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Abstract: This paper is devoted to the study of active and stable nickel catalysts for methane dry
reforming based on Pr-doped ceria–zirconia obtained via the solvothermal continuous method.
Studies on the physicochemical and catalytic properties of the 5%Ni/Ce0.75Zr0.25−xPrxO2 series have
showed that Pr introduction leads to an increase in the amount of highly reactive oxygen in the oxide
lattice. Praseodymium-based catalysts showed significantly higher reactant conversions. In addition
to the nature of support, the method of nickel introduction was also studied; Ni was added both
using impregnation and the one-pot procedure with mixed oxide preparation. The method of Ni
addition was shown to have significant effect on the morphology of its particles and Ni-support
interaction, and, respectively, on catalytic activity and coking stability. The 5%Ni/Ce0.75Zr0.15Pr0.1O2

catalyst prepared by one-pot method showed stable operation in the MDR reaction for 30 h at CO2

and CH4 conversions of ~40% and an H2 yield of ~18% (T = 700 ◦C, τ = 10 ms).

Keywords: dry reforming; methane; ceria–zirconia; supercritical synthesis; oxygen vacancies; stability

1. Introduction

Methane dry reforming (MDR) is a promising way of utilizing two greenhouse gases—
CH4 and CO2—and converting them into synthesis gas before being used as a feedstock
for the chemical industry or as a fuel [1–3].

CH4 + CO2 = 2CO + 2H2, ∆H0
298 = 247.3 kJ/mole (1)

This reaction can also be effectively integrated into existing hydrogen production
chains, taking into account current environmental requirements [4]. MDR catalysts are
representatives of typical catalysts for hydrocarbons subject to reforming processes, which
consist of a transition metal, primarily nickel, deposited on an oxide support [5]. Studies
over the past few decades show that poor stability due to the sintering and carbonization of
active species remains a major problem for reforming catalysts [6]. Developing a thermally
stable catalyst with superior activity and enhanced resistance to carbon formation and
metal sintering is among the major challenges faced by industries and researchers [7–9].

The carbonization problem begins at the stage of competition between simultaneously
occurring transformation routes of CHx intermediates on metal particles. If CHx oxidation
occurs rapidly, the formation of desired CO is observed. However, if the rate of CHx
formation is higher than its oxidation, carbon deposits grow. A well-known and highly
efficient approach to increase the rate of the desired route is to involve the lattice oxygen of
the support into the catalytic cycle [10,11]. The transformation of fuels over catalysts with a
high oxygen reactivity occurs via the redox reaction mechanism. During the reaction, the
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substrate (CH4 and CO) is oxidized by the lattice oxygen, accompanied by the formation of
a vacancy and its replenishment through the activation of the oxidizer (CO2, H2O, or O2)
on the oxide surface cations and fast surface oxygen transfer to the direct catalytic zone
(reverse oxygen spillover) [12,13]. The activation of highly stable CO2 molecules can also
be a rate-limiting step in MDR, which also becomes an important factor in the effective
catalyst design [14].

Establishing an unambiguous relationship between the characteristics of an oxide-
supported catalyst and its activity in reforming reactions is still a debated issue. In steady-
state reaction conditions, its properties differ from those defined by the preparation proce-
dure [15]. Nevertheless, a huge number of works have been carried out and described in
the literature based on a complex of catalytic structural studies and DFT calculations, which
showed catalytic activity correlations with the so-called «support oxygen activity» [7,16,17].

The term “support oxygen activity” is complex, including several correlated charac-
teristics of the oxide’s lattice oxygen, such as oxygen storage capacity (OSC), surface and
bulk mobility, as well as the number and formation energy of oxygen vacancies. The redox
properties of oxide catalysts can be related to the content of oxygen vacancies. However,
the mere presence of vacancies is not sufficient; if the vacancy formation barrier is too
high, this stage becomes rate-limiting, which casts doubt on the probability of the entire
process proceeding along such a route. That phenomenon, for example, was shown and
confirmed by DFT calculations for nickel-containing undoped cerium oxide [18]. In the
steady-state conditions of the catalytic reaction, the concentration of oxygen vacancies
is determined by the ratio of the rates of both oxygen removal with the reducing agent
(CH4, etc.) and reoxidation with the oxidant (CO2, etc.) [15,19]. A decrease in the energy of
vacancy formation can be achieved, for example, by increasing the length of at least one
oxygen bond in the lattice or by creating so-called asymmetric vacancies [20,21].

Oxides that are capable of providing cycles of lattice vacancy formation with charge
compensation due to cations with a variable valence are mainly transition metal oxides,
which are seen as reducible or as oxides with active oxygen [22]. Among the oxides with
lattice oxygen sites that take part in the reaction, the most common are perovskites, spinels,
and fluorites. Groups of oxides based on ceria doped with a wide range of cations have been
extensively studied [16,23–26]. Detailed kinetic and computational studies have shown
that the activity of oxygen in such oxides depends on the concentration and formation
energy of these vacancies [27,28]. Moreover, it was also shown that the presence and energy
of vacancies on the surface of cerium oxide can determine the oxidation of the surface
intermediate -CO into CO2, thus largely determining the H2/CO ratio in the resulting
synthesis gas [29,30]. One of the most popular doping cations which also increases the
thermal stability of CeO2 oxide is Zr [31,32]. The praseodymium cation has a size similar to
that of the cerium cation and is capable of replacing the latter in the oxide crystal lattice. In
this case, micro-distortions are formed and the number of anion vacancies can potentially
increase, which can favorably affect the catalytic activity. The effective generation of
asymmetric vacancies in CeO2-based oxides upon being doped with Pr, increasing the
oxygen catalytic activity, has been shown in a number of studies [18,33–35]. Furthermore,
the substitution of no more than 25% of cerium has been shown to be effective since the Pr
extent would result in the clustering of oxygen vacancies [20,22].

The synthesis of these polycation oxides for catalytic application should provide
a high chemical uniformity and oxide dispersion. Coprecipitation [36], hydrothermal
method [37], solvothermal method [38], sol–gel–citrate [39,40] and ester polymer precursors
(Pechini) [41], microemulsions [42], the microwave method [43,44], the sonochemical
method [45], solution combustion [46,47], and spray pyrolysis reactions [48] are all known
methods. The use of the solvothermal method for the synthesis of such polycationic oxides
provides structural homogeneity, as well as improved textural characteristics and tunable
particle size distributions [49]. Moreover, synthesis with the use of supercritical fluids is
characterized by a lower energy consumption and simple implementation. The mechanism
of oxide formation during hydrothermal synthesis includes two stages: the hydrolysis of
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metal ions and their precipitation in the form of oxides as a result of dehydration at high
temperatures [50,51]. Supercritical alcohols are of interest as solvents because they have
lower critical temperatures and pressures than water, and the conditions for reaching the
supercritical state that vary depending on the nature of the alcohol. The use of supercritical
alcohols contributes to a high rate of nucleation with the slight subsequent growth of the
formed nuclei, which makes it possible to obtain highly dispersed oxide particles [52].
Thus, varying the temperature and pressure makes it possible to influence the nucleation
rate and synthesize samples with desired characteristics. In our previous study [53], it was
shown that synthesis in supercritical isopropanol makes it possible to obtain single-phase
mixed Ce-Zr-(Ti/Nb) oxides, in contrast to the Pechini method.

It is important to emphasize the decisive influence of the nickel introduction method.
In an oxide–metal system, the dispersion of supported metallic particles and the strength of
its interaction with additional support are key properties that determine catalyst stability
in reforming reactions on a par with the support oxygen activity [54–56]. It was shown that
the traditional method of wet impregnation is less efficient than the method of nickel that
is introduced into the oxide structure at the stage of support synthesis. In the second case,
during the reduction pretreatment, finely dispersed metal particles strongly bound with
support are formed [57,58]. At the same time, a part of the active component can remain in
the bulk of support that is not accessible for reagents.

Hence, the use of zirconium as a doping cation to ceria increases the stability of the
structure and increases the structure defectiveness, while doping with praseodymium
increases the concentration of oxygen vacancies and the reactivity of the surface oxygen.
Accordingly, in this study, our goal was to synthesize a series of complex metal–oxide
catalysts 5%Ni/Ce0.75Zr0.25−xPrxO2 obtained using the solvothermal method with Ni
added by both impregnation and the one-pot method. This study present results on
the study of 5%Ni/Ce0.75Zr0.25−xPrxO2 textural and redox properties and their effect on
catalytic activity and stability in the MDR reaction.

2. Materials and Methods
2.1. Synthesis Methods

The catalyst supports were synthesized in supercritical alcohol media using original
installation described in more detail earlier [53,58]. Cerium nitrate Ce(NO3)3·6H2O (Vekton,
Petersburg, Russia), praseodymium nitrate Pr(NO3)3·6H2O (Vekton, Russia), and zirconium
butoxide (80 wt% in n-butanol, Alfa Aesar, Karlsruhe, Germany) were dissolved in required
proportions in isopropanol (Reakhim, St. Petersburg, Russia). Then, the solution was fed
into the reactor and synthesis was carried out according to the method described earlier [53].
For impregnated catalysts, nickel was supported by the incipient wetness impregnation of
supports with the water solution of Ni(NO3)2 (Vecton, Russia) [54].

For one-pot catalysts, nickel nitrate Ni(NO3)2·6H2O (Vecton, Russia) was dissolved
together with Ce and Zr (Pr) salts, and synthesis in a supercritical medium was carried
out, according to the procedure described above. All catalysts were dried at 200 ◦C and
calcined at 700 ◦C for 2 h. The loading amount of Ni was 5 wt% both for the impregnated
and one-pot catalysts. The prepared sample denotations are presented in Table 1.

2.2. Characterizations

The specific surface area (SSA) was defined by the BET method using a Quadrasorb
evo (Quantachrome Instruments, Boynton Beach, FL, USA) installation. The pore volumes
and pore size distributions were determined from the desorption branch of the isotherm
using the BJH method.

XRD analysis was performed on a Thermo X’tra diffractometer, in the angle range
of 20–85◦ with a step of 2θ = 0.02◦ and a speed of 1◦/min, using a Mythen2R 1D linear
detector (Decstris, Switzerland). The CuKα radiation (λ = 1.5418A) was used. The average
sizes of coherent scattering regions (CSRs) were calculated using the Scherrer formula from
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the 111 fluorite reflection. A description of the diffraction profile was made using the Fityk
program with the Lorentz function.

Table 1. The sample’s designation, specific surface area (SSA), pore volume (Vpore), and Fm3m lattice
parameter (a).

Designation Ni Addition Method Composition SSA, m2/g Vpore, cm3/g a *, Å

CZP - Ce0.75Zr0.15Pr0.1O2 14 0.055 5.403(1)

N/CZP Impregnation 5%Ni/Ce0.75Zr0.15Pr0.1O2 9 0.095 5.397(1)

N+CZP One-pot 5%Ni+Ce0.75Zr0.15Pr0.1O2 14 0.081 5.407(1)

CZ - Ce0.75Zr0.25O2 29 0.150 5.369(1)

N/CZ Impregnation 5%Ni/Ce0.75Zr0.25O2 21 0.144 5.373(1)

N+CZ One-pot 5%Ni+Ce0.75Zr0.25O2 13 0.126 5.372(1)

*—lattice parameter of the fluorite phase estimated from XRD data.

XRD with H2 in situ analysis was conducted using a Bruker D8 Advance diffractometer
(Germany), in the angle range of 20–55◦ with a step of 2θ = 0.05◦ and an accumulation
time of 3 s at each point using a LynxEye (1D) line detector. The monochromatic CuKα
radiation (λ = 1.5418Å) was used. The measurements were carried out using an XRK-
900 high-temperature reactor chamber (Anton Paar, Graz, Austria). The 10%H2/90%He
mixture at a flow rate of 100 mL/min was passed through the chamber during heating
and cooling to room temperature. Heating was carried out based on the following scheme:
250, 315, 400, 500, 700, and 30 ◦C, with a heating rate of 12◦/min. The lattice parameters
and phase relationships were refined with the Rietveld method [59]. In the refinement, the
CeO2 structure was used; only the Ce atoms were in the cationic position.

The Raman spectrometer T64000 (Horiba Jobin Yvon, Kyoto City, Japan) with micro-
Raman setup was used to record the Raman spectra. All experimental spectra were
collected in the backscattering geometry using the 514.5 nm line of an Ar+ laser. The
spectral resolution was not worse than 1.5 cm−1. The detector was a silicon-based CCD
matrix, cooled with liquid nitrogen. The power of the laser beam reaching the sample was
2 mW. The band at 520.5 cm−1 of the Si single crystal was used to calibrate the spectrometer.

TEM with EDX. Transmission electron microscopy (TEM) micrographs were ob-
tained with a Themis-Z 3.1 instrument (TFS, Durham, NC, USA), equipped with a X-
FEG-monochromator and a CS/S double corrector (with an accelerating voltage 200 kV), as
well as a JEM-2200FS transmission electron microscope (JEOL Ltd., Akishima City, Japan,
Japan, acceleration voltage 200 kV, lattice resolution ~1 Å), equipped with a Cs corrector.
Elemental analysis was performed with a Super-X EDS detector (with an energy resolution
of about 120 eV) in HAADFSTEM mode. Samples for the TEM study were prepared for
ultrasonic dispersion in ethanol and for the subsequent deposition of suspension in a
“holey” carbon film supported on a copper grid.

TPR-H2. Temperature-programmed reduction using hydrogen was carried out from
25 ◦C to 900 ◦C in a flow installation with a Tsvet 500 (JSC Tsvet, Kostroma, Russia) thermal
conductivity detector using 10 vol. % H2 in Ar feed at a flow rate of 40 mL/min.

The total H2 consumption was calculated by integrating the area under the curve.
Ni reducibility was calculated with the formula:

Reducibility =
H2(catalyst)− H2(support)·0.95

0.85
·100%

where H2 (catalyst) and H2 (support) [mmol H2/g]—the amount of hydrogen consumed
for catalyst and support reduction, respectively; 0.95—the support content in the catalyst;
0.85 [mmol H2/g]—the theoretical amount of H2 needed to reduce all supported Ni.
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2.3. Catalytic Tests

The catalysts were preliminary reduced in a stream of 5% H2 in He at 600 ◦C for
1 h. Catalytic activity in methane dry reforming reaction was studied using a tubular
quartz plug flow reactor and a gas analyzer with IR sensors for CO, CO2, and CH4, and an
electrochemical sensor for H2 (Boner LLC, Novosibirsk, Russia). Studies were conducted
with an initial mixture of 15% CH4 + 15% CO2 + 70% N2 in the temperature range of
600–750 ◦C and a contact time of 10 ms. Long-term stability tests were carried out for 30 h
at 700 ◦C.

The equilibrium values of reactant conversions and product yields were calculated by
minimizing the Gibbs energy.

3. Results
3.1. Textural and Structural Features

Table 1 lists the designation, chemical composition, and specific surface area (SSA) of
the obtained samples.

As can be seen, the samples obtained did not have a very high specific surface area; the
values of SSA for the entire series of samples were about 10–30 m2/g, despite the fact that
the nitrogen adsorption–desorption isotherms (Figure 1a) for all samples corresponding
to the IV type were characteristic for mesoporous materials [60,61]. The introduction of
praseodymium reduced the specific surface area of the initial support from 29 m2/g for
CZ to 14 m2/g for CZP. This correlates well with data on the pore’s size distribution for
supports (Figure 1b), where the number of mesopores less than 5 nm for praseodymium-
doped sample was significantly reduced. In contrast, for samples prepared by the one-pot
method (N+CZ and N+CZP), there was no difference in the SSA values. The pore volume
was also reduced with the introduction of praseodymium from 0.126–0.150 cm3/g for
undoped samples to 0.055–0.095 cm3/g for samples with Pr. The micropore (D ≤ 2 nm)
volume was negligible for all samples and did not exceed 0.003 cm3/g.
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Figure 1. N2 adsorption–desorption isotherms (a) and pore size distributions (b) for the supports
and Ni-containing samples. Isotherms were separated by height for the convenience of readers.

According to XRD data (Figure 2), for the entire series, the main intense peaks located
at 2θ = 28.7, 47.7, 56.6, 59.4, 69.8, 77.0, and 79.4◦ corresponded to 111, 200, 220, 311, 222,
331, 420, and 422 reflections of the fluorite structure Fm3m (PDF 81–0792). There were no
reflections of Zr and Pr individual oxides for the entire series. For the Pr-containing samples,
the absence of double peaks and the shift in the fluorite peaks to the lower angles’ region
(Figure 2, Table 1) suggest that praseodymium was embedded in the CZ cubic structure,
which is consistent with data in the literature [25,62]. The ability of praseodymium to
replace cerium without destroying the fluorite structure was ensured by the close radii of
cations of the same valencies (Ce4+ = 1.110 Å; Pr4+ = 1.100 Å; Ce3+ = 1.283 Å; Pr3+ = 1.266
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Å), and a slightly higher Pr4+/Pr3+ redox potential led to the formation of a structure with
more active oxygen compared to undoped ones [62,63]. For N/CZ, N/CZP, and N+CZP,
small peaks located at 2θ = 37.47, 43.36, and 62.83◦ corresponding to 111, 200, and 220
reflections of NiO (PDF 471049) were detected. It is worth mentioning that for N+CZ, a
slight increase in the background was observed in the positions of 111 and 200 reflections
of NiO, indicating the presence of highly dispersed particles of nickel oxide. The crystallite
size of NiO (the average size of a coherent scattering region (CSR)) was estimated using the
Scherrer equation for 200 peak analysis. The CSR values of NiO for N/CZP, N/CZ, and
N+CZP were 23, 27, and 10 nm, respectively. Hence, one-pot synthesis provided smaller
crystallites of NiO than the impregnation route.
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Raman spectroscopy was used to investigate vibrations in the oxygen lattice and
crystalline symmetry in addition to XRD analysis, since this method is more sensitive to
the microstructure of materials. Figure 3 presents the Raman spectra of the investigated
samples. The main fluorite structure band in pure ceria was located at 464 cm−1 and
corresponded to the F2g active mode that appears due to the symmetric stretching vibration
of O anions around each Ce4+ cation [40]. This band was very sensitive to any changes in
oxygen sublattice; therefore, with a change in the chemical composition or defect’s concen-
tration, the band shifted to lower or higher energies. For our samples, the incorporation
of smaller Zr4+ cation led to the F2g band being shifted to higher wave numbers, while
the incorporation of close-size praseodymium shifted it to lower wave numbers, which
is in good agreement with data in the literature and also confirms the incorporation of
doped cations in the fluorite lattice [40,62]. Such a strong shift in the case of Pr cation was
probably connected with the increased structure distortion [62].

For catalysts obtained by Ni impregnation (N/CZ and N/CZP), the F2g band practi-
cally retained its position. However, Ni addition at the stage of mixed oxide preparation
(N+CZ and N+CZP samples) resulted in the incorporation of Ni cations in the fluorite
structure and further shifts in this band. In addition to the F2g mode, there was a band
around 570 cm−1 (D band) corresponding to the non-degenerate longitudinal optical (LO)
mode due to the presence of defects in the fluorite lattice, resulting from the formation of
oxygen vacancies [62,64]. The ratio of D and F2g band areasω = D/F2g can be considered
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as a parameter that is sensitive to structure defectiveness and the amount of oxygen vacan-
cies [40,58,62]. Its values for investigated samples are presented in Figure 3 in black frames.
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Figure 3. Raman spectra of supports and Ni-containing samples.

It can be seen that ω values increased significantly with the introduction of
praseodymium (more than 50 times for supports and 4 times for impregnated catalysts).
This confirms that Pr incorporation leads to increased amounts of oxygen vacancies in
the fluorite structure. The introduction of nickel with any of the methods used led to an
increase in the number of vacancies due to its partial incorporation into the fluorite lattice,
and this effect was especially noticeable for both one-pot catalysts, for which ω values
were close. The low-intensity band at 230 cm−1 for one-pot N+CZ could be assigned to
the transverse acoustic (TA) mode, which was also connected with defects in the fluorite
structure [40,64].

The method of adding nickel had a strong effect on the oxide’s morphology. XRD
(Figure 2) and TEM data (Figure 4) show that the deposition of nickel via wet impregnation
on the formed oxide resulted in the formation of large well-crystallized NiO particles
(about 20 nm in size, weakly bound to the support). For these samples, there were peaks at
2θ = 37.4, 43.3, and 62.8◦, which could be associated with the 111, 200, and 220 reflections
of nickel oxide NiO (Fm3m). The introduction of nickel in the supercritical conditions led
to the incorporation of a significant amount of nickel into the fluorite structure and the
formation of residual finely dispersed NiO particles firmly fixed on the oxide surface or
encapsulated into it.

The images of HAADF-STEM with EDX analysis show the distribution of elements
in the particles of the one-pot N+CZP catalyst (Figure 5). As in our previous works [58],
the synthesis of one-pot catalysts under supercritical conditions allowed us to obtain a
homogeneous distribution of cations. Ce, Zr, and Pr cations of the support, as well as Ni
cations, were uniformly distributed in the structure of Ni+Ce0.75Zr0.15Pr0.1O2.
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3.2. Reducibility and Oxygen Reactivity

The oxide’s oxygen activity was estimated by a combination of complementary
methods—TPR-H2 and XRD—with in situ H2 reduction. The TPR-H2 results are presented
in Figure 6 and Table 2.
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Figure 6. TPR-H2 patterns for the supports and Ni-containing samples.

Table 2. Hydrogen consumption calculated from TPR-H2 results.

Sample H2 Consumption,
mmol H2/gcat

Ni Reducibility, %

CZP 1.21 -

N/CZP 2.14 117

N+CZP 1.84 81

CZ 1.36 -

N/CZ 2.21 108

N+CZ 2.03 87

The curves of two supports (CZ and CZP) represent two standard reduction regions
for these oxides: the medium-temperature region at 300–600 ◦C, related to the reduction of
more reactive surface oxygen, and the high-temperature region above 700 ◦C, correspond-
ing to the reduction of bulk oxygen, limited by internal diffusion. It can be seen that for the
Pr-doped support, both the start of reduction and the maximum of the first peak shifted by
about 200 ◦C towards lower temperatures, which indicates the significant facilitation of the
reduction of surface oxygen with doping.

However, significant changes in the nature of reduction were noted with the introduc-
tion of praseodymium and nickel to CZ. For the N/CZP- and N/CZ-supported samples,
the most intense sharp peak was located at 250 ◦C for the Pr-doped one and was shifted
by 70 ◦C relative to the undoped sample, reaching its maximum at 320 ◦C. In situ XRD
data (Figure 7b,c) show that at this temperature, there was an intense change in the fluorite
parameter and no formation of metallic nickel particles was observed. This allowed us
to attribute this peak to the reduction of the active oxygen of the oxide, located at 435
and 570 ◦C for the CZP and CZ supports, respectively. A shift in this peak to lower tem-
peratures for Ni-containing samples was observed in most studies and was associated
with the facilitation of oxide reduction due to hydrogen spillover in the presence of nickel
atoms. Calculating the total amount of hydrogen consumed over the entire temperature
range shows that the Ni reducibility (Table 2) for this samples exceeded 100% because the
formation of metallic nickel particles led to an increase in the depth of carrier reduction
due to hydrogen spillover [65].
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Figure 7. Diffraction patterns recorded during in situ reduction: (a) CZP; (b) N/CZP; (c) N+CZP. The
reflections of the fluorite structure are labeled; the positions of NiO peaks are indicated by solid lines
and those of Ni are indicated by dotted lines. (d) Fluorite lattice parameters versus temperature.

For the one-pot N+CZP and N+CZ samples, reduction occurred more uniformly in
the range of 200–400 ◦C and the curves had a complex contour because of the simultaneous
reduction of fluorite and nickel from the oxide, which is more strongly associated with the
support. Lower Ni reducibility for one-pot samples also indicated a strong interaction of
nickel with the support and its partial dissolution in the volume of fluorite.

XRD with in situ H2 reduction (Figure 7a–c) confirmed that, after reduction at 400 ◦C,
a significant amount of metallic nickel (2θ = 44.2◦) was detected for all nickel-containing
samples. Moreover, in the temperature range of 400–500 ◦C, the intensity of nickel reflec-
tions for supported catalysts was higher compared to that of one-pot samples, which is
consistent with the TPR-H2 data and the assumption that nickel is partially incorporated
into the fluorite lattice in one-pot samples. According to XRD with in situ H2 reduction
data (Figure 7a), the phase composition of the CZP sample did not change under reductive
conditions. However, the lattice parameter of oxide increased from 5.403(1) to 5.474(1)Å
during heating from RT to 700 ◦C, while the parameter did not return to the initial value
after cooling and was equal to 5.428(1)Å (Figure 7d). An increased value of the lattice
parameter can probably be explained by the partial reduction of cations. In the case of
N/CZP and N+CZP, a similar effect was observed. The differences in the lattice parameters
between the initial state and after reduction were 0.027 Å and 0.037 Å. Such an evolution of
lattice parameters could be explained by the exsolution of Ni cations from the structure of a
solid solution (Ce4+ = 1.110 Å; Pr4+ = 1.100 Å; Ce3+ = 1.283 Å; Pr3+ = 1.266 Å, Ni2+ = 0.69 Å)
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and/or differences in the reducibility of catalysts prepared by the one-pot method and
impregnation. Interestingly, the behavior of lattice parameters differed for CZ and CZP
catalysts, indicating the role of Pr addition. For N/CZ and N+CZP, the evolution of fluorite
cell parameters almost coincided with temperature. In the initial state, the lattice parameter
of the mixed oxide was 5.372(1) Å, and after reduction it was 5.394(1) Å, i.e., the difference
between the states was 0.022 Å.

XRD with in situ H2 (Figure 7d) reduction also showed a non-linear change in the
lattice parameter in the temperature range of 200–400 ◦C, where hydrogen interacted
with the most reactive oxide’s oxygen. Stronger parameter changes in this region for
Pr-containing catalysts compared to undoped ones confirmed the facilitation of the release
of lattice oxygen obtained by the TPR-H2 method with Pr doping. A noticeable overstating
value of the lattice parameter at 300–400 ◦C coincided with the appearance of nickel metallic
reflections on XRD patterns, and indicated a greater depth of reduction due to the well-
known phenomenon of hydrogen spillover described in the literature [65–68]. It is also
important to note that after returning to room temperature, the Fm3m fluorite monophase
was preserved with an increased parameter; hence, the release of oxygen occurred without
destroying the structure.

3.3. Catalytic Activity in MDR

The results of MDR catalytic experiments are shown in Figure 8. Before testing, a
blank experiment was carried out with an equivalent to the catalyst’s amount of quartz;
no reactants were converted and no products were formed over the entire temperature
range. A carbon balance calculated for all experiments was not lower than 95%. For all
samples, an increase in the conversions of methane and carbon dioxide was observed with
increasing temperature in accordance with the endothermicity of the reaction.
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Figure 8. Catalytic test results for the N/CZ(P) and N+CZ(P) catalysts in methane dry reforming catalysts:
temperature dependences of (a) CH4 conversion (b) CO2 conversion; (c) CO yield, (d) H2 yield, (e) H2/CO;
(f) H2 and CO yields; and (g) CH4 and CO2 conversions in long-term tests for N+CZP one-pot catalyst at
700 ◦C. Catalyst grain size 0.25–0.5 mm, contact time 10 ms, C0(CH4) = C0(CO2) = 15%.

The activity of Pr-containing catalysts N/CZP and N+CZP exceeded the activity of
samples based on undoped CZ support, and the difference significantly increased with an
increase in temperature. This is consistent with literature data describing an increase in
the contribution of support to the reaction with the temperature increase due to the more
efficient activation of CO2 and the transfer of active oxygen forms over the oxide surface to
the metal–support interface [29,30].

At the same time, the method of introducing nickel did not noticeably affect the
activity in experiments with temperature variation, but strikingly determined stability in
the long-term tests. For the N/CZP sample obtained by wet impregnation, reactor plugging
occurred within 1 h of a long test at 700 ◦C (not shown on Figures) due to carbon formation.
Figure 8f shows data on the H2 and CO yields in long-term tests for the N+CZP one-pot
catalyst. After 30 h of the reaction, the hydrogen yield decreased from 35 to 32% and the
CO yield decreased from 19 to 17%, and the main drop occurred for the first 3 h of the
reaction. The catalyst after 30 h of reaction was investigated by TPO and was shown to be
free of carbon.

The TEM studies of catalysts after catalytic tests in the temperature range of 600–750 ◦C
showed that the N/CZP sample was characterized by whisker carbon deposits and weak
bonds between nickel and the support resulted in the detachment of nickel particles from
the surface, while the N+CZP sample demonstrates that metal particles were firmly fixed
on the oxide surface and that an insignificant number of thin layers of carbon were directly
fixed on the metal particles, which do not block active catalytic centers (Figure 9).
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Figure 9. TEM images and particle size histograms of Ni/CZP and Ni+CZP catalysts after the
reaction. Nickel particles are marked with circles.

Hence, the catalytic activity of samples modified with praseodymium was significantly
higher than that of the unmodified ones. An increase in the conversion of both methane and
CO2 correlated with an increase in the activity of the carrier’s highly reactive oxygen, as
shown by the TPR-H2 method. Moreover, as was shown by Raman spectroscopy, Pr-doped
samples contained a higher number of defects and oxygen vacancies (i.e., sites for CO2
activation). At the same time, stability of the catalyst was dramatically affected by the
strength of the interaction of resulting nickel metal particles with the oxide support. Thus,
for samples obtained by wet impregnation, the weak bond with the support, shown by TEM
and TPR-H2 methods, eliminated all the advantages of the active support and prevented
the effective occurrence of the redox mechanism, leading to rapid deactivation with the
formation of a significant amount of fibrous carbon deposits, as confirmed by TEM images.
For samples with nickel introduced at the stage of support formation, high stability after
30 h of the reaction at 700 ◦C and the absence of carbon deposits were shown.

A comparison of data on the catalytic activity in the DRM reaction with literature
analogues under similar conditions (Table 3) indicates the significant potential of the
praseodymium-modified sample synthesized under supercritical conditions.
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Table 3. A comparison of the methane conversion (X(CH4)) obtained at 700 ◦C with literature analogues.

Catalyst Reaction Conditions τ, ms X(CH4) at 700 ◦C, % Ref

Ni/Ce0.5Zr0.5O2 CH4 = 20% CO2 = 20% N2 = 60% 120 15 [25]

Ni/Ce0.75Ti0.05Nb0.05Zr0.15O2 CH4 = 15% CO2 = 15% N2 = 70% 10 30 [53]

Ni/ZrO2 CH4:CO2:N2 = 3:3:1 ~90 56 [69]

Ni/ZrO2-Al2O3 CH4:CO2 = 1 ~150 38 [70]

5%Ni/Y+Zr CH4:CO2:N2 = 3:3:1 ~90 67 [71]

5%Ni/La+Zr CH4:CO2:N2 = 6:6:1 ~90 66 [72]

Ni/Ce0.75Pr0.1Zr0.15O2 CH4 = 15% CO2 = 15% N2 = 70% 10 39 This work

4. Conclusions

In this work, catalysts series 5%Ni/Ce0.75Zr0.25−xPrxO2 (x = 0; 0.1) were success-
fully synthesized by the solvothermal method in a flow-through setup in supercritical
isopropanol. All samples were found to be crystallized in the structural type Fm3m of
cubic fluorite with the incorporation of praseodymium and zirconium cations into the
lattice. The addition of Pr to mixed ceria–zirconia led to increased reducibility during
TPR-H2 experiments and stronger parameter changes during in situ XRD in hydrogen,
which together confirm the higher reactivity of lattice oxygen. The introduction of nickel
into the catalyst composition directly at the stage of support synthesis (one-pot) allowed a
significant amount of nickel to be incorporated into the fluorite structure, leading to both
an increase in the defectiveness of the oxide and the formation of highly dispersed particles
of metallic nickel, strongly bound to the support oxide during reduction pretreatment. The
introduction of Pr into the oxide support significantly increased the activity of catalysts in
syngas production, which is most likely associated with facilitating the oxidant molecule ac-
tivation, thus promoting the redox mechanism of MDR. The use of Pr-doped ceria–zirconia
as a support made it possible to achieve excellent stability due to the high dispersion of
metal particles, the optimal strength of the metal–support interaction, and lattice oxygen
activity in reactions of oxidant activation and the gasification of carbon precursors. The
5%Ni/Ce0.75Zr0.15Pr0.1O2 catalyst showed stable performance in the MDR reaction for 30 h
at a CH4 conversion ~40% and a H2 yield ~ 20% (T = 700 ◦C; τ = 10 ms).
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