. hidden layers number using Grid Search CV. Highlighted in red is the
neural network configuration, with the highest performance score.

Next, using the validation fraction of the data, we compared the actual values with
the predicted ones. With a cross-plot (Figure 10), it is possible to observe the distribution
of the three cases approaching the expected diagonal linear regression. We confirmed the
predictions via the R2 score between the actual and forecast values, which were 0.929, 0.872,
and 0.897.
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Figure 10. Net 00 R2 score vs. hidden layers number using Grid Search CV.

After optimizing the network settings, we applied the normalized root mean squared
error to determine the amount of error in the prediction outcome. The resulting errors are
presented below:

• Net00: 0.02940;
• Net01: 0.03627;
• Net02: 0.05106.

It is worth noting that all the errors obtained can be considered low for this prediction
scenario. The predicted parameter of interest, relative permeability, ranges from 0 to 1.
Therefore, even the highest error of 0.051 in the permeability value can still be considered
reasonable. These results combined with the R2 results suggest that the optimized network
settings provided good performance for predicting relative permeability. However, it is
important to note that the results should be evaluated within the context of the specific
problem being addressed.

We also selected three random Kr cases from the validation to compare the shape of
the forecasted curves by the networks and evaluate their quality (Figure 11).
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Figure 11. Comparison of Kr curve predicted by each network (in green) and actual curves (in black):
(a) comparison plot curve from 00 cluster; (b) comparison plot curve from 01 cluster; (c) comparison
plot curve from 02 cluster.

The plots confirm that the neural network with the highest R2 score provides an
accurate fit to the curves. Nevertheless, the other networks also exhibit good results
in terms of curve shape. Thus, the reliability of the neural network application can be
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confirmed based on these results. While the R2 score of the Machine learning approach
conducted by [12] is higher in absolute values (above 90%), the current approach considers
more training variables, which enriches the behavior of Kr that can be predicted by the
neural network. Moreover, we utilized the HML approach to train the networks with
each cluster’s data, resulting in an improvement in neural network performance. By using
K-Means to classify these patterns, we were able to enhance the final forecasting ability.

3.3. Optimizations

The study comprises two optimization processes: (i) Unisim-II 6 × 6 with conventional
water injection and (ii) Unisim-II 6 × 6 with EWI. However, for the EOR case, we augmented
the cost of injected water by 25%. In the optimization with conventional water, the best
outcome yielded an NPV of MM USD 18.21 for a 30-year production period, with an oil
recovery factor of 38%. Notably, the volume of water produced was six times greater than
that of oil (Table 5). Although the EWI case did not result in a significant improvement
in oil recovery, it led to a substantial reduction in both production and water injection
volumes (by 28.5% and 40.5%, respectively) as shown in Figure 12. These changes resulted
in a 45.3% increase in the final NPV result with the advanced method.

Table 5. Fluid production, recovery factor, and final NPV from optimum cases.

Oil Produced
(105m3)

Water Produced
(105m3)

Water Injected
(105m3)

Oil Recovery
Factor (%)

Final NPV
(MMUS)

Water 15.72 15.35 40.03 38.01 USD 18.21
EWI 16.88 9.13 28.60 41.4 USD 26.45
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The optimized wells’ variables in the two cases showed a convergence (Table 6). The
injection flow rate for the common water case was lower to control the high injection
volume/production of water.

Table 6. Optimized variable results.

Inj. Rate
(m3/Day)

Inj. Pres.
(m3/Day)

Prd. Rate
(m3/Day)

Prd. Pres.
(m3/Day)

SO42−

(ppm) Ca2+ (ppm) Cl− (ppm) Mg2+

(ppm)
Na+ (ppm)

2091.66 33,256.36 1994.73 996.73
2878.92 33,565.98 1995.80 989.79 1493.01 4933.7 198.64 800.63 14,951.14

The optimum salt solution had 22,575 ppm in total, with more than half composed of
sodium, as we can see in Figure 13. The sulfate concentration was increased compared to
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the standard saline solution. This ion is relevant for promoting the geochemical iterations
of wettability reversal, so this increase in concentration was expected for the final Kr
adjustment to go to a higher water wettability condition.
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Therefore, we plotted the optimized Kr curve with the salinities compared to the
original (Figure 14). Here, we see that the optimized result (green) had the Kro curve above
the original case, increasing this permeability. Another important aspect is the reduction of
the residual oil saturation, from 0.45 in the original case to 0.33 in the optimized case. The
water condition is also changed, reducing Krw during all points of its saturation. Despite
the significant changes, the new relative permeability still preserves characteristics of its
base-case shape (Kr Original). However, the analyses validate the changes for increased
water wettability. The Kr result of optimization performed by [12] did not preserve as many
features of the same original case, caused by the smaller number of features that the model
of [12] used for training. The added features decreased the change in Kr shape; it makes
sense that EWI performs simple salinity changes to promote these changes.
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Figure 14. Relative permeability after optimization vs. original.

The effects on production with the advanced method were also compared through
the average water saturation per year of production (Figure 15). In this plot, we see an
improvement of the EWI that reached higher percentages of water saturation. Therefore,
we can conclude that by using the EWI method the water ended up covering a larger area
of the reservoir, avoiding fingering effects. This can also be observed in the plane 17 of the
simulation model at the end of production (Figure 16). More specifically, through the final
water saturation in each cell, we can observe that EWI had a better performance.
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Figure 15. Average reservoir water saturation with EWI vs. waterflooding.
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The integration of Hybrid Machine Learning technology into the pipeline of reservoir
simulation with Engineered Water Injection (EWI) using commercial software such as
that provided by CMG has been shown to simplify the process and require fewer specific
data for predicting petrophysical behavior changes in the tested system. Nowadays,
the geochemical background, ionic reactions, and the specific effects to be modeled are
obtained by thoroughly testing prior to the simulation. This detailed process represents
the current state-of-the-art for Low Salinity/Engineered Water Injection (LSWI/EWI) [7,8].
Incorporating HML into the simulation pipeline allows for the development of accurate
models, predicting complex system behavior. This is especially important for EWI cases,
where the fluid and rock interactions are highly complex.

Overall, the HML approach simplifies the representation of geochemical effects during
the injection of engineered water. This supports the idea of utilizing new technologies to
improve the simulation of the behavior of real systems. Machine Learning technologies
play an important role in this process, but laboratory analysis remains necessary to obtain
precise data. Nevertheless, the HML approach provides the advantage of easy modeling
with fewer data, simple implementation, and rapid deliverability of information, thereby
allowing for a more informed understanding of petrophysical behavior. Consequently,
technology can facilitate better decision making by testing multiple scenarios and ultimately
lead to improved recovery of hydrocarbons from reservoirs.
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4. Conclusions

In the initial step, the K-Means results allowed the exploration of Kr profiles and led
to the conclusion that clustering processes preserve the main three wettability conditions
(based on Craig’s [17] qualitative analysis). Subsequently, the trained neural network
using data from each cluster was more accurate in predictions. Thus, the Hybrid Machine
Learning approach proved to be a better combination for improving the precision of the
forecast while retaining the generalization capability (K-Means classification). Further-
more, the application of Grid Search in the ANNs contributed to a significant increase in
prediction performance. However, its computation effort needs to be considered in the
project schedule.

In the optimization stage, the EOR method resulted in a 45.3% increase in NPV
compared to seawater injection. These results indicate an increase in oil recovery and a
significant reduction in water production and injection. Despite the higher injection cost
of EWI (25% increase), the NPV comparison confirms the method’s efficiency due to the
decrease in water expenses. This is supported by the reservoir water saturation history
(Figure 14), in which the EWI water saturation is higher than that of waterflooding. The
optimal salinity converged to a final concentration of sulfate, calcium, and sodium above
the lower standards. Therefore, these results strongly suggest that the use of higher salinity
boundaries in the optimization process is crucial for achieving an ideal composition, rather
than focusing exclusively on low salinity.
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