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Abstract: Microbial fuel cells (MFCs) are biocells that use microorganisms as biocatalysts to break
down organic matter and convert chemical energy into electrical energy. Presently, the application of
MFCs as alternative energy sources is limited by their low power attribute. Optimization of MFCs is
very important to harness optimum energy. In this study, we develop optimal data-driven models
for a typical MFC synthesized from polymethylmethacrylate and two graphite plates using machine
learning algorithms including support vector regression (SVR), artificial neural networks (ANNs),
Gaussian process regression (GPR), and ensemble learners. Power density and output voltage were
modeled from two different datasets; the first dataset has current density and anolyte concentration as
features, while the second dataset considers current density and chemical oxygen demand as features.
Hyperparameter optimization was carried out on each of the considered machine learning-based
models using Bayesian optimization, grid search, and random search to arrive at the best possible
models for the MFC. A model was derived for power density and output voltage having 99% accuracy
on testing set evaluations.

Keywords: ANN; Bayesian; fuel cell; GPR; SVR

1. Introduction

The ever-growing world population and lingering concerns about global warming and
climate change have sparked diverse interests in alternative sources of energy. In the last
two decades, scientists and engineers have proposed numerous renewable and sustainable
energy solutions including wind, solar, geothermal, and biofuel sources. Microbial fuel
cells (MFCs) are bioelectrochemical cells synthesized from living organic matter. The main
operating principle of MFCs (Figure 1) is based on living organic materials, such as bacteria,
acting as a catalyst to decompose a substrate situated in an aerobic anode. Electrons
generated from the catalytic reaction are transferred from the anode through an external
circuit to an aerobic cathode, where water is produced through a reduction reaction [1].
One of the major benefits of MFCs is the inherent characteristic of converting organic
waste into electricity and producing clean water as a byproduct, thereby making them very
ecologically friendly. Despite these benefits, full-scale adoption of these bioelectrochemical
cells suffers from some setbacks because they are capital-intensive to synthesize and are
riddled by low energy generation and efficiency [2].
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Figure 1. Schematic diagram of two-chamber MFC.

Fuel cells can be synthesized from different organic waste media such as industrial
wastewater [3], domestic wastewater [4], sewage sludge [5], food and animal waste [6,7],
and agricultural waste [8,9]. Depending on the number of chambers in the fuel cells, they
can be classified into single- [10–13], double- [14–18], or three-chamber [19–22] fuel cells.
Different applications have been proposed for fuel cells in robotics, biosensors, and other
low-power applications, where low power is a desirable feature. In [23], authors proposed
a thermosensor based on the design of a microbial fuel cell for robotic applications. The
thermosensor developed from the microbial fuel cell can respond to external stimuli within
a sensitivity range of 1 deg C. Microbial cells have also been found useful in information
processing units [24], sensors [25,26], and actuators [27].

Power density, voltage, and biological features such as substrate loading rate are used
to quantify the performance of a microbial fuel cell. Factors such as the supply of oxygen
for combustion in the cathode chamber, otherwise known as chemical oxygen demand,
transportation of electrons to the anode surface from the anode compartment, and proton
exchange permeability are considered as features or operating conditions under which the
output characteristics of the cell are evaluated. There is significant ongoing research into
finding the optimal combination of these factors that produces the best performance outputs.
Much of these research efforts have focused on experimental activities; however, recently,
there has been a spark of interest in modelling artificial systems from experimental data for
performance optimization purposes, where experimental approaches may be limited.

Computational intelligence and machine learning-based techniques have been applied
in earlier studies to develop data-driven models for predicting the empirical characteristics
of fuel cells based on data generated from experiments. Artificial neural networks and
neuro-fuzzy modelling were used to model the power density and coulombic efficiency of a
microbial fuel cell in [14] using temperature, ionic strength, initial PH, and minimum nitro-
gen concentration as features. The authors reported a correlation coefficient of R2 > 0.99 for
both models, with a preference for ANN because of the simpler model structure and fewer
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tuning parameters. A neural-network-based model was proposed in [28] to build artificial
biosensors to identify chemicals in water. Genetic programming and multiple regression
splines have been proposed [2] for predicting the power density and output voltage of
microbial fuel cells. A fuzzy logic-based inference system was employed in [29] to model
the absolute power output of a ceramic-based microbial fuel cell with human urine as the
input. From this study, it was concluded that the fuzzy inference system performed much
better than non-linear multivariable regression methods. In [30], the authors reported the
performance optimization of a microbial fuel cell based on two robust adaptive neuro-fuzzy
inference systems and particle swarm optimization algorithms. Different neural network
algorithms based on different learning functions were used to predict the influence of urine
flow rate on the power output of a microbial fuel cell in [31]. Specifically, the authors
studied the effects of quasi-Newton, Levenberg–Marquadt, and conjugate gradient learning
algorithms on the modelling performance of neural networks.

Machine learning algorithms often possess several parameters that require tuning.
Hyperparameter optimization is the process of optimizing the parameters of machine
learning algorithms for the purpose of arriving at the best possible model for the machine
learning task. In this study, we developed efficient data-driven models for predicting the
power density and output voltage of microbial fuel cells using support vector regression
(SVR), artificial neural networks (ANNs), Gaussian process regression (GPR), and Ensemble
Learners (EL). The main contributions of this study are summarized as follows:

• The performances of four different machine learning algorithms, namely support vec-
tor regression, Gaussian process regression, artificial neural networks, and ensemble
learners, are evaluated in modeling a microbial fuel cell process.

• Two main model structures are investigated for evaluating the optimal performance
of the microbial fuel cell. In the first model structure, current density and anolyte
concentration were considered as model inputs, while current density and chemical
oxygen demand were considered as model inputs in the second model structure.

• The performance of each ML algorithm was optimized with grid search, Bayesian
optimization, and random search to determine the model parameters that yield the
optimal results.

The proposed models in this study may prove very useful for the design of efficient
data-driven controllers for the MFC system or in the performance optimization of the MFC
process. The remainder of the paper is organized as follows. Section 2 briefly discusses the
experimental process from which the data used in this study are produced. In Section 3, we
describe the methodology based on the three machine learning algorithms proposed in this
study. Section 4 presents the results and discussions of the training and validation of the
algorithm, and Section 5 provides some recommendations for future work.

2. Data

The experimental data used in this study were based on the synthesis of a microbial
fuel cell (shown in Figure 2) conducted in [32], where the effects of acetate concentration
and flow rate on microbial fuel cell performance were investigated. The microbial fuel
cell fabricated in [32] was based on graphite electrodes, and the chemical compositions of
the microbial cell culture are given in Table 1. The fuel cell structure features a Y-shaped
channel fabricated from two polymethylmethacrylate and two graphite plates. According
to [32], the fuel cell produces a peak power of 618± 4 mWh−1, with a chemical oxygen
demand (COD) of 1500 mg/L and an anolyte flow rate of 10 mL/h. During the inoculation
process and prior to any experiments, pure nitrogen and argon were purged into the culture
medium for 15 min to displace any dissolved oxygen. The individual electrode potentials
of the anode and cathode were obtained using a Ag/AgCl reference electrode at the outlet
of the microchannel.

An Agilent 39740 was used to collect data such as the anode and cathode potentials
and cell voltages of the fuel cell every 15 s. Polarization curves of the MFC were obtained
by varying the external resistance of the cell between 0.2 and 10 × 105 Ω. For every
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change in external resistance, the MFC was observed until the cell voltage reached a steady
state. Both the current and power densities were normalized to an anode area of 0.4 cm2.
All experiments were conducted in a temperature-controlled room of 25 deg C, and the
experiments were repeated three times to ensure that the data could be reproduced under
similar conditions. We refer the reader to [32] for a more detailed explanation of this
experimental procedure.

Figure 2. The microfluidic MFC.

Table 1. Chemical compositions in the fuel cell chamber.

Chemical Formula and Quantity

NaCl 0.5 g/L
CH3COONa · 3 H2O 1.13 g/L
NH4Cl 0.1 g/L
MgSO4 · 7 H2O 0.1 g/L
NH2HPO4 · 12 H20 15.3 g/L
KH2PO4 3 g/L
CaCl2 11 mg/L
Trace Elements 1.0 mL/L

3. Methodology
3.1. Model Structures

Four machine learning-based algorithms, namely support vector regression (SVR),
artificial neural networks (ANNs), Gaussian process regression (GPR), and Ensemble Learn-
ers are considered in this study to model the microbial fuel cell based on the experimental
data in [32]. Two different datasets were considered in this study based on the experiments
of [32]. The first experimental dataset was generated by studying the effect of anolyte con-
centration on microbial cell performance. The current densities and anolyte concentrations,
which were considered as input features, were recorded against the power density and
output voltages. The second experiment investigated the effect of chemical oxygen demand
on cell performance. Based on these datasets, different ML-based models were developed
for this microbial fuel cell. The first model set, termed Model-I, predicts power density
(PD) and output voltage (OV) using anolyte concentration (AC) and current density (CD)
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as features. The second model set, termed Model-II, predicts power density and output
voltage from current density (CD) and chemical oxygen demand concentration (CODC).

3.2. Modeling Algorithms
3.2.1. Artificial Neural Networks

Neural networks are artificial bio-inspired information-processing units that are capa-
ble of modelling nonlinear processes. Originally proposed by McCulloch and Pitts in 1943
in their attempt to model biosystems using a combination of simple logical operations, neu-
ral networks have evolved over the years, with more applications now being reported for
deep neural networks and deep learning in science and engineering. The basic information
processing unit in a neural network is mathematically represented by (1)

L̂ = f

(
p

∑
i=1

ωixi + b

)
, (1)

where ω and b denote synaptic weights and biases, respectively.
As with many other machine learning algorithms, the goal of a neural network for

function-fitting applications is to model a physical process described by some data by
finding an unbiased function approximation obtained based on the training dataset of the
physical process. Neural network applications have also been developed to model fuel
cell processes. Artificial neural networks were used to predict electricity production in a
membrane-less microbial fuel cell [33], where glucose was considered as the primary elec-
tron donor. The effect of anode inclination on the power output of a mediator-less microbial
fuel cell was studied in [34] using artificial neural networks, where it was discovered that
lower COD removal and power generation occurred when the anodes were positioned at
0 deg and 45 deg. A feedforward backpropagation neural network was utilized in [35] to
simulate the polarization effects of cylindrical MFCs with different separation medium
materials. In [36], an ANN was employed in conjunction with a microbial fuel cell as
a biosensor to detect three organic pollutants: aldicarb, dimethyl-methylphosphonate
(DMMP), and bisphenol-A (BPA).

In the present study, we employed a feedforward fully connected artificial neural net-
work with a ReLU activation function to train models for predicting the output voltage and
power density from two different pairs of inputs, current density and anolyte concentration
in the first set and current density and COD concentration in the second set. In total, the
first dataset consisted of 45 points and the second dataset consisted of 46 points. An 80:20
split between the training and testing sets was considered for all developed models.

3.2.2. Support Vector Regression

The support vector regression (SVR) proposed by [37] is based on structural risk
minimization where, given a labeled training data set Π = {(xi, yi)}n

i , the goal is to find a
function F (x) (2) such that (3) is minimized.

F (x) = ωφ(x) + β, (2)
n

∑
i=1

(yi − f (xi)) < ε, (3)

xi ∈ Rm and yi ∈ R represent features and target, respectively. In (2), ω and β
represent weights and bias to be determined, while φ(.) represents a nonlinear feature
map in some predefined kernel feature space. The objective (3) is realized through the
minimization of the function (4)

R( f ) = C
1
n

n

∑
i−1
Lε(F (xi)− yi) +

1
2
|ω|2, (4)
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The term
1
2
|ω|2 reduces the risk of overfitting through the estimation of the differential

flatness of the function space. Different forms of loss function L can be defined for this
problem. A popular loss function takes the form of (5)

L =

{
| f (x)− y| − ε |F (x)− y| ≥ ε

0 otherwise.
(5)

In (4), the parameter C penalizes deviations of each sample from the specified error
bound. Different forms of kernel functions have been proposed for the SVR algorithm.
Popular kernel functions include polynomial, linear, radial basis, exponential radial basis,
spline, and b-spline. The success of the SVR algorithm on a given modeling problem relies
on the proper selection of its hyperparameters.

Over the past few decades, researchers in the physical and social sciences have pivoted
the use of machine learning to build artificial systems from data that can offer an accurate
representation of the real processes under consideration. Support vector machine and
regression have received considerable attention. Some contributions to the application of
support vector regression in chemical processes include [38–41]. Some results have also
been reported for support vector regression in modelling microbial fuel cell processes.
In [42], the authors studied the space design method-based support vector regression
modelling of MFC− A2/O equipment, where both the forward and inverse SVR models
were investigated using a quadratic kernel function. The authors in [43] combined support
vector regression and a crow search algorithm for modelling and optimization of a microbial
fuel cell process based on microalgal wastewater treatment.

3.2.3. Gaussian Process Regression

Gaussian process regression is a statistical machine learning algorithm based on the
principle of Gaussian processes. It has been applied to several regression problems in
science and engineering to develop models capable of describing the complex relationship
between a set of input features and process outputs. Consider a function f (x) that describes
a physical process modelled by a Gaussian process, where x ∈ Rm×n represents the features
of the process, n is the number of features, and m is the number of observations recorded
from the physical process. The Gaussian process is characterized by the mean function
m(x) and covariance function cov(xi, xj), where it is assumed that the sample space for
each feature xj ∈ Rm×1 j = 1, . . . n has a multivariate normal density, that is,

f (x) ≈ N (m(x), K(x, x)), (6)

where K(xi, xj) is a kernel function. For example, consider a squared exponential function
of the form

K(xi, xj) = s2 exp

(
−
|xi − xj|2

2`2

)
, (7)

where s2 and `2 denote the magnitude and length-scale hyperparameters that control the
behavior of the kernel (covariance) function. Suppose that the probability density function
describing the Gaussian process is given by (8)

p(u, x) = (2π)−0.5N |K|−0.5 exp

(
− 0.5uTK−1(x, x)u

)
. (8)
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The likelihood function (9) can be used to describe the data under the assumption that
the observation points are affected independently and identically by Gaussian noise with
variance σ2:

p(y|u, x) =
N

∏
i=1

1√
2πσ2

exp

(
− (yi − f (xi)

2)

2σ2

)
. (9)

The posterior distribution of function f is computed via Baye’s rule as

p(y|u|x) = p(y, u|x)p(u|x)
p(y|x) , (10)

and its log-marginal-likelihood function is given by (11)

logp(y|x) =
∫

p(y|u, x)p(u|x)d f
= −0.5yT(K(x, x) + σ2 IN)

−1y
−0.5 log |K(x, x)
+σ2 IN | − 0.5N log 2π.

(11)

The prediction of y based on f from a new observation point x∗ is then given statisti-
cally as a function of the mean E[ f ∗] and variance var[ f ∗] by (12) and (13):

E[ f ∗] = K(x∗, x)(K(x, x) + σ2 IN)
−1 (12)

var[ f ∗] = K(x∗, x∗)− K(x∗, x)(K(x, x) + σ2 IN)
−1K(x, x∗). (13)

Gaussian process regression was employed by [44] to model the relationship between
the operating conditions and power outputs of a two-chamber microbial fuel cell process.
The data for the MFC considered in this study were generated from experiments conducted
on a two-chamber microbial fuel cell consisting of glucose and glutamic acid substrates.

3.2.4. Ensemble Learners

Ensemble algorithms refer generally to a class of machine learning algorithms that
combine two or more techniques towards improving the performance of weak machine
learning algorithms. Different ensemble learning frameworks have been proposed depend-
ing on the voting mechanism, such as voting-based ensemble [45], ensemble of online
sequential extreme learning machine [46], and weighted voting ensemble [47]. In this study,
we consider an ensemble learning algorithm consisting of bagged or boosted regression
trees. Hyperparameters of the ensemble learners includes method, number of learning
cycles, learning rate, minimum lead size, and number of variables to sample.

3.3. Hyperparameter Optimization

Three different hyperparameter optimization algorithms, namely Bayesian optimiza-
tion, grid search, and random search, were used to optimize the structure of the machine
learning models. The Bayesian optimization algorithm falls into a class of machine learning
optimization algorithms that are primarily concerned with the problem (14)

max
x∈A

f (A) (14)

where the objective function and the feasible set are assumed to possess the following
characteristics [48]:

• The structure of f is typically unknown and cannot be described with attributes such
as concavity or linearity.
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• The nature of the optimization problem is derivative-free; this means that only the
evaluation of f (x) is observed and not first or second derivatives, thus preventing the
application of popular gradient descent methods.

• The size of input x ∈ Rm is typically not large, with m ≤ 20.
• f is computationally expensive to evaluate; therefore, the number of objective function

evaluations to be performed is limited to a few hundred.
• The membership of the feasibility set is assessable due to the simplicity of A.

Grid search is a classical hyperparameter optimization method that involves making an
exhaustive search over the possible hyperparameter space. This search algorithm employs
a brute-force approach to finding the optimal set of hyperparameters for the machine
learning algorithms. The grid search algorithm maps the hyperparameter space into a
predefined grid size depending on the possible range of values for each hyperparameter.
In instances where there are numerous hyperparameters to be optimized, grid search may
not be very efficient, although it is a very reliable hyperparameter optimization scheme
depending on the density of the grid.

Random search, as the name implies, searches randomly in the hyperparameter space
for the optimal set that yields the best performance. It is preferable in optimization problems
where derivatives of the cost function may not exist. The random search begins with an
initial guess sampled with the hyperparameter space and this guess is updated randomly
over a given number of iterations until a termination criterion is satisfied. Different
variants of the random search algorithm have been proposed in the literature. Some typical
examples include the Friedman–Savage procedure, Fixed Step Size Random Search (FSSRS),
Adaptive Step Size Random Search (ASSRS), and Optimized Relative Step Size Random
Search (ORSSRS). These algorithms differ in the method of sampling of the search space.

4. Results and Discussion

The results obtained from the machine learning models used in this study are pre-
sented in this section. Two different model formulations are considered for power density
and output voltage. The first model considers current density (CD) and anolyte concentra-
tion (AC) as input features, while the second model considers current density (CD) and
chemical oxygen demand concentration (CODC) as input features. For the purposes of the
discussions in this section, the first model is denoted as Model I, while the second model
formulation is denoted as Model II. The abbreviations PD-I and OV-I refer to power density
and output voltage models derived from CD and AC, while PD-II and OV-II connote power
density and output voltage modeling from CD and CODC. First, we present the results
obtained from hyperparameter tuning of each of these models for all the algorithms, then
we discuss comparatively each of the selected best machine learning algorithms for all
the process variables modeled. The performance of the models is compared using the
correlation coefficient (R), mean squared error (MSE), and mean absolute deviation (MAD),
defined by Equations (15)–(17), respectively.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (15)

MAD =
1
n

n

∑
i=1
|yi − ŷi| (16)

R =
∑m ∑n(Amn − Ā)(Bmn − B̄)√

(∑m ∑n(Amn − Ā)2)(∑m ∑n(Bmn − B̄)2)
(17)

4.1. Hyperparameter Optimization

In this section, we provide some discussions on the results of the hyperparameter
optimizations of the machine learning algorithms used in our study. The performance of the
tuning algorithms was compared using the objective loss function Hobj (18), which depends
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on the computed mean squared error (mse). A total of 100 iterations were considered for
each of the optimization methods.

Hobj = log(1 + mse) (18)

4.1.1. Support Vector Regression

Table 2 presents the hyperparameter tuning results using Bayesian optimization,
grid search, and random search for the SVR algorithm. Based on the obtained results,
Bayesian optimization produced the best hyperparameters for PD-I, PD-II, and OV-II, while
in the case of OV-I, the best hyperparameters were obtained with random search. The
optimization process for the SVR algorithm reveals that PD-I and PD-II are modeled with a
polynomial kernel function of order 4 and 3, respectively. OV-I is modeled with a Gaussian
kernel with a kernel scale of 2.2, while OV-II is modeled with a polynomial kernel of order 4.

Table 2. SVR hyperparameter optimization results.

Model BC KS Epsilon KF PO Standardize MO

Bayesian Optimization

PD-I 97.01 - 15.83 polynomial 4 true 8.22

OV-I 0.64 - 0.000804 polynomial 4 true 0.0082

PD-II 432.28 - 8.49 polynomial 3 true 7.71

OV-II 245.92 - 0.013731 polynomial 4 true 0.0026

Grid Search

PD-I 215.44 - 0.23351 polynomial 4 true 8.4966

OV-I 2.1544 - 0.00021497 polynomial 2 true 0.0088

PD-II 215.44 - 15.01 polynomial 4 true 7.8279

OV-II 0.46416 - 0.047607 polynomial 3 true 0.0057

Random Search

PD-I 210.61 - 69.337 polynomial 2 true 8.3156

OV-I 314.43 2.2181 0.018786 gaussian - true 0.0067

PD-II 79.263 - 29.712 polynomial 3 true 7.9745

OV-II 1.7538 - 0.00074444 polynomial 4 true 0.0030

4.1.2. Gaussian Process Regression

Table 3 summarizes the results of the hyperparameter tuning for the GPR algorithm.
The results reveal that the best hyperparameters for PD-I and PD-II are obtainable with the
random and grid search algorithms, respectively, while the best hyperparameters for OV-I
and OV-II were obtained with Bayesian and grid search algorithms, respectively. PD-I and
PD-II were modeled with ardmatern52 and exponential kernel functions. In both models,
no basis functions were utilized. OV-I and OV-II were modeled with ardexponential and
ardsquaredexponential kernel functions, respectively. The basis function utilized for OV-I
was a linear basis function, while OV-II required no basis functions.

4.1.3. Artificial Neural Networks

The hyperparameter optimization results for the ANN algorithm are summarized in
Table 4. In this instance, the best hyperparameters for PD-I and PD-II were obtained via
random search and Bayesian optimization, respectively, while the optimal results obtained
for OV-I and OV-II were derived from Bayesian and random search, respectively. PD-I and
PD-II both have two hidden layers and employ a relu activation function; however, PD-I
uses 5 and 190 neurons in layers 1 and 2, respectively, while PD-II uses 214 and 241 neurons
in layers 1 and 2, respectively. OV-I and OV-II both have two hidden layers. There are
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287 and 119 neurons in the hidden layers of OV-I, while OV-II has 5 and 11 neurons in its
hidden layers. OV-I and OV-II employ sigmoid and tanh activation functions.

Table 3. GPR hyperparameter optimization results.

Model Sigma Basis Function Kernel Function Kernel Scale Standardize MO

Bayesian Optimization

PD-I 0.12 pureQuadratic ardmatern32 - true 8.11

OV-I 0.0035 linear ardexponential - false 0.0026

PD-II 0.013542 pureQuadratic ardmatern32 - false 7.9363

OV-II 0.00010833 pureQuadratic matern52 1916.4 false 0.0012

Grid Search

PD-I 1.0276 constant matern32 10.444 true 8.0036

OV-I 0.07247 none matern32 2.25 true 0.0050103

PD-II 0.18217 none exponential 928.32 false 7.7791

OV-II 0.024824 pureQuadratic ardsquaredexponential - true 0.00056799

Random Search

PD-I 0.00028081 none ardmatern52 - true 7.6804

OV-I 0.00062233 linear ardmatern32 - true 0.0027988

PD-II 13.057 none ardrationalquadratic - true 7.9585

OV-II 0.020 linear ardmatern52 - true 0.00070001

Table 4. ANN hyperparameter optimization results.

Model Activations Lambda LWI LBI LayerSize Standardize MO

Bayesian Optimization

PD-I tanh 0.545 he zeros [87 255 127] true 7.85

OV-I sigmoid 2.9× 10−7 he ones [287 119] true 0.0024

PD-II relu 3.41× 10−7 he zeros [214 241] true 7.04

OV-II relu 2.72× 10−7 he zeros [33] true 0.0012

Grid Search

PD-I tanh 0.099828 glorot ones [13] true 8.1602

OV-I sigmoid 2.78× 10−7 glorot ones [300 159 159] true 0.0043

PD-II relu 16.202 glorot zeros [24 159] true 7.8778

OV-II tanh 4.5084× 10−7 he ones [4 2 7] true 0.0013415

Random Search

PD-I relu 2.569× 10−5 he ones [5 190] true 7.7136

OV-I sigmoid 2.1701× 10−5 glorot ones [89 2] true 0.003678

PD-II tanh 0.052638 he ones [52 155] true 8.0649

OV-II tanh 1.4533× 10−6 he ones [5 11] true 0.00056841

4.1.4. Ensemble Learning

In Table 5, we summarize the results of the hyperparameter optimization. The best
results for PD-I and PD-II were obtained from Bayesian and grid search optimization,
respectively, while the optimal results for OV-I and OV-II were derived from grid search.
The ensemble algorithm employed the LSBoost method in all the instances for fitting the
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regression trees. In the case of PD-I, the ensemble algorithm samples only one variable over
288 learning cycles, while with PD-II, the algorithm samples all two input variables over
just 37 cycles. The ensemble algorithms for OV-I and OV-II samples both input features
over 324 learning cycles in both instances.

Table 5. Ensemble hyperparameter optimization results.

Model Method NLC LR MLS MNS VS MO

Bayesian Optimization

PD-I LSBoost 288 0.14 1 34 1 8.14

OV-I LSBoost 432 0.89 3 2 2 0.019

PD-II LSBoost 16 0.4303 1 36 1 8.2865

OV-II LSBoost 155 0.0827 4 2 1 0.0021

Grid Search

PD-I LSBoost 324 0.046416 2 11 2 8.6515

OV-I LSBoost 324 0.46416 4 7 2 0.0033

PD-II LSBoost 37 0.46416 1 36 2 7.7934

OV-II LSBoost 324 0.21544 1 24 2 0.0014

Random Search

PD-I LSBoost 389 0.21924 3 8 1 8.2468

OV-I LSBoost 251 0.14145 2 9 1 0.0044

PD-II LSBoost 317 0.042925 1 10 1 7.9872

OV-II LSBoost 65 0.39092 1 35 2 0.0016

4.2. Model Comparisons

In Table 6, we summarize and compare the performances of the modeling algorithms
for Model I. Figures 3 and 4 present the regression plots for each of the machine learning
algorithms based on Model-I structure. The analyses here are based on the selected best
models from the hyperparameter tuning process. The evaluations of these models are dis-
cussed based on the R, RMSE, and MAD values defined in (15)–(17). The best performance
based on the testing evaluation results for PD prediction with Model I formulation is the
GPR algorithm with performance values of (1.0000, 0.0010, 0.0002) and (0.9982, 0.0302,
0.0091) on the training and testing sets, respectively. Next is the ANN algorithm, with train-
ing and testing performance values of (0.9995, 0.0148, 0.0057) and (0.9769, 0.0854, 0.0277),
respectively. The ENSEMBLE algorithm follows, with training and testing performance
values of (0.9973, 0.0263, 0.0086) and (0.9621, 0.1149, 0.0342), while the SVR comes last, with
performance values of (0.9789, 0.0698, 0.0268) and (0.9153, 0.1097, 0.0382) on training and
testing sets, respectively.

The best algorithm for the prediction of output voltage using Model I structure was
obtained with the GPR algorithm with training and testing performance values of (1, 0.0003,
0.0001) and (0.9614, 0.0850, 0.0330), respectively. Next comes the ENSEMBLE algorithm,
with performance values of (0.9953, 0.0255, 0.0044) and (0.9614, 0.1009, 0.0399) on training
and testing sets, respectively. The SVR algorithm follows, with (0.9767, 0.06,0.0197) and
(0.9278, 0.1256, 0.0432) on training and testing evaluations, while the ANN algorithm
comes last, with (0.8186, 0.1483, 0.0057) and (0.8546, 0.1831, 0.0620) on training and testing
evaluations, respectively.

Table 7 summarizes and compares the algorithms for Model-II-based representation of
the prediction problem. Figures 5 and 6 present the regression plots for each of the machine
learning algorithms based on the Model-I structure. Based on the testing evaluation results,
it can be concluded that the SVR algorithm performed best for modeling power density, with
performance values of (0.9824, 0.0716, 0.0217) and (0.9795, 0.0789, 0.0295) on training and
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testing set evaluations, respectively. Next is the ANN algorithm, with performance values
of (0.9995, 0.0148, 0.0057) and (0.9769, 0.0854, 0.0277) on training and testing evaluations.
The ENSEMBLE algorithm follows, with values of (0.9979, 0.0263, 0.0086) and (0.9621,
0.1149, 0.0342) on training and testing predictions. Finally, the GPR algorithm comes last,
with training and testing evaluation values of (1, 0.00006, 0.00002) and (0.9583, 0.1006,
0.0039), respectively. The best algorithm for predicting output voltage using Model-II
formulation is the ANN algorithm, with performance evaluations of (0.9999, 0.0003, 0.0016)
and (0.9939, 0.0406, 0.0196) on the training and testing sets, respectively. The GPR algorithm
follows, with training and testing evaluations of (0.9983, 0.0176, 0.0062) and (0.9902, 0.0516,
0.0224), respectively. Next is the SVR algorithm, with (0.9956, 0.0542, 0.0223) and (0.9888,
0.0556, 0.0236) on training and testing evaluations, while the ENSEMBLE algorithm comes
last, with performance values of (1, 0.0002, 0.00009) and (0.9869, 0.0523, 0.01694) on training
and testing evaluations. Based on the analyses carried out, it can be summarized that
Model I is more suitable for modeling power density, while Model II formulation models
the output voltage of the MFC better. Tables 8 and 9 summarize the model outputs on
training and testing set evaluations with respect to the experimental outputs.

(a) SVR-PD Model Scatter Plot (b) SVR-OV Scatter Plot

(c) GPR-PD Scatter Plot (d) GPR-OV Scatter Plot

Figure 3. SVR and GPR Model I Evaluations.
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(a) ANN-PD Scatter Plot (b) ANN-OV Scatter Plot

(c) ENSEMBLE-PD Scatter Plot (d) ENSEMBLE-OV Scatter Plot

Figure 4. ANN and ENSEMBLE Model I Evaluations.

Figure 7 compares pictorially the experimental predictions from the data-driven
models and expresses that the data-driven MFC model presented in this study agrees
significantly with the experimental data. Authors in [2] examine by experimentation the
effect of varying COD concentration and anolyte flow rate on the performance outputs of
the MFC. According to their experimental data, the poorest performance was observed for
the MFC at low influent COD concentrations of 100 mg L−1 due to low fuel supply. The
data-driven model similarly gives the same output demonstrating concrete agreement with
the experimental values. Furthermore, it was proposed in [2] that variations in anolyte
concentrations significantly affect the power density outputs of the MFC. Likewise, we find
in our data-driven model development a strong agreement with this assertion, as the best
model for predicting power density is the Model-I with anolyte concentration and current
density as inputs. The proposed data-driven soft computing models proposed in this study
can be used in a parallel configuration to predict power density and voltage outputs of
a two-chamber MFC. The first block, which predicts power density, will feature the GPR
optimized model, which takes anolyte concentrations and current density as input. The
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second block in the parallel configuration will feature the ANN optimized output voltage
prediction model, taking as inputs CODC and current density.

(a) SVR-PD Scatter Plot (b) SVR-OV Scatter Plot

(c) GPR-PD Scatter Plot (d) GPR-OV Scatter Plot

Figure 5. SVR and GPR Model-II Evaluations.

Table 6. Model I—performance measures.

Training Testing

Model R RMSE MAD R RMSE MAD

PD-SVR 0.9789 0.0698 0.0268 0.9153 0.1097 0.0382

PD-GPR 1.0000 0.0010 0.0002 0.9982 0.0302 0.0091

PD-ANN 0.9995 0.0148 0.0057 0.9769 0.0854 0.0277

PD-ENSEMBLE 0.9973 0.0263 0.0086 0.9621 0.1149 0.0342

OV-SVR 0.9767 0.0600 0.0197 0.9278 0.1256 0.0432

OV-GPR 1.0000 0.0003 0.0001 0.9614 0.0850 0.0330

OV-ANN 0.8186 0.1483 0.0057 0.8546 0.1831 0.0620

OV-ENSEMBLE 0.9953 0.0255 0.0044 0.9614 0.1009 0.0399
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(a) ANN-PD Model Evaluation (b) ANN-OV Model Evaluation

(c) ENSEMBLE-PD Model Evaluation (d) ENSEMBLE-OV Model Evaluation

Figure 6. ANN and ENSEMBLE Model-II evaluations.

Table 7. Model II—performance measures.

Training Testing

Model R RMSE MAD R RMSE MAD

PD-SVR 0.9824 0.0716 0.0217 0.9795 0.0789 0.0295

PD-GPR 1.0000 0.00006 0.00002 0.9583 0.1006 0.0039

PD-ANN 0.9995 0.01488 0.0057 0.9769 0.0854 0.0277

PD-ENSEMBLE 0.9979 0.0263 0.0086 0.9621 0.1149 0.0342

OV-SVR 0.9956 0.0542 0.0223 0.9888 0.0556 0.0236

OV-GPR 0.9983 0.0176 0.0062 0.9902 0.0516 0.0224

OV-ANN 0.9999 0.0003 0.0016 0.9939 0.0406 0.0196

OV-ENSEMBLE 1.0000 0.0002 0.00009 0.9869 0.0523 0.01694
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(a) Experimental vs. Predicted PD (Training) (b) Experimental vs. Predicted PD (Testing)

(c) Experimental vs. Predicted OV (Training) (d) Experimental vs. Predicted OV (Testing)

Figure 7. Box plots comparing experimental and predicted outputs.

Table 8. Model I—Power density predictions.

Current Density Anolyte Concentration Power Density (Exp) Power Density (Pred)

Training

0 5 0 0.34339813

100 5 75 74.2800234

150 5 100 99.88043377

300 5 120 117.9662687

400 5 80 81.67882275

450 5 65 64.99960065

750 5 50 50.02761297

0 10 0 −0.041741094

500 10 320 319.9249303

750 10 400 399.9600416

1000 10 350 350.0020362

0 20 0 0.027481016

500 20 360 359.9074023

750 20 410 410.1444232

1250 20 400 400.0602652

1500 20 320 319.9797993

0 40 0 −0.005480526
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Table 8. Cont.

Current Density Anolyte Concentration Power Density (Exp) Power Density (Pred)

250 40 160 160.0652346

500 40 350 349.9075691

1000 40 450 450.0548606

1250 40 480 479.9573814

1750 40 210 210.0434299

250 60 150 149.9998696

1000 60 400 400.0033257

1500 60 470 470.0090551

1750 60 450 449.9858254

2250 60 390 389.980239

200 5 115 116.3443356

750 40 425 425.0127718

1250 60 460 459.9801203

1000 20 450 449.8780158

250 10 160 160.113909

500 5 55 54.51161768

1500 40 400 399.9589216

2000 60 420 420.0173303

1250 10 240 240.0113957

Testing

50 5 25 40.19067673

250 5 125 123.0486118

1500 10 150 147.878756

1750 20 200 241.7814819

0 60 0 92.46039675

500 60 270 224.54181

750 60 340 312.1917304

350 5 100 101.8892903

250 20 150 207.4972159

Table 9. Model II—output voltage predictions.

Current Density Chemical Oxygen Demand Voltage (Exp) Voltage (Pred)

Training

0 100 0.3 0.301292574

50 100 0.27 0.270779805

100 100 0.25 0.240441584

200 100 0.18 0.181072746

250 100 0.15 0.152516957

300 100 0.14 0.12507906
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Table 9. Cont.

Current Density Chemical Oxygen Demand Voltage (Exp) Voltage (Pred)

400 100 0.07 0.074770924

450 100 0.06 0.052516078

500 100 0.03 0.032575835

250 500 0.67 0.668121708

750 500 0.61 0.607594451

1000 500 0.58 0.578752368

1500 500 0.24 0.240130435

1750 500 0.13 0.129828615

250 1000 0.65 0.651108508

500 1000 0.61 0.60898659

1750 1000 0.26 0.260703735

0 1500 0.69 0.69378588

250 1500 0.65 0.647309106

750 1500 0.57 0.566099365

1500 1500 0.32 0.323114972

1750 1500 0.26 0.256997405

2000 1500 0.2 0.200363296

0 2000 0.69 0.686585999

750 2000 0.55 0.554208041

1250 2000 0.41 0.409063645

1500 2000 0.31 0.305269093

1750 2000 0.19 0.196320251

2000 2000 0.1 0.096873135

150 100 0.2 0.210465426

350 100 0.09 0.099060228

500 500 0.63 0.633262151

1000 2000 0.51 0.508001665

750 1000 0.59 0.592736549

1250 1000 0.47 0.470245135

500 2000 0.59 0.592277611

1250 500 0.48 0.480093074

Testing

0 500 0.72 0.72386166

0 1000 0.69 0.756116272

1000 1000 0.57 0.562841991

1500 1000 0.35 0.357919862

2000 1000 0.18 0.151244441

500 1500 0.6 0.605950688

1000 1500 0.52 0.512822799

250 2000 0.64 0.638189001

1250 1500 0.42 0.411916742
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5. Conclusions

In summary, we presented different machine learning-based models, namely support
vector regression, Gaussian regression, artificial neural networks, and ensemble learning
for predicting both output voltage and power density from experimental datasets with
features including current density, anolyte concentration, and chemical oxygen demand.
Three different hyperparameter optimization methods were employed to determine the
best hyperparameters for each machine learning algorithm. In each modeling instance for
power density and output voltage, one hyperparameter algorithm performed better than
the other. Based on these results, we arrived at optimal models for Model-I and Model-II
formulations for predicting power density and output voltage. The optimal models for
the different machine learning algorithms were further compared towards proposing the
best machine learning algorithm for the prediction of output voltage and power density.
The best model for predicting power density was obtained from a GPR-algorithm-based
model with 99% model accuracy and the best model for predicting output voltage is an
ANN-based model with a 99% model accuracy. The proposed models in this study are
particularly useful for design and soft computing applications for MFCs.
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