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Abstract: To solve the power supply problem of battery-limited Internet of Things devices (IoDs)
and the spectrum scarcity problem, simultaneous wireless information and power transfer (SWIPT)
and cognitive radio (CR) technology were integrated into the Internet of Things (IoT) network to
build a cognitive radio IoT (CRIoT) with SWIPT. In this network, secondary users (SUs) could
adaptively switch between spectrum sensing, SWIPT, and information transmission to improve
the total throughput. To solve the complicated multi-dimensional resource allocation problem in
CRIoT with SWIPT, we propose a multi-dimensional resource allocation algorithm for maximizing
the total throughput. Three-dimensional resources were jointly optimized, which are time resource
(the duration of each process), power resource (the transmit power and the power splitting ratio
of each node), and spectrum resource, under some constraints, such as maximum transmit power
constraint and maximum permissible interference constraint. To solve this intractable mixed-integer
nonlinear program (MINLP) problem, firstly, the sensing task assignment for cooperative spectrum
sensing (CSS) was obtained by using a greedy sensing algorithm. Secondly, the original problem
was transformed into a convex problem via some transformations with fixed-power splitting ratio
and time switching. The Lagrange dual method and subgradient method were adopted to obtain
the optimal power and channel allocation. Then, a one-dimensional search algorithm was used to
obtain the optimal power splitting ratio and the time switching ratio. Finally, a heuristic algorithm
was adopted to obtain the optimal sensing duration. The simulation results show that the proposed
algorithm can achieve higher total system throughput than other benchmark algorithms, such as a
greedy algorithm, an average algorithm, and the Kuhn–Munkres (KM) algorithm.

Keywords: simultaneous wireless information and power transmission (SWIPT); cognitive radio
(CR); cooperative spectrum sensing (CSS); heuristic algorithm; Lagrange dual method

1. Introduction

With the rapid development of communication technology, the Internet of Things
(IoT) has been widely used in intelligent medical treatment, intelligent industry, intelligent
home, intelligent agriculture, and intelligent transportation [1–3]. The number of Internet
of Things devices (IoDs) in the world is expected to nearly triple from 9.7 billion in 2020
to more than 29 billion in 2030 [4]. The future IoT will need to carry a huge quantity of
wireless traffic, which will pose a severe challenge to wireless communication technology
and limited spectrum resources [5]. The emergence of cognitive radio (CR) technology
provides an effective and feasible solution to the spectrum resource shortage problem in IoT.
Cognitive radio Internet of Things (CRIoT), which combines IoT with CR technology, can
effectively improve the utilization rate of the licensed spectrum and accordingly solve the
shortage of wireless spectrum resources in the development of the IoT [6]. In CRIoT, SUs can
sense the occupation of the licensed spectrum and use the idle spectrum opportunistically.

Another important factor that limits the development of IoT is the power supply
of IoDs. Since a large proportion of IoDs cannot use wired power due to its location or
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scenario, battery is preferred. However, sometimes it is difficult or impossible to replace
the battery for sensors in particular scenarios, such as space, forests, mines, wilderness,
tunnels, and underwater. Thus, the IoDs are expected to be passive or renewable. However,
some traditional renewable energy sources, such as solar energy and wind energy, are
intermittent and inconvenient due to their high cost, large installation space, and high
environmental requirements.

Simultaneous wireless information and power transfer (SWIPT) technology is an
effective way to solve the energy limitation problem of wireless IoDs [7,8]. In SWIPT,
the receiver can harvest energy from the received radio frequency (RF) signals during
information transmission, and adopt power splitting (PS) or time splitting (TS) scheme
to simultaneously perform information decoding (ID) and energy harvesting (EH) [9].
Therefore, the combination of CRIoT with SWIPT technology can effectively solve the
power supply problem of IoDs. In the CRIoT with SWIPT, the main challenge is how to
jointly allocate various resources to obtain optimal system performance, while making the
tradeoffs between information transmission and energy harvesting, and between spectrum
sensing and information transmission.

1.1. Related Work

To improve the performance of the CRIoT network with SWIPT, some resource alloca-
tion schemes have been proposed to improve network performance [10–14]. Mokhtarzadeh
et al. [10] considered a CR network (CRN) in which each SU was equipped with a multi-
antenna full-duplex transceiver. They optimally allocated spectrum resources to maximize
the throughput with permissible interference to PU. Das et al. [11] studied a cooperative
EH-CRN. When PU was present, the optimal number of SUs served as relay to cooperate
in PU transmission, otherwise each SU transmitted its own data. Xu et al. [12] proposed
a distributed resource allocation strategy to solve the power minimization problem in a
multi-user CRN with SWIPT. They jointly optimized the transmission power and the power
allocation ratio in ideal channel status information (CSI) and non-ideal CSI, respectively.
Camana et al. [13] studied the multiple input single output (MISO) CRN with SWIPT in a
rate-splitting multiple access (RSMA) framework. The transmit power of the cognitive base
station (CBS) was minimized under the constraints of minimum energy harvest, minimum
data rate, and permissible interference to PU. Zhou et al. [14] studied a MISO cognitive ra-
dio downlink network. The goal was to make a tradeoff between the transmit power of the
CBS and the energy harvested by an EH receiver. Yang et al. [15] studied an optimal time
and power resource allocation scheme to maximize uplink sum throughput while satisfying
the minimum downlink transmission requirements and energy harvesting requirements of
the users. However, in the above literature, they did not consider the spectrum sensing
process, which is essential for CR networks.

To improve the sensing accuracy, cooperative spectrum sensing (CSS) has been studied
in CRIoT networks with SWIPT. Sharifi et al. [16] proposed a power and spectrum allocation
scheme to maximize reachable data rate and minimize energy consumption in an EH-CRN.
SUs cooperatively sensed the spectrum by using an energy detection method and adopted
PS scheme in the SWIPT process. Liu et al. [17] studied an optimal CSS strategy through
finding the optimal detection threshold (the minimum number of SUs who reported a
presence that could indicate the PU’s presence) to maximize throughput in an EH-CRN,
under the collision constraint and energy causality relationship constraint. Celik et al. [18]
developed an EH-CSS CRN framework to maximize the total throughput through jointly
optimizing the sensing duration and sensing threshold of each SU, and adopted the hetero-
geneous K-out of-N rule in CSS. Olawole et al. [19] studied CSS in a multi-channel EH-CRN
in which the cognitive network was designed as overlapping clusters. Each SU harvested
energy by taking advantage of the multi-channel. The authors formulated a problem
which jointly determined the optimal channel allocation, sensing duration, and detection
threshold for each SU to maximize throughput under the energy causality constraint and
collision constraint. Zheng et al. [20] studied the problem of joint time and power and
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subchannel allocation in a multi-channel EH-CRN. The authors focused on optimizing
the secondary throughput under interference power constraints and maximum power
constraints. However, in the above works, all SUs participated in CSS, and each channel
was sensed by all SUs, leading to unnecessary energy consumption. In some cases, some
channels sensed by only a few SUs instead of all SUs in CSS could already meet the sensing
requirement, so that the energy consumption of SUs could be saved. Furthermore, in the
above literature, the influence of sensing results on the following transmission were not
considered, which is unreasonable.

1.2. Motivation and Contributions

From the aforementioned works, it can be seen that optimally allocating sensing tasks
to SUs in CSS and jointly allocate other resources according to sensing result in CRIoT
with SWIPT is still an open problem and has not been investigated in the recent literature
yet. Unlike the above literature, we consider the sensing process, which is essential for CR
networks and can affect both sensing and transmission directly. Furthermore, we adopt
CSS and a more flexible sensing task assignment, in which each channel is sensed by only
a few SUs instead of all SUs, so that the energy of each node can be saved. In this paper,
we focus on multi-dimensional resource allocation for total throughput maximization in
the CRIoT network with SWIPT. A heuristic algorithm is proposed to obtain the optimal
sensing duration. In CSS process, a greedy sensing algorithm is proposed to obtain the
sensing task assignment for SUs. Inspired by [21], we jointly adopt the PS and TS schemes
in SWIPT process to further improve the system total throughput. The PS ratio and the TS
ratio are optimized by using one-dimensional search method. The other variables, such
as the power and transmission channel assignment are jointly optimized by using the
Lagrange dual method and subgradient method. The major contributions of this paper are
as follows:

(1) We built a multi-user and multi-channel system model in the CRIoT network with
SWIPT, and formulated a total throughput maximization problem to a mixed-integer non-
linear program (MINLP) problem. To maximize the total throughput, multi-dimensional
resource, including the durations for executing each process, power resource for the trans-
mit power, the power splitting ratio in SWIPT, and spectrum resource, were jointly opti-
mized subject to some constraints, such as maximum transmit power constraint, maximum
permissible interference constraint, and minimum energy harvest requirement.

(2) To improve the sensing accuracy in multi-user and multi-channel scenario, CSS
was adopted in the spectrum sensing process. A greedy sensing algorithm was used to
determine the sensing task assignment matrix with given sensing duration. In SWIPT
process, the PS and TS schemes were jointly adopted to increase the total throughput.

(3) To solve the formulated MINLP problem, by introducing an auxiliary variable and
some transformations, the original problem with given sensing duration was transformed
into a convex problem. The Lagrange dual method and subgradient method were adopted
to obtain the optimal power and transmission channel assignment, and one-dimensional
search algorithm was used to obtain the optimal PS ratio and the TS ratio. Finally, the opti-
mal sensing duration was determined by using a heuristic algorithm.

(4) The simulation results show that the proposed algorithm could obtain higher
total system throughput than other benchmark algorithms that are average algorithm,
greedy algorithm, and Kuhn–Munkres (KM) algorithm. The performance of the heuristic
algorithm is closer and slightly lower than that of the exhaustion algorithm, but the heuristic
algorithm has lower computational complexity. The KM algorithm obtains less total system
throughput than the proposed algorithm, but more than the average algorithm and the
greedy algorithm due to its optimal characteristic. It is also shown that the proposed
algorithm can obtain higher total throughput than that of using only PS or TS scheme and
that of using single spectrum sensing.
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2. System Model

We consider a downlink CRIoT with SWIPT, including a cognitive base station (CBS),
a primary base station (PBS), M PUs, and N SUs, as shown in Figure 1. The authorized
spectrum is divided into M channels for PUs transmission, and each PU is allocated
one channel. These channels may have different bandwidths and a different occupancy
probability. The channels set is denoted as M and the SUs set is denoted as N . Each
SU is equipped with a single antenna, an energy harvester, and a rechargeable battery.
Firstly, SUs execute CSS to obtain the occupancy of M channels. To protect the normal
communication of the PU network, only the channel of which the detection probability
is larger than the requirement denoted Preq

d_ch can be used for transmission. Then, CBS
transmits signals to SUs on their own channels in OFDM mode. PS and TS schemes are
jointly used by SUs to split the received signals for ID and EH.

PBS

...

CBS

...

Energy 

Harvesting

Information 

Transmition

Figure 1. System model.

The time slot model is shown in Figure 2. The entire time slot T consists of the
sensing time slot τ and transmission time slot T − τ. In order to facilitate synchronization,
the sensing duration can only be selected among K discrete values arranged in ascending
order, denoted as τ(k), where k = 1, 2, . . . , K. Let βn(0 < βn < 1) denote the TS ratio of SUn.
The transmission time slot is divided into two parts, which are time slot t1 = βn(T − τ) for
performing SWIPT including both ID and EH, and time slot t2 = (1− βn)(T − τ) for only
performing ID.

Information

Transmission

frame1 frame2  ...

Spectrum 

Sensing

Energy Harvesting

Information Decoding

Figure 2. System time flow model.
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Let ρ denote the PS ratio of SU. In the time slot t1, SU uses power splitting to perform
EH with ratio 1− ρ and ID with ratio ρ. By adjusting the value ρ, the amount of harvested
energy by each SU can meet the minimum energy requirement, and the rest time slot can be
used to transmit information to increase the throughput. Considering the energy causality,
the energy harvest in the current time slot can only be used for the subsequent information
transmission in its own time slot.

2.1. Spectrum Sensing

In the sensing process, each SU uses the energy detection method for spectrum sensing.
Let H1 and H0 denote the presence and absence of PU, respectively, and λ is the detection
threshold. We assume that the PU signal is assumed to be a complex phase shift keying
(CPSK) signal, and the noise is circularly symmetric complex Gaussian (CSCG) noise with
the noise variance σ2

n . The false alarm probability of SUs is expressed as [22]

Pf (λ, τ) =
1
2

er f c

((
λ

σ2
n
− 1
)√

τ fs

2

)
, (1)

where erfc(.) is the complementary error function, fs is the sampling rate of the received
signal, and τ is sensing duration.

Due to the different location and wireless environment of each user, the signal-to-
noise ratio (SNR) values of different channels for different SUs are also different. Let γm,n
represent the SNR of SUn on channel m. The detection probability of SUn on channel m
is [22]

Pmn
d (τ) =

1
2

er f c

((
λ

σ2
n
− γm,n − 1

)√
τ fs

2(2γm,n + 1)

)
(2)

Giving a fixed false alarm probability Pf , the detection probability of the channel m
sensed by SUn denoted as Pmn

d (τ) can be obtained by

Pmn
d (τ) =

1
2

er f c

{
1√

2(2γm,n + 1)

[√
2er f−1

(
1− 2Pf

)
−
√

τ fsγm,n

]}
. (3)

Let X = [xm,n]M×N denote the sensing assignment matrix. When SUn is assigned to
sense channel m, xm,n = 1, otherwise xm,n = 0. The OR rule is adopted when the channel is
cooperatively sensed by more than one SU. We assume the false alarm probability of each
SU is equal, Pm,n

f = Pf . Thus, for channel m, the detection probability Pm
d_ch(X, τ) and false

alarm probability Pm
f _ch(X) are

Pm
d_ch(X, τ) = 1− ∏

xm,n=1
[1− Pmn

d (τ)] (4)

Pm
f _ch(X) = 1− ∏

xm,n=1

[
1− Pf

]
(5)

In CSS, the false alarm probability increases with the increase in the number of SUs
participating in cooperation resulting in a decrease in spectrum utilization. Therefore,
to ensure an acceptable spectrum utilization, according to OR rule, the maximum number
of SUs allowed to sense each channel is expressed as

Nco _max =
⌊

log(1−Pf )

(
1−Q f

)⌋
, (6)

where b.c denotes round-down operation and Q f denotes the maximum allowed false
alarm probability.
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2.2. Information Transmission

In the information transmission phase, each SU is allocated a channel. For each SU,
there are two different transmission rates in two cases. Case 1: when channel m is idle
and the SUs can sense the idleness accurately, the achievable channel rates in phase t1 and
phase t2, denoted as R00

m,n(t1) and R00
m,n(t2), respectively, can be expressed as

R00
m,n(t1) = log2

(
1 +

Pm,n|hm,n|2ρ

σ2
n

)
, (7)

R00
m,n(t2) = log2

(
1 +

Pm,n|hm,n|2

σ2
n

)
, (8)

where Pm,n represents the transmission power of CBS to SUn over channel m, |hm,n|2
represents the channel gain from the CBS to SUn over channel m, σ2

n is the CSCG noise
variance at SUn, and ρ is the PS ratio in the SWIPT scheme.

Case 2: when the channel is occupied by PU and the SUs cannot sense the existence of
PU. In this case, the channel rates in phase t1 and phase t2 can be expressed as

R10
m,n(t1) = log2

(
1 +

Pm,n|hm,n|2ρ

PPU,m|gm,n|2 + σ2
n

)
, (9)

R10
m,n(t2) = log2

(
1 +

Pm,n|hm,n|2

PPU,m|gm,n|2 + σ2
n

)
, (10)

where |gm,n|2 represents the channel gain from the PBS to SUn over channel m.
Let Pr(H0,m) and Pr(H1,m) denote the probabilities that channel m is idle and busy,

respectively. The probabilities of case 1 and case 2 for channel m are

a0,m = Pr(H0,m)(1− Pm
f _ch(X)), (11)

b0,m = Pr(H1,m)(1− Pm
d_ch(X, τ)). (12)

Therefore, the throughput of the SUn over channel m can be represented as

Rm,n(X, τ) = Bm

{
t1

T

[
a0,mR00

m,n(t1) + b0,mR10
m,n(t1)

]
+

t2

T

[
a0,mR00

m,n(t2) + b0,mR10
m,n(t2)

]}
, (13)

where Bm is the bandwidth of channel m.
Let Y = [ym,n]M×N denote the transmission assignment matrix. When SUn is assigned

to transmission channel m, ym,n = 1, otherwise ym,n = 0. Thus, the total throughput of the
CR system can be described as

Rtotal =
M

∑
m=1

N

∑
n=1

ym,nRm,n(X, τ) (14)

2.3. Energy Harvesting and Interference

Let η ∈ [0, 1] denote energy harvesting efficiency. Adopting a linear energy harvesting
model, the energy harvested by SUn can be expressed as

PEH,n =
M

∑
m=1

ym,n
t1

T
η(1− ρ)

[
|hm,n|2(a0,m + b0,m)Pm,n + σ2

n

]
. (15)

The interference caused by CBS on PU over channel m is

Im =
T − τ

T
|km|2

N

∑
n=1

ym,nb0,mPm,n, (16)
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where |km|2 represents the channel power gain from the CBS to the PU over channel m.
The interference should not exceed the maximum tolerance range of the PU to protect PU
from interference.

The total throughput maximization problem can be formulated as

P1 : max
xm,n ,ym,n ,τ,ρ,βn ,Pm,n

Rtotal

s.t. C1 :
M

∑
m=1

N

∑
n=1

ym,n(a0,m + b0,m)Pm,n ≤ Pmax;

C2 :
T − τ

T
|km|2

M

∑
m=1

N

∑
n=1

ym,nb0,mPm,n ≤ Ith(m), ∀m ∈ M;

C3 :
M

∑
m=1

ym,n
t1

T
η(1− ρ)

[
|hm,n|2(a0,m + b0,m)Pm,n + σ2

n

]
≥ PEq,n, ∀m ∈ M;

C4 : 0 ≤ τ ≤ T;

C5 : 0 ≤ ρ ≤ 1;

C6 : 0 ≤ βn ≤ 1;

C7 : xm,n ∈ {0, 1},
M

∑
m=1

xm,n = 1,
N

∑
n=1

xm,n ≤ Nco _max, ∀m ∈ M, ∀n ∈ N ;

C8 : ym,n ∈ {0, 1},
N

∑
n=1

ym,n = 1, ∀m ∈ M, ∀n ∈ N ;

C9 : Pm,n ≥ 0, ∀m ∈ M, ∀n ∈ N ;

C10 : ym,n = 0, if Pm
d_ch(X) < Preq

d_ch, ∀n ∈ N ,

(17)

where Pmax represents maximum transmit power constraint at the CBS, Ith(m) represents
maximum interference on channel m, and PEq,n represents the minimum required harvested
power of SUn. C1 represents the transmit power constraint at the CBS, which limits the total
transmit power of the CBS. C2 denotes the maximum permissible interference constraint
to protect the normal communication of PUs. C3 indicates the minimum energy harvest
constraint of SUn. C4–C6 are the ranges of sensing duration, the PS ratio, and the TS ratio,
respectively. C7 represents the constraint of the sensing channel assignment. That is, each
channel can be sensed by multiple SUs, but each SU can only be assigned a channel to sense,
and the SUs assigned to sense each channel cannot be more than Nco _max. C8 represents a
constraint of transmission channel assignment, which means each idle channel can only
be accessed by one SU to avoid interference between channels. C9 is the lower bound of
transmit power from the CBS to each SU. C10 is constraint of detection probability for
channels that can be used for transmission.

3. Problem Solutions

In this section, we solve the problem (17) by maximizing the total throughput. From (17),
it can be seen that P1 is a non-convex MINLP problem due to the constraints C7, C8, C10,
and the coupling between variables. To solve this problem, firstly, for the given sensing
duration, the sensing task assignment is obtained by using a greedy sensing algorithm
described in Section 3.1. Secondly, by introducing an auxiliary variable, the original
problem with given sensing duration and sensing task assignment is transformed into a
convex problem, which is solved by using the Lagrange dual method and subgradient
method, which is shown in Section 3.2. Finally, the optimal sensing duration is determined
by using the heuristic algorithm described in Section 3.3.

3.1. Sensing Task Assignment

In sensing task assignment, unlike the one-to-one assignment problem that can be
solved by some classical algorithms, the one-channel to multiple-SU assignment problem
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with some constraints makes the problem intractable and difficult to solve. One feasible
solution is adopting some swarm intelligence methods [23,24]. In [23], an adaptive resource
allocation algorithm based on modified particle swarm optimization (PSO) was proposed to
solve the multiple-subcarriers to one-SU assignment problem on downlink transmission in
a CR network. In [24], an improved monarch butterfly algorithm was proposed to solve the
spectrum allocation problem for a multi-source data stream. However, their computation
quantity and computation speed need to be considered. To obtain a sub-optimal solution
with lower computation quantity, we propose a greedy sensing algorithm to obtain the
sensing task assignment.

In the proposed greedy sensing algorithm, for the given sensing duration, the sensing
task assignment is determined by using the greedy sensing algorithm, in which each SU is
preferentially assigned to the channel that can be sensed by fewer SUs to meet the detection
probability requirement Preq

d_ch. Then the unassigned channel is assigned to the several
unassigned SUs for cooperative sensing.

Firstly, the channel is assigned to the SU for sensing by which the detection probability
of this channel can meet the requirement. All channels are arranged in descending order
of bandwidth. From the channel with the highest bandwidth, we selected the SU with
the largest SNR over this channel, and calculated the detection probability according to
(3). If the detection probability met the requirement, the SU was assigned to sense this
channel. If not, we continued to check the channel with the second highest bandwidth,
and selected the SU with the highest SNR to calculate the detection probability, and so on
until all channels had been checked.

Then, the unassigned channel was assigned to the several unassigned SUs for coopera-
tive sensing by which the detection probability of this channel could meet the requirement.
Checking the unassigned channels according to descending order of bandwidth, for each
channel, we selected two unassigned SUs with the largest SNR values for CSS and cal-
culated the cooperative detection probability according to (3) and (4). If the detection
probability was larger than the requirement, this channel was assigned to these two SUs
for sensing. If not, the unassigned SU with largest SNR was selected for CSS with the
former assigned SUs. Checking the detection probability of this channel, if the detection
probability satisfied the requirement, this channel was assigned to these three SUs for
sensing. If not, we repeated until one of the following three conditions was satisfied: (1) all
SUs had been assigned a sensing task; (2) all channels had been checked; (3) more than
Nco _max SUs had been assigned to a channel. The specific steps are as follows:

• Step 1 Arrange the channels in descending order of bandwidth, and start with the
channel with the largest bandwidth;

• Step 2 For this channel, select the SU with the highest SNR on this channel from
unassigned SUs, and calculate the detection probability according to (3);

• Step 3 If the detection probability is larger than Preq
d_ch , the channel is assigned to this

SU for sensing and set xm,n = 1. If not, set xm,n = 0;
• Step 4 Continue to check the channel with the highest bandwidth among the unchecked

channels, and go to Step 2 until all channels have been checked;
• Step 5 Arrange the unassigned channels in descending order of bandwidth, and start

with the channel with the largest bandwidth;
• Step 6 For this channel, Select the two SUs with the highest SNR;
• Step 7 Use (3) and (4), calculate cooperation detection probability Pm

d_ch(X, τ);
• Step 8 If the detection probability is larger than Preq

d_ch, the channel is allocated to these
selected SUs for sensing, set the corresponding xm,n = 1, and go to Step 9. If not, add
another SU with the largest SNR among the unassigned SUs for CSS, and go to Step 7
until Nco _max SUs have been assigned to this channel;

• Step 9 Continue to check the next channel with the highest bandwidth among the
unchecked channels, and go to Step 6 until all channels have been checked;

• Step 10 The final sensing task assignment matrix X.
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3.2. Optimal Resource Allocation with Fixed Sensing Duration

For the fixed sensing duration τ and the sensing task assignment matrix X, the original
problem P1 becomes

P2 : max
ym,n ,ρ,βn ,Pm,n

Rtotal

s.t. C1, C2, C3, C5, C6, C8, C9, C10.
(18)

P2 is a non-convex optimization problem due to the coupling variables. To deal with
the coupling between Pm,n and ym,n, the channel assignment variable ym,n is relaxed into
a sharing factor ym,n ∈ [0, 1], and defines auxiliary variable Um,n = ym,nPm,n. Substituting
Pm,n = Um,n

ym,n
into (7) and (8), the channel rates of SUn over channel m in different cases

become as follows

R00 ′
m,n(t1) = log2

(
1 +

Um,n|hm,n|2ρ

ym,nσ2
n

)
, (19)

R00 ′
m,n(t2) = log2

(
1 +

Um,n|hm,n|2

ym,nσ2
n

)
, (20)

R10 ′
m,n(t1) = log2

1 +
Um,n|hm,n|2ρ

ym,n

(
PPU,m|gm,n|2 + σ2

n

)
, (21)

R10 ′
m,n(t2) = log2

1 +
Um,n|hm,n|2

ym,n

(
PPU,m|gm,n|2 + σ2

n

)
. (22)

The total throughput of the SUs can be rewritten as

R′total =
M

∑
m=1

N

∑
n=1

ym,nBm

{
t1

T

{
a0,mR00 ′

m,n(t1) + b0,mR10 ′
m,n(t1)

]
+

t2

T

[
a0,mR00 ′

m,n(t2) + b0,mR10 ′
m,n(t2)

]} (23)

P2 becomes P3 as follows
P3 : max

ym,n ,τ,ρ,βn ,Um,n
R′total

s.t. C1′ :
M

∑
m=1

N

∑
n=1

(a0,m + b0,m)Um,n ≤ Pmax;

C2′ :
T − τ

T
|km|2

M

∑
m=1

N

∑
n=1

b0,mUm,n ≤ Ith(m), ∀m ∈ M;

C3′ :
M

∑
m=1

t1

T
η(1− ρ)

[
|hm,n|2(a0,m + b0,m)Um,n + ym,nσ2

n

]
≥ PEq,n, ∀m ∈ M;

C8′ : 0 ≤ ym,n ≤ 1,
N

∑
n=1

ym,n = 1, ∀m ∈ M, ∀n ∈ N ;

C9′ : Um,n ≥ 0, ∀m ∈ M, ∀n ∈ N ,

C5, C6, C10.

(24)

P3 is still a non-convex problem due to the coupling relationship among variables
τ, ρ, βn, ym,n, and Um,n. The optimal value of ρ and βn, denoted as ρopt and β

opt
n , can be

obtained by one-dimensional searching from [0,1]. The optimal τ denoted as τopt can be
determined by using the heuristic algorithm described in Section 3.3. For fixed τ, ρ, βn, P3
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is transformed into P4, which is a convex problem and can be solved by the Lagrange dual
method due to satisfing Slater’s condition.

P4 : max
ym,n ,Um,n

R′total

s.t. C1′, C2′, C3′, C8′, C9′, C10.
(25)

The Lagrange dual function of P4 is formulated as

P5 : f (λ, ψm, µn, εm) = max
ym,n ,Um,n

L(Ξ),

s.t.ym,n ≥ 0, Um,n ≥ 0,
(26)

where L(Ξ) is the Lagrange function of P4, Ξ = {Um,n, ym,n, λ, ψm, µn, εm} is the collection
of all the primal and dual variables, and λ, ψm, µn, εm denote non-negative Lagrange
multipliers corresponding to the constraints given by C1′, C2′, C3′, and C8′ of P4. L(Ξ) can
be written as

L(Ξ) =
M

∑
m=1

N

∑
n=1

ym,nBm

T

{
t1

[
a0,mR00

m,n(t1) + b0,mR10
m,n(t1)

]
+ t2

[
a0,mR00

m,n(t2) + b0,mR10
m,n(t2)

]}
+ λ

[
Pmax −

M

∑
m=1

N

∑
n=1

(a0,m + b0,m)Um,n

]
+

M

∑
m=1

ψm

[
Ith(m)− T − τ

T
|km|2

M

∑
m=1

N

∑
n=1

b0,mUm,n

]

+
N

∑
n=1

µn

[
M

∑
m=1

t1

T
η(1− ρ)

[
|hm,n|2(a0,m + b0,m)Um,n + ym,nσ2

n

]
− PEq,n

]

+
M

∑
m=1

εm

(
1−

N

∑
n=1

ym,n

)
.

(27)

The dual problem P5 can be expressed as

P6 : min
λ,ψm ,µn ,εm

f (λ, ψm, µn, εm)

s.t.λ ≥ 0, ψm ≥ 0, µn ≥ 0, εm ≥ 0.
(28)

To solve P4, firstly, P5 is solved to obtain the optimal Um,n, ym,n for the given Lagrange
multipliers λ, ψm, µn, εm that satisfy the constraints of P6. Then, solve P6 by updating the
Lagrange multipliers to minimize f (λ, ψm, µn, εm). In this way, P4 can be solved by using
such an iterative method [25].

We obtained the optimal transmit power Popt
m,n and the optimal channel assignment

yopt
m,n via the follow two propositions.

Proposition 1. The optimal transmit power Popt
m,n is

Popt
m,n =

−∆0,m,n +
√

∆2
0,m,n − 4q0,m,n

∣∣hm,n
∣∣2ρ2ω0,m,n

2q0,m,n
∣∣hm,n

∣∣2ρ2

+, (29)

where [z]+ = max(0, z), and q0,m,n, ∆0,m,n, and ω0,m,n are, respectively, given as follows

q0,m,n =
{
(a0,m + b0,m)

[
µnβnη(1− ρ)|hm,n|2 − λ

]
− b0,m

}
ln2, (30)

∆0,m,n = (a0,m + b0,m)|hm,n|4ρ(ρβn + 1− βn) + |hm,n|2ρq0,m,n

(
PPU,m|gm,n|2 + 2σ2

n

)
, (31)

ω0,m,n =
[

a0,m|hm,n|2ρ(ρβn + 1− βn) + |hm,n|2 + q0,m,nσ2
n

](
PPU,m|gm,n|2 + σ2

n

)
+ b0,m|hm,n|2σ2

n(ρβn + 1− βn). (32)
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Proof. See Appendix A for further details.
In a similar way, by applying KKT conditions [26], the optimal channel allocation ym,n

can be obtained from

∂L(Ξ)
∂ym,n


< 0, yopt

m,n = 0
= 0, 0 < yopt

m,n < 1
> 0, yopt

m,n = 1

, ∀m, n. (33)

Proposition 2. The optimal channel assignment yopt
m,n is

yopt
m,n =


1, m = arg max

1≤m≤M
θm,n and Pm

d_ch ≥ Preq
d_ch

0, otherwise and Pm
d_ch ≥ Preq

d_ch
0, Pm

d_ch < Preq
d_ch

, (34)

where

θm,n = Bma0,m
t1

T

[
R00

m,n(t1)− θ00
m,n(t1)

]
+ Bmb0,m

t1

T

[
R10

m,n(t1)− θ10
m,n(t1)

]
+ Bma0,m

t2

T

[
R00

m,n(t2)− θ00
m,n(t2)

]
+ Bmb0,m

t2

T

[
R10

m,n(t2)− θ10
m,n(t2)

]
+

t1

T
µnη(1− ρ)σ2

n ,
(35)

and

θ00
m,n(t1) =

Pm,n|hm,n|2ρ(
σ2

n + Pm,n|hm,n|2ρ
)

ln2
, (36)

θ10
m,n(t1) =

Pm,n|hm,n|2(
σ2

n + Pm,n|hm,n|2
)

ln2
, (37)

θ00
m,n(t2) =

Pm,n|hm,n|2ρ(
PPU |gm,n|2 + σ2

n + Pm,n|hm,n|2ρ
)

ln2
, (38)

θ10
m,n(t2) =

Pm,n|hm,n|2(
PPU |gm,n|2 + σ2

n + Pm,n|hm,n|2
)

ln2
. (39)

Proof. See Appendix B for further details.
The Lagrange multipliers λ, ψm, and µn are updated by using the subgradient method

given as follows

λ(j+1) =

[
λ(j) − ∆λ

(
Pmax −

M

∑
m=1

N

∑
n=1

(a0,m + b0,m)U
opt
m,n

)]+
, (40)

ψ
(j+1)
m =

[
ψ
(j)
m − ∆ψm

(
Ith(m)− T − τ

T
|km|2

N

∑
n=1

b0,mUopt
m,n

)]+
, (41)

µ
(j+1)
n =

[
µ
(j)
n − ∆µn

(
M

∑
m=1

t1

T
η(1− ρ)

[
|hm,n|2(a0,m + b0,m)U

opt
m,n + ym,nσ2

n

]
− PEq,n

)]+
, (42)

where j is the iteration index, ∆λ, ∆ψm, and ∆µn are the step sizes. As for the Lagrange
multiplier εm, due to ∑N

n=1 ym,n = 1 in C8, the value of εm does not affect the algorithm
process. Thus, it does not need to be updated and can be set to an initial value.
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As mentioned above, the optimal resource allocation algorithm for solving P2 is shown
in Algorithm 1.

Algorithm 1 The optimal resource allocation algorithm for solving P2

Input: sensing duration τ, sensing task assignment matrix X, the error tolerances ϕ1 > 0,
ϕ2 > 0, ϕ3 > 0, the dual variables λ(0), ψm(0), un(0), and the step sizes α1 > 0, α1 > 0.
Optimization:

1: for ρ = 0 : α1 : 1 do
2: for βn = 0 : α2 : 1 do
3: set the iteration index j = 0;
4: repeat
5: calculate transmit power Pm,n according to (29);
6: calculate θm,n according to (35);
7: allocate channels ym,n according to (34);
8: update the dual variables λ, ψm, un, according to (40), (41) and (42);
9: update the iteration index j = j + 1;

10: until
‖ λ(j + 1)− λ(j) ‖2≤ ϕ1
‖ ψm(j + 1)− ψm(j) ‖2≤ ϕ2
‖ µn(j + 1)− µn(j) ‖2≤ ϕ3

11: calculate Rtotal according to (23);
12: end for
13: end for
14: determine the optimal ρ, βn, and obtain the corresponding Pm,n and Y.
Output: ρopt, β

opt
n , Popt

m,n, Yopt.

3.3. The Optimal Sensing Duration

As mentioned above in Sections 3.1 and 3.2, for a given sensing duration τ, we
can obtain the optimal system total throughput Rtotal(τ(k)) by obtaining the optimal
sensing task assignment through a greedy sensing algorithm and solving P2. As for the
sensing duration, since it directly influences both sensing task assignment and the whole
transmission process and the whole problem is a MINLP problem, the optimal sensing
duration cannot be obtained by classical optimization methods. To solve this intractable
problem, since sensing duration can only be selected among several fixed discrete values,
the simple exhaustion algorithm can be adopted with acceptable computation quantity.
However, when the number of discrete values is large, the computation quantity still is
not affordable. Thus, we propose a sub-optimal and simple method namely a heuristic
algorithm to obtain the optimal sensing duration as follows.

Firstly, from the intermediate value k = round
(

K
2

)
, calculate the system total through-

put Rtotal with sensing duration τ(k− 1), τ(k), and τ(k + 1), respectively, according to
(23). Secondly, compare the values of Rtotal(τ(k− 1)), Rtotal(τ(k)), and Rtotal(τ(k + 1)).
If Rtotal(τ(k)) is maximum, τ(k) is the optimal sensing duration and the algorithm ends;
If Rtotal(τ(k + 1)) is maximum, k = k + 1. If Rtotal(τ(k− 1)) is maximum, k = k − 1.
Then, calculate the maximum system total throughput Rtotal(τ(k− 1)), Rtotal(τ(k)), and
Rtotal(τ(k + 1)), compare these values, and so on, until Rtotal(τ(k)) is maximum, or one of
Rtotal(τ(1)) and Rtotal(τ(K)) is maximum. Finally, the optimal sensing duration is obtained
and the algorithm ends.

Based on the above, the procedure for solving original problem P1 is described in
Algorithm 2.
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Algorithm 2 Multi-dimensional resource allocation algorithm

Input: the number of PUs M, the number of SUs N, K, sensing duration τ(1), . . . , τ(K),
and k = round

(
K
2

)
.

Optimization:
1: repeat
2: for i = k− 1 : 1 : k + 1 do
3: (1) With sensing duration τ(i), use greedy sensing algorithm mentioned in

Section 3.1 to obtain sensing task assignment matrix X.
4: (2) Solve P2 according to Algorithm 1;
5: (3) Calculate the total throughput Rtotal(τ(i));
6: end for
7: Compare Rtotal(τ(k− 1)), Rtotal(τ(k)), and Rtotal(τ(k + 1)).
8: (1) if Rtotal(τ(k + 1)) is maximum and k + 1 = K, then τopt = τ(K); break; end if
9: (2) if Rtotal(τ(k + 1)) is maximum and k + 1 < K, then k = k + 1; end if

10: (3) if Rtotal(τ(k− 1)) is maximum and k− 1 = 1, then τopt = τ(1); break; end if
11: (4) if Rtotal(τ(k− 1)) is maximum and k− 1 > 1, then k = k− 1; end if
12: (5) if Rtotal(τ(k)) is maximum, then τopt = τ(k); break; end if
13: end repeat
Output: τopt, ρopt, β

opt
n , Popt

m,n, Xopt, and Yopt.

4. Simulation Analysis

In this section, we evaluate the proposed algorithm in MATLAB. Set the number of
SUs is N = {6, 7, 8} , the number of PUs is M = 6, and the SNR value γm,n of each SU at
each channel follows the exponential distribution with the mean value -15dB. All channels
are assumed to be Rayleigh fading and independently distributed. Let gm,n ∼ CN(0, α1)
denotes the channel gain from the PBS to SUn over channel m, where α1 = d−θ

1 and the
distance between the PBS and the SU node is d1 = 8 m. hm,n ∼ CN(0, α2) represents the
channel gain from the CBS to SUn over channel m, where α2 = d−θ

2 and the distance between
the CBS and the SU node is d2 = 5 m. km ∼ CN(0, α3) represents the channel gain from the
CBS to PUm over channel m, where α3 = d−θ

3 and the distance between the CBS and the PU
node is d3 = 10 m. The path loss coefficient θ = 3. The detection probability requirement is
Preq

d_ch = 0.9, the energy harvesting efficiency η = 0.8, the sampling frequency fs = 6 MHZ,
and the maximum false alarm probability of the channel is Q f = 0.05. The idle probability
of each channel Pr(H0,m) varies randomly in [0,1] and the bandwidth of each channel varies
randomly between 10 kHZ ∼ 20 kHZ. The transmit power of PBS PT

PU,m = 1 W, and the
maximum transmission power of CBS is Pmax = 1.5 W. The interference threshold of PUm
is Im

th = 0.1 W, the minimum harvested energy of the SUn is PEq,n = 10 mW, the noise
variance at SUn is σ2

n = 10−6 W. Each frame duration T = 0.1 s, the sensing duration τ
can be selected among K = 15 discrete values, arranged uniformly from minimum value
τ(1) = 0.001 s to maximum value τ(K) = 0.03 s with interval 0.002 s between each value.
All the results are averaged over 1000 different random channel realizations by the Monte
Carlo method.

Figure 3 shows the variation of the total throughput of single user sensing (SS) scheme
and CSS scheme with different energy harvesting efficiency. It can be seen from Figure 3
that, CSS obtains higher total throughput than SS. This is because in CSS, the cooperation of
SUs can increase the detection probability and decrease the false alarm probability, leading
to an increase in the total throughput. It also can be seen from Figure 3 that with the
increase in the energy harvesting efficiency, the total throughput increases, since more
energy can be used for transmission. The larger N also leads to the larger total throughput,
since more SUs can sense more eligible channels for transmission.
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Figure 3. The total throughput of different spectrum sensing schemes versus η.

Figure 4 shows the variation in the total throughput of different SWIPT schemes
versus the transmit power of CBS. It can be seen from Figure 4 that jointly using PS and TS
scheme, denoted as PTS, can obtain higher total throughput than only using PS scheme
or TS scheme due to more flexible power allocation. It also can be seen from Figure 4 that
the total throughput increases with the transmit power of the CBS. This is because the high
transmit power can easily meet the energy requirement of each SU. Thus, more power can
be used to perform ID at the SUs leading to the increase of total throughput. The more
SUs can also obtain higher total throughput, since more eligible channels can be sensed
for transmission.

1 1.2 1.4 1.6 1.8 2 2.2
The transmit power of CBS(W)

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

T
ot

al
 th

ro
ug

hp
ut

 o
f S

U
s(

bi
t/s

)

104

PTS scheme( N=6)
PTS scheme( N=8)
PS scheme( N=6)
PS scheme( N=8)
TS scheme( N=6)
TS scheme( N=8)

Figure 4. The total throughput of different simultaneous wireless information and power transfer
(SWIPT) schemes versus the transmit power of cognitive base station (CBS).
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Figure 5 shows the relationship between the transmit power of the CBS and the total
throughput of different algorithms, which are average algorithm, greedy algorithm, KM
algorithm, and the proposed algorithm in this paper. In average algorithm, the transmission
power from the CBS to each SU is equal. The other variables are determined in the same way
with our proposed algorithm. In greedy algorithm, the CBS preferentially allocates more
transmit power to the SU with larger bandwidth channel assigned. The other variables
are also determined in the same way with our proposed algorithm. In the Kuhn–Munkres
(KM) algorithm, firstly, the one-channel to one-SU sensing task assignment is obtained by
KM algorithm to maximize their total detection probability. Then, for the channel of which
the detection probability doesn’t meet the requirement, it will be assigned more SUs for
cooperative sensing to increase its detection probability. From Figure 5, we can see that
the total throughput of four algorithms increases gradually with the increase in the transmit
power of the CBS. Due to the flexible resource allocation, the proposed algorithm can obtain
higher total throughput than the other three algorithms. The numerical results show that
the proposed algorithm obtains 35% higher total throughput than the greedy algorithm,
21% higher than the average algorithm, and 8% higher than the KM algorithm on average.
Its high total throughput can help IoT to guarantee the quality of service and scale up the
network. The total system throughput of KM algorithm is lower than that of the proposed
algorithm, but is higher than those of average algorithm and greedy algorithm due to the
optimal characteristic of KM algorithm.
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Figure 5. The total throughput of different SWIPT schemes versus the transmit power of CBS.

Figure 6 shows the relationship between the transmit power of the CBS and the total
throughput of different sensing duration algorithms, which are the exhaustion algorithm,
heuristic algorithm, and fixed τ algorithm. In the exhaustion algorithm, all the available
sensing durations are checked and their maximum achievable total throughput is calculated.
The sensing duration with the maximum throughput is selected as the optimal one. In fixed
τ algorithm, the sensing duration is given and fixed. The other variables are determined
in the same way with our proposed algorithm. From Figure 6, we can see that the total
throughput of these algorithms increases gradually with the increase in the transmit power
of the CBS. The performance of the heuristic algorithm is closer and slightly lower than
that of the exhaustion algorithm, but the heuristic algorithm has lower computational
complexity. Thus, it can help the IoT to reduce computing costs and improve the service
speed. The heuristic algorithm and exhaustion algorithm can obtain higher total throughput
than the fixed τ algorithm due to their flexible sensing duration.
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Figure 6. The total throughput of different sensing duration algorithm versus transmit power of CBS.

Figure 7 shows the total throughput of the SUs versus different sensing durations. It
can be seen that with the increase of sensing duration, the total throughput firstly increases
and then decreases. That is because when the sensing duration is short, the creasing sensing
duration can improve the sensing accuracy so as to increase the total throughput. However,
the increase in the sensing duration will lead to the decrease of data transmission time
in fixed time slots, resulting in the decrease of the total throughput. Therefore, there is
a trade-off between the sensing performance and the total throughput of the cognitive
network; there is an optimal sensing duration to maximize the total throughput. In addition,
the total throughput increases with the number of SUs, since more SUs participated in CSS
can improve the detection accuracy and find more eligible channels, so as to improve the
system throughput.
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Figure 7. The total throughput versus sensing duration.
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Figure 8 shows the total throughput varies with the distance between the CBS and the
SUs under different eta. It can be seen that, the shorter the distance between the CBS and
the SUs, the higher energy and throughput can be obtained. This is because the shorter the
distance between the CBS and the SUs, the more energy can be harvested, leading to the
greater total throughput. Higher eta also causes more total throughput, since the required
energy can be harvested faster and more time can be used for transmission.
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Figure 8. The total throughput versus distances from CBS to secondary users (SUs) with the different η.

Figure 9 shows that the total throughput varies with the mean SNR values under
different detection probability requirements Preq

d_ch. It can be seen from Figure 9 that, as the
SNR increases, the system total throughput increases. This is because a higher SNR leads
to a larger detection probability of the channel and a lower false alarm probability, so as
to achieve a higher system total throughput. It also can be seen that, with the increase of
detection probability requirement, more channels can not meet the detection probability
requirement, thus the total system throughput decreases.
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Figure 9. The total throughput versus the mean signal to noise ratio (SNR) values under different
detection probabilities.
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5. Conclusions

In this paper, we investigated a CRIoT network with SWIPT in which SUs could
adaptively switch between spectrum sensing, SWIPT, and information transmission to
maximize the total throughput. The multi-dimensional resource allocation problem with
some constraints, such as maximum transmit power, maximum permissible interference,
and minimum energy harvest requirement, was formulated as an MINLP problem. For
a given sensing duration, a greedy sensing algorithm was firstly used to determine the
sensing task assignment matrix. Secondly, the original problem was transformed into a
convex problem by introducing auxiliary variable, then the Lagrange dual method and
subgradient method were adopted to obtain the optimal power and channel allocation.
A one-dimensional searching method was used to obtain the optimal PS ratio and TS
ratio. Finally, a heuristic algorithm was adopted to obtain the optimal sensing duration.
The simulation results showed that the proposed algorithm can obtain higher total system
throughput than benchmark algorithms. The proposed algorithm can be applied to the
multi-user and multi-channel scenario in CRIoT networks with SWIPT to solve the multi-
dimensional resource allocation problem to improve the system performance. The proposed
optimization algorithm can also provide reference for the similar optimization problem. It
could help IoT to relieve the shortage problem of wireless spectrum, guarantee the quality
of service, and save energy consumption to realize green communication. In future works,
we will consider the non-linear EH model into our work to be more practical. The uplink
transmission of IoDs will also be included.
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Appendix A

Proof of Proposition 1. By applying KKT conditions, it can be obtained that

∂L(Ξ)
∂Um,n

{
= 0, Uopt

m,n > 0
> 0, Uopt

m,n < 0
, ∀m, n (A1)

Take the partial derivative R00
m,n(t1), R00

m,n(t2), R10
m,n(t1), R10

m,n(t2) with respect to Um,n.

∂R00
m,n(t1)

∂Um,n
=

|hm,n|2ρ(
ym,nσ2

n + Um,n|hm,n|2ρ
)

ln2
, (A2)

∂R00
m,n(t2)

∂Um,n
=

|hm,n|2(
ym,nσ2

n + Um,n|hm,n|2
)

ln2
, (A3)

∂R10
m,n(t1)

∂Um,n
=

|hm,n|2ρ[
ym,n

(
PPU,m|gm,n|2 + σ2

n

)
+ Um,n|hm,n|2ρ

]
ln2

, (A4)

∂R10
m,n(t2)

∂Um,n
=

|hm,n|2[
ym,n

(
PPU,m|gm,n|2 + σ2

n

)
+ Um,n|hm,n|2

]
ln2

. (A5)
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Then, the partial derivative of L(Ξ) with respect to Um,n can be obtained as

∂L(Ξ)
∂Um,n

= ym,nBm

{
t1

T

[
a0,m

∂R00
m,n(t1)

∂Um,n
+ b0,m

∂R10
m,n(t1)

∂Um,n

]

+
t2

T

[
a0,m

∂R00
m,n(t2)

∂Um,n
+ b0,m

∂R10
m,n(t2)

∂Um,n

]}

+ (a0,m + b0,m)

[
T − τ

T
βnµnη(1− ρ)|hm,n|2 − λ

]
− ψm|km|2

T − τ

T
b0,m.

(A6)

By setting ∂L(Ξ)
∂Um,n

= 0 , we have the following equation related to Um,n

q0,m,n|hm,n|2ρ2U2
m,n + ym,n∆0,m,nUm,n + ω0,m,ny2

m,n = 0, (A7)

where q0,m,n, ∆0,m,n and ω0,m,n are defined in (30),(31),(32).

Thus, the optimal Um,n can be obtained by

Um,n =
−ym,n∆0,m,n + ym,n

√
∆2

0,m,n − 4q0,m,n|hm,n|2ρ2ω0,m,n

2q0,m,n|hm,n|2ρ2
(A8)

As to Pm,n, it can be obtained by Pm,n = Um,n
ym,n

, then (29) is obtained. �

Appendix B

Proof of Proposition 2. In order to obtain the partial derivative of L(Ξ) with respect to
ym,n, we firstly calculate the derivatives of R00

m,n(t1), R00
m,n(t2), R10

m,n(t1), and R10
m,n(t2) with

respect to ym,n.
∂R00

mn(t1)

∂ymn
=

−Um,n|hm,n|2ρ

ym,n

(
ym,nσ2

n + Um,n|hm,n|2ρ
)

ln2
(A9)

∂R00
mn(t2)

∂ymn
=

−Um,n|hm,n|2

ym,n

(
ym,nσ2

n + Um,n|hm,n|2
)

ln2
(A10)

∂R10
m,n(t1)

∂ym,n
=

−Um,n|hm,n|2ρ

ym,n

[
ym,n

(
PPU,m|gm,n|2 + σ2

n

)
+ Um,n|hm,n|2ρ

]
ln2

(A11)

∂R10
m,n(t2)

∂ym,n
=

−Um,n|hm,n|2

ym,n

[
ym,n

(
PPU,m|gm,n|2 + σ2

n

)
+ Um,n|hm,n|2

]
ln2

(A12)

Then the derivatives of L(Ξ) with respect to ym,n is obtained as

∂L(Ξ)
∂ymn

= Bm
t1

T

[
a0,m

(
R00

m,n(t1)
)
+

∂R00
m,n(t1)

∂ymn
+ b0,m

(
R10

m,n(t1)
)
+

∂R10
m,n(t1)

∂ymn

]

+ Bm
t2

T

[
a0,m

(
R00

m,n(t2)
)
+

∂R00
m,n(t2)

∂ymn
+ b0,m

(
R10

m,n(t2)
)
+

∂R10
m,n(t2)

∂ymn

]

+
t1

T
µnη(1− ρ)σ2

n − εm.

(A13)

The formula (A13) can be simplified as

∂L(Ξ)
∂ymn

= θm,n − εm, (A14)
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where θm,n is defined in (35).
The optimal channel allocation can be obtained by [21]

yopt
m,n =

{
0, θm,n < εm

1, θm,n > εm
(A15)

In the case θm,n = εm , the yopt
m,n is non-unique due to formula (θm,n − εm)ym,n is always

equivalent to 0 for any value of ym,n . Thus the optimal solution cannot be obtained
directly by the Lagrange dual method. Since each channel can only be accessed by one SU,
the channel allocation problem can be transformed into M non-interfering subproblems.
Due to the independence of each channel power gains, different SU has different θm,n. Thus,
the optimal channel assignment problem is equivalent to finding the largest θm,n for each
channel. This kind of method has been widely used in [21,27]. Furthermore, to protect the
normal communication of PU networks, the channel of which the detection probability is
lower than Preq

d_ch cannot be used for transmission. Thus, set ym,n = 0 for these channels.
Ultimately, (34) is obtained and Proposition 2 is proved. �
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