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Abstract: The energy demand generated by fossil fuels is increasing day by day, and it has drastically
increased after the COVID-19 pandemic as industries and household utilities rejuvenate. Renewable
sources are thus becoming more essential as easily available, alternative methods of low-cost energy
generation. Among these renewables, solar energy, i.e., solar power, is a promising energy source
and can be used for solar-based H2 evolution because H2 technology is a leading source of eco-
friendly electricity generation, and most of the worldwide efforts to develop this method involve
heterogeneous catalysis for H2 evolution via water splitting and its storage, i.e., using a fuel cell.
In the current scenario, there is a need to develop a stable, recyclable, and reusable heterogeneous
catalyst system, which is a great challenge. In the current study, we have focused on novel ferrite
magnetic nanomaterials for recyclable and reusable robust photocatalysis. Moreover, discussions
of the factors contributing to the photocatalytic hydrogen evolution, low-cost synthesis techniques,
and prospects for making them ideal photocatalysts are uncommon in the literature. The study will
impart possible approaches for the design and development of novel ferrite nanomaterials and their
nanocomposites for H2 generation in the forthcoming years.

Keywords: renewable energy; H2 evolution; solar power; recyclable; stable; synthesis approaches;
photocatalysis; spinel ferrites; nanomaterials

1. Introduction

Traditionally, non-renewable energy sources termed fossil fuels, including coal, oil,
nuclear energy, and natural gas, are used in huge amounts for power generation in indus-
tries and domestic settings due to the increased demand for petroleum and automobiles.
Attention to renewable energy sources, known as clean energy sources, including wind,
solar, water, geothermal, and biomass, is increasing, mainly because of their advantages,
such as abundance and negligible cost, whereas non-renewable energy sources are lim-
ited due to shortages and high costs [1]. According to the ‘Global Energy Review 2021’
by ‘International Energy Agency’, in the current post-pandemic scenario, non-renewable
(oil) energy demand rebounded by 3% due to the global vaccination regime; however, it
declined by 4% in the year 2020 compared with 2019 [2]. Carbon dioxide (CO2) emissions
and energy demand have increased compared with 2020, surpassing the previous gross
domestic product (GDP), with increasing demands on the energy sector; therefore, the
COVID-19 pandemic has impacted global energy demand. Developing sustainable and
green energy sources is a big challenge for all researchers [3]. Considering all the renewable
energy sources, hydrogen (H2) energy is currently becoming a low-cost, highly appreciable,
and sustainable energy source, which can be used to store, move, and deliver the energy
produced from other resources [4]. Moreover, carbon-free, sustainable, and eco-friendly
H2 energy generation is an important prerequisite for future economics, and it also acts as
the driving force for innovations in the field of renewable energy. William Robert Grove
first invented the H2 fuel cell to store generated hydrogen in the year 1839 [5], establishing
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the foundation for future H2 technology that can store evolved H2 in its pure form; there-
fore, researchers worldwide are increasingly considering the advantages and needs of H2
energy [6–8].

How Can H2 Be Generated Sustainably and Eco-Friendly?

Renewable energy sources, i.e., wind, biomass, and solar, are used for photocatalytic
H2 generation [9]; however, these sources are regional and seasonal. Therefore, H2 can be
generated by splitting water in H2 and oxygen (O2) by using sunlight (photocatalysis) [10],
thermal and chemical (thermochemical catalysis) [11], and electrical (electrocatalytic) meth-
ods [12]. In addition, being a natural and abundant source of sunlight with no carbon
dioxide (CO2) gas emissions, solar energy is playing a crucial role in overcoming kinetic
barriers during heterogeneous catalysis. State-of-the-art methods involve materials where
the catalysts possess higher values for solar-driven hydrogen evolution reactions (HER),
and they include noble metals, such as pure platinum (Pt), iridium (Ir), and ruthenium
(Ru), as well as noble-metal-free photocatalysts. Many reports are available for Pt-based H2
production using photocatalytic HER due to its high redox activity and zero overpoten-
tial [13]. However, the latest report on the approach for avoiding mass transport limitations
and achieving the highest turnover frequency (TOF) when using Pt nanoparticles com-
pared with the commercial platinum/carbon (Pt/C) catalysts illustrates that some of the
pitfalls for obtaining a high-value TOF relate to measurement issues, such as the need
for potential scale calibration, the choice of an incorrect counter electrode, and a lack of
H2 saturation [14] during solar photocatalytic HER. Similarly, as reported by Koo et al.,
platinum nanocubes synthesized using an aqueous colloidal route exhibited a promising
photocurrent density of 1.77 A/mg at −100 mV [15]. Heterogeneous photocatalysis using
oxide-based nanomaterials is becoming a pioneering research area, leading to prominent
H2 evolution results both in combination with, and without, noble metals [16–18], with Pt
and Pt-group members being used with other inexpensive metal oxides to form alloys [19].
Therefore, Pt is the best catalyst in the field of catalysis to date and has also been explored
for H2 production using wastewater compounds [20]; however, the production of large
amounts of H2 is limited due to the cost of Pt and Pt-based commercial catalysts, high
agglomeration rates, poor stability, and low removable efficacy. Low-cost, noble-metal-free
photocatalysts are explored by Thakur et.al for efficient H2 evolution (2531 µmol/g) based
on a phosphorus-doped graphitic carbon nitride-P25 (TiO2) composite and TiO2/g-C3N4/p-
g-C3N4 nanocomposite [21]. The optical properties of titanium nitride were enhanced using
red phosphor, meaning the resulting nanocomposite could evolve the 0.5 µmol/g/h [22]
of H2. Sergei Poskunov et al. designed a novel photocatalyst, for which a single atom of
gold, silver, and copper was deposited on the surface of TiO2, and analyzed its electronic
properties using real-time, time-dependent density functional theory (RT-TD-DFT) [23].
Conclusively, the wider research community has explored new emerging magnetic and non-
magnetic nanomaterials that are based on noble- and non-noble-metal-based photocatalysts
for eco-friendly H2 generation [23–25].

2. Role of Removable Photocatalysts

Considering the many innovations achieved in the field of solar photocatalytic H2
evolution, much less attention has been given to the byproducts generated after completing
the reaction, which can cause a hazard to the environment [26]. Therefore, the first step
towards sustainable and eco-friendly H2 generation using novel nanomaterials is to find
their dissociation mechanism and removal efficacy. Magnetic nano-catalysts such as Fe2O3
(hematite) and Fe3O4 (maghemite) are prominent and well established, with inherent or
non-inherent magnetic properties, which allow them to be easily separated from an aqueous
solution. Furthermore, spinel ferrite nanomaterials are novel types of magnetic nanomate-
rials that can be removed easily after the overall completion of HER. They are composed of
an AB2O4 formula, where A and B are the divalent and trivalent cations coordinated with
negatively charged oxygens or anions. Many compositions of spinel ferrites are possible
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due to the Earth’s abundance of metals, non-metals, and metalloids. Because nano-sized
ferrites are an efficient photocatalyst, they are robust, and are characterized by thermal,
chemical, and photostability; ease of production; a small band gap; tunable size; and higher
levels of visible light absorption with appropriate positioning of the conduction band (CB)
and valence band (VB); therefore, they are considered for photocatalytic HER. However,
according to the available literature, until the year 2022, research on spinel ferrites for
H2 production has been limited. In the year 2019, Pu et al. developed a 1D recyclable
p-n junction of a nanocomposite based on CoFe2O4/Cd0.9Zn0.1S, which was separated
multiple times from the solution by using a proposed H2 evolution mechanism [27]. Some
other experimental reports are also available for the removal and recovery of ferrite-based
nanomaterials [28,29]; however, they are limited and do not meet efficiency criteria com-
pared with well-established nanomaterials, such as porous metal–organic frameworks
(MOFs) [30]. Only 7% of publications before 2021 included material separation after the
reaction [31]. The ab initio methods, i.e., density function theory (DFT), are extremely useful
for understanding and exploring spinel ferrite nanomaterials, especially their fundamental
properties related to electronic band structures and charge transfer dynamics/kinetics, as
well as their experimental limitations. Using these ab initio methods, we can determine
their electronic transitions, which are structures between most of the crystal structures, as
well as their tetrahedral and octahedral cations (spinel ferrites) [32]. The structural, elastic,
electronic, and thermodynamic properties of spinel ferrites nanomaterials derived using
periodic ab initio CRYSTAL14 code based on the LCAO (linear combination of atomic
orbitals) method with local Gaussian-type basis sets (BSs) have been reported in detail [33].

3. The Mechanism for H2 Evolution

The photocatalytic hydrogen evolution reaction (HER) is only possible when the
photocatalyst can absorb the energy provided by a light source; this is necessary for the
excitation of electrons from the valence band (VB) to the conduction band (CB), a process
that leaves behind a hole. Similarly, in the case of spinel ferrites, the absorption of visible
light leads to the excitation of electrons from the VB to the CB, which causes a hole formation
in the VB, because of their narrow band gap energy values, which are capable of absorbing
most of the visible light. Initially, an excited electron in the CB of spinel ferrite contributes
to the breaking of bonds in adsorbed H2O molecules and governs the classic theory called
Volmer, Heyrovsky, and Tafel reactions.

The Volmer step contributes to the dissociation of adsorbed water molecules:

H2O + e− → H* + OH (1)

Heyrovsky step and Tafel step contribute to the production of molecular H2

H* + e− + H2O→ H2 + OH (2)

2H* + 2e− → H2 (3)

Similarly in the case of AB2O4 (ferrites) as photocatalysts, the reaction mechanism,
it involves,

AB2O4 + 2H2O→ AB2O4-H + H2O (4)

AB2O4-H + H3O +e− → AB2O4-H + H3O (5)

H3O+ + e− +AB2O4-H→ AB2O4 + H2 + H2O (6)

AB2O4-H + AB2O4-H→ 2 AB2O4 + H2 (7)
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4. Contributing Factors

Many factors affect H2 evolution during photocatalysis, and they are discussed exten-
sively with a focus on the development of effective photocatalysts. An illustration of the
factors that contribute to H2 evolution is given in Figure 1.
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4.1. Morphology

Nanomaterials have high functionality and diverse physicochemical properties that are
comprehensively related to their photocatalytic properties [34,35]. Pure and hybrid oxide-
based nanomaterials have been employed as efficient photocatalysts for water splitting
and can produce and store hydrogen (H2) following hydrogen evolution reactions (HER).
Zero-dimensional (0D) nanomaterials, such as CdS, CdSe, and carbon quantum dots, are
employed for visible light H2 evolution; however, they are limited in efficiency due to
their high-corrosion and charge-recombination rates. Addressing this, Li. et al. reported
the photo deposition of metal oxides on quantum dots and alleviated the drawbacks [36].
Bimetallic plasmonic nanomaterials such as Ag@Au, i.e., a core–shell structure with an Au
core and Ag shell, have emerged as next-generation photocatalysts for H2 generation [37].
One-dimensional (1D) nanomaterials consist of nanorods (NRs) [38], nanowires (NWs) [39],
nanotubes (NTs) [40], and nanofibers (NFs), contributing to their superior properties,
which are suitable for photocatalysis for H2 evolution. Their extremely large surface-to-
volume ratio is favorable for photogenerated charge carriers and their ballistic transport.
Zn2GeO4 is a type of 1D NRs that produces the highest rate of H2, namely, 0.6 mmol/h
in basic conditions [41]. The morphological characteristics of 1D porous [42] TiO2 NTs are
effectively utilized for photocatalytic activity because their inner diameter supports internal
reflections of photons and results in a higher photocurrent density. TiO2 NTs are broadly
explored in pure and doped form for solar-based photocatalysis and H2 generation, where
doped TiO2 NTs can cover the entire solar spectrum, hence increasing the H2 production
efficiency to 17.39 µmol h−1 cm−2. Carbon NTs and NFs have extraordinary mechanical and
thermal stability. Hence, Jong-Beom Baek et al. anchored Ru nanoparticles on multiwalled
CNTs (MWCNTs) to provide catalysis-active sites that are capable of H2 production of
4194 µ mol V−1, which is 15% greater than Pt/C catalysts [43]. Two-dimensional (2D)
nanomaterials are basically in the form of thin films that are established for H2 evolution
due to their large surface area compared with zero- and one-dimensional nanomaterials.
Because the overall water-splitting phenomenon depends on the amount of light absorbed
by the catalysis, and because there is a high chance of recombination of separated charges,
scaling up the amount of photocatalyst in aqueous dispersion also affects the rate of H2
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evolution. Therefore, thin-film-based photocatalysts are explored in academia with novel
nanomaterials such as transition metal dichalcogenides (TMDs) [44], graphene oxide [45],
and graphitic carbon nitride (g-C3N4) [46]. The issues regarding the low performance of
the catalysis and H2 evolution in the particulate form are overcome by the deposition of
thin films using spin-coating, hydrothermal, chemical bath (CBD), and electrostatic spray
pyrolysis (ESP) deposition methods, where the experimental parameters are varied to
obtain the perfect VB and CB positions required for water splitting [47]. Thin films of
metal oxides such as TiO2 and Fe2O3 showed better H2 evolution rates than that of the
powder formed [48]. The porosity photocatalysts play a vital role in providing the active
sites for H2 production and the water adsorption required for catalysis. The 1D, 2D, and
3D metal–organic frameworks (MOFs) have been widely studied regarding the overall pH
range for H2 evolution reactions, among which 2D MOFs with a sheet-like morphology
became high-potential candidates [49,50]. Cobalt dithiolene is one of the best photocatalysts
based on the lowest overpotential values for H2 evolution, which can also be derived from
MOFs [51]. Transition-metal-doped MOFs, such as transition metal phosphides (TMPs),
are currently trending 2D nanomaterials for heterogeneous catalysis. However, neither
the stability of MOFs during the overall water splitting process nor the degradation and
removal mechanisms are elaborated upon in the literature; nor are the associated problems
and limitations for scaling up H2 evolution.

4.2. pH and Sacrificial Agents

The acidic pH of the solution contributes to HER, where the H+ ion concentration is
high. Diluted acid such as hydrogen sulfate (H2SO4) is used for providing acidic conditions.
However, hole scavengers, such as ethanol and methanol/glycerol reaction media, have
a basic pH. Different types of scavengers such as methanol, glycerol, formic acid, lactic
acid, ethylenediamine (EDTA), triethanolamine, and sodium sulfate (Na2SO4) assist in
controlling the charge recombination rate. Likuta et al. have undertaken a kinetic study of
pH dependent H2 production [52]. The hydrogen ion concentration or protons are known
as the pH of the solution, which also affects the other chemical interactions among the
catalyst and substrate during photocatalysis, such as adsorption and the agglomeration of
particulates. The greater aggregation, the more the photocatalyst will be sedimented, with
more effort needed for their stable suspension. Essentially, measurements of H2 evolution
are carried out in an environment where the dissociation of the photocatalyst without light
is prevented, with the medium acting as a hole scavenger. Therefore, H2 evolution also
depends on the concentration of the sacrificial agent used during photocatalysis, where the
stability of photocatalysts plays a considerable role [53].

4.3. Temperature

Temperature is a key factor that contributes to an increased rate of H2 evolution. Re-
cently, an increased rate of about 38.0 mmol·g−1 h−1 at 60 ◦C was achieved by
Núñez et al. via HER, two times greater than room temperature [54]. The catalytic per-
formance of TiO2 nanoparticles can also be enhanced by deposition on the SiO2 substrate,
thereby increasing the temperature of the water-splitting reaction and lowering the over-
potential and reaction time [55]. The temperature of the photocatalytic reaction setup can
also be increased automatically via a high-energy sunlight source. Collectively, the ele-
vated temperature causes an increased rate of carrier mobility and effective charge transfer
during visible light photocatalysis. After a certain saturation temperature, the activity can
be decreased depending on the stability of the photocatalyst at higher temperatures and
carrier recombination. Therefore, the temperature range is optimized for each different
nanomaterial. Achieving high photocatalytic activity is a crucial challenge and using
transition-metal-based oxide materials is favorable. Moreover, Xu and Li. et al. synthesized
graphitic carbon nitride (g-C3N4)-layered microstructures combined with a Pt co-catalyst,
with which they could obtain a H2 evolution of 800 µmol−1 g−1 at a lower temperature
(10 ◦C) [56].
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4.4. Concentration of Photocatalyst

An aqueous solution of a particulate-form photocatalyst should be prepared such that
an optimal surface will be available to water molecules for an adsorption phenomenon
called chemisorption. The higher the concentration of the photocatalyst, the more the
adsorption of water molecules takes place, and the higher the rate of H2 evolution. The
effect of varied concentrations of copper/zinc sulfide/CoFe2O4 (Cu/ZnS/COF) core–shell
photocatalysts with 0.1 g/L to 0.6 g/L was studied by Wu et al. They observed that 0.3 g/L
was the optimal concentration, where the maximum H2 evolution was observed and then
decreased [55].

Table 1 illustrates the contributing factors, such as temperature, pH, sacrificial agent,
and amount/concentration of photocatalysts, on photocatalytic H2 evolution via spinel
ferrite nanomaterials. Most of the HER are feasible at room temperature; however, an
increase in the reaction temperature to 50 ◦C is needed for some photocatalysts. Considering
the pH of the medium, HER are favorable for acidic media, where the reports also suggest
that, with an appropriate sacrificial agent, the H2 evolution rate could be increased at a basic
pH compared with an acidic or neutral pH [57]. Similarly, the effect of dosage/concentration
of photocatalysts on H2 evolution showed that optimal concentration needs to be checked
during the experiments. However, the presence of sacrificial agents increased the rate of
H2 evolution compared with the medium containing no sacrificial agent.

Table 1. Factors contributing to H2 evolution based on spinel ferrites photocatalysts.

Spinel Ferrite
Photocatalyst Temperature (◦C) Concentration of

Photocatalyst (g L−1) pH Sacrificial Agent
Amount of
H2 Produced
(µmol−1 g−1)

Ref.

CoFe2O4/ZnIn2S4 25 0.5 Basic Triethanolamine 800 [58]

1. CuFe2O4
2. NiFe2O4

25 0.5 Acidic

With no 336 and 234

[59]
Sacrificial agent
With Na2SO3 and 1.3605
Na2S 2.3171

CuFe2O4/
TiO2

50 1
Neutral Na2SO4/Na2S2O3 80

[60]13 KOH 170

CuFe2O4/g-C3N4 25 1
Acidic Na2SO4 200

[57]Basic Triethanolamine 700

Pr2NiO4/SnO2 50 1
Neutral Na2S2O3 276

[61]12 KOH 146

Ag/NiFe2O4 50 1 >7 KOH 123 [62]

ZnFe2O4 25 0.01 - - 133.5 [63]

g-C3N4/BiVO4/CoFe2O4 25 - Basic EDTA - [64]

Ag2CrO4/GO/MnFe2O4 25 Thin film Acidic Na2SO4 446.93 [65]

Cu/ZnS/COF 25

0.1

Acidic Formic acid

30

[55]

0.2 125
0.3 278
0.4 175
0.5 174
0.6 100

5. Synthesis Approaches

The process of H2 evolution is generally carried out with a particulate or thin films
(anode/cathode) as photocatalysts. In particulate-form H2 production, an amount of the
powder-form photocatalyst is subjected to solar power while being continuously stirred;
the thin-film forms of the photocatalysts are prepared by depositing them on the conduct-
ing substrate before they are placed in a hanging condition in the reactor vessel/tube.
Particulate-form H2 production limits the solar-to-hydrogen (STH) efficiency due to the
scattering effects being larger than absorption, the small surface area, and the increased
charge recombination, although factors limiting the efficiency of oxide-based thin films
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include the lack of composition of different types of oxide materials, enhancing charge
diffusion and separation to actual redox sites. Cobalt and nickel ferrite-based graphene
nanocomposites are well explored, and their electrochemical performance showed their
aptness for HER [66]. Thin-film deposition methods for spinel ferrites as solar-based pho-
tocatalysts include spin coating, spray coating, vacuum deposition, laser deposition, and
sputtering, where the particulate from spinel ferrites can be synthesized using the sol–gel
method, hydrothermal method, ball milling, etc. Many other researchers reported the
synthesis of thin films using chemical methods of synthesis, as shown in Table 2. These
methods also limit the uniform deposition and adherent thin films compared with physical
methods of deposition. The properties of photocatalysts also depend on the synthesis
condition or deposition technique, and in the case of TiO2, the phase varies with the chemi-
cal and physical deposition technique of the thin film and holds different strengths and
weaknesses. Chemical deposition methods for thin films include successive ionic layer
adsorption and reaction (SILAR), hydrothermal coating, electrodeposition, electrospinning,
etc. These methods can deposit thin films with different morphologies with proper opti-
mization steps at a low cost. Spinel ferrite Co-ZnFe2O4 thin-film nanostructures developed
using hydrothermal reactions possess good photocatalytic activity and could produce H2
with 0.0088 µmol/cm2 min. Chen et al. synthesized CdS-sensitized ZnFe2O4/ZnIn2S4
nanosheets using ionic layer adsorption reactions and could evolute the H2 by about
79 µmol/h. Moreover, the physicochemical properties of spinel ferrites are sensitive to the
synthesis strategies because transition and non-transition ions possess different oxidation
states, which consequently lead to normal and inverse spinel structures. Normal spinel is a
type of ferrite where A and B sites form complete tetrahedral and octahedral coordination
with metal ions, respectively, e.g., i = 1, and for the inverse spinel inversion degree, i = 0–1.
An A site ion has comparably smaller Shannon ionic radii than a B site and can develop a
number of combinations depending on the application required. Moreover, maintaining
stoichiometry is the most crucial task for obtaining the desired phases of ferrite nanoma-
terials. Researchers have reported different types of physical, chemical, and biological
methods for the synthesis of spinel ferrites.

Table 2 elaborates on the synthesis strategies reported in the years 2010–2022, the
morphology and amount of H2-generated ferrite-based catalysts, and some co-catalysts
thereof. The need for porous spinel ferrite nanostructures for enhanced efficiency of H2
generation and CO2 reduction is also fulfilled by many researchers. Xiaoxing Xu et al.
reported enhanced H2 performance with Ga-doped ZnFe2O4, where Ga doping created trap
states between the energy levels, hence increasing charge migration and band gap energy
compared with the parent ZnFe2O4 [67]. There is a strong correlation between catalytic
activity and crystal structures along with all the physicochemical properties [68]. Moreover,
the high-temperature calcination required for the pure-phase formation of spinel ferrite can
eliminate the trapping sites for electrons and holes and hence can be avoided to decrease
the recombination rates. Interestingly, the size of magnetic nanomaterials plays a very
important role in the determination of their magnetic properties, and after a certain critical
size, they become superparamagnetic and single-domain particles that are important for the
easy removal of ferrite nanoparticles after H2 evolution in an aqueous medium. Figure 2
illustrates (a) the synthesis methods of ferrite nanomaterials as elaborated in Table 2;
(b) their mechanism for solar-based H2 evolution as explained previously in Section 3;
(c) removal and recyclability; and (d) applications for fuel cell technology.
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2011 Co0.85Fe2.15O4 Atomic Layer 
deposition 

Non-uniform 
spheres of <10 

40 µmol/S/g  [69] 

2012 Fe3O4 Co-
Precipitation 

10 
Spherical 

8275 µmol/h/g 400 W [18] 

2012 ZnFe2O4 
Microwave 
irradiation 
method 

Agglomerated 
spheres 
of 50 nm 

133.5 µmol/g 300 W [63] 

2012 NiFe2O4 
Co-
precipitation 

17.8 nm  
Agglomerated 
particles 

15.45 µmol/g 250 W [70] 

2012 1. CO3O4 
2. Fe3O4 

Sol-Gel 12.42 nm 
Coral like 

(1) 2000 µmol/h/g 
(2) 8275 µmol/h/g 

200 W [71] 

2013 1. ZnFe2O4 
2. ZnFe2O4:Fe2O3 
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Spraying 

>10 nm 
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(1) 46.3 µmol/h 
(2) 99 µmol/h 
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2013 CuFe2O4/g-C3N4 
with Pt catalyst 

Sol-gel 15–25 nm 
Particles on  

76 µmol/h 300 W [73] 

Figure 2. Showing (a) methods for the synthesis of particulate and thin films of ferrite nanomaterials
(b) mechanism of H2 evolution (c) removal and recycling of ferrite photocatalysts (d) applications of
H2 energy of vehicles and fuel cells.

Table 2. Available literature for spinel ferrites photocatalysts.

Year of
Publishing Photocatalyst Synthesis Method

Morphology and
Particle Size (nm)
Obtained

Amount of
H2 Evolved

Light
Intensity Ref.

2011 Co0.85Fe2.15O4
Atomic Layer
deposition

Non-uniform spheres
of <10 40 µmol/S/g [69]

2012 Fe3O4 Co-Precipitation 10
Spherical 8275 µmol/h/g 400 W [18]

2012 ZnFe2O4
Microwave
irradiation method

Agglomerated
spheres
of 50 nm

133.5 µmol/g 300 W [63]

2012 NiFe2O4 Co-precipitation
17.8 nm
Agglomerated
particles

15.45 µmol/g 250 W [70]

2012 1. CO3O4
2. Fe3O4

Sol-Gel 12.42 nm
Coral like

(1) 2000 µmol/h/g
(2) 8275 µmol/h/g 200 W [71]

2013 1. ZnFe2O4
2. ZnFe2O4:Fe2O3

Plasma Spraying >10 nm
Porous spherical

(1) 46.3 µmol/h
(2) 99 µmol/h 1000 W/m2 [72]

2013 CuFe2O4/g-C3N4 with
Pt catalyst Sol-gel

15–25 nm
Particles on
g-C3N4 sheets

76 µmol/h 300 W [73]

2013 NiFe2O4@TiO2 Sol-gel 100–300 nm
Spherical 18.5 mL 18 W/cm2 [74]

2014 CaFe2O4/TiO2 Sol-Gel 1–2 µm
Spherical 2111 µmol/h/g - [75]

2014 NiFe2O4
Aerosol Spray
Pyrolysis

11 nm
Spherical
porous

0.09 µmol h−1 - [76]

2015 CoFe2O4
Co-precipitation
and ball milling

25 nm
Agglomerates

2540 and
3490 µmol/g 250 W [77]

2015 ZnFe2O4
Microwave
synthesis

35 nm
Porous spheres 218 µmol/h/g AM 1.5 G

(1000 W/m2) [78]
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Table 2. Cont.

Year of
Publishing Photocatalyst Synthesis Method

Morphology and
Particle Size (nm)
Obtained

Amount of
H2 Evolved

Light
Intensity Ref.

2015
1. g-C3N4-CoFe2O4 Modified Sol-gel

method
67 & 54 nm
Irregular shape

1.55 and
1.24 µmol/g 300 W [28]2. g-C3N4-NiFe2O4

2016

1. ZnFe2O4

Co-precipitation

27 nm (1) 195 µmol g−1 s−1

200 W [79]2. Cu0.2Zn0.8Fe2O4 20 nm (2) 9 µmol g−1 s−1

3. Co0.2Zn0.8Fe2O4 18 nm (3) 675 µmol g−1 s−1

4. Ni0.2Zn0.8Fe2O4 12 nm (4) 233 µmol g−1 s−1

2017 S-NiFe2O4 Electrodeposition 2 nm
Porous nanoflakes - - [80]

2019 CoFe2O4/Cd0.9Zn0.1S Hydrothermal 20 nm
Nanorods 350.2 µmol/h AM 1.5 G [27]

2020 FeSe2/CoFe2O4 Hydrothermal 100 nm
rods - - [81]

6. Conclusions and Future Prospects

To summarize the present work, we have reviewed synthesis approaches for spinel
ferrites, factors contributing to H2 evolution, and their need for recoverable and robust
photocatalysts. The synthesis techniques for achieving pure phase and good inherent
magnetization need calcination processes that lead to low dispersity; therefore, alternative
methods for achieving excellent colloidal stability in the desired phase are yet to be explored.
The dissociation or stability of spinel ferrite in acidic or basic media is also not yet explored,
which should be taken into consideration. H2 evolution using ferrite-based nanomaterials
is quite possible at room temperature; however, at elevated temperatures, a study should
be carried out for their phase stability and crystallinity because the magnetic properties of
spinel ferrites depend on temperature. The choice of a good sacrificial agent for avoiding
charge recombination is needed where it can be optimized for ferrite-based nanomaterials.
One possible strategy to improve H2 evolution is to improve active sites on spinel ferrites
with the design and development of composite nanomaterials and to understand their VB
and CB position. Optical properties can be tuned by changing the oxygen concentration
and narrowing the band gap of ferrite nanomaterials for greater visible light absorption.
Computational analysis can be introduced for the predefined tuning of band gaps using
DFT techniques so that the required band edges can be easily inserted in the spinel ferrites
required for trapping the electrons during H2 evolution. A novel strategy can be developed
based on spinel ferrites–red phosphor (RP) nanocomposites because red phosphors are
capable of solar energy harvesting with a band gap of 1.8 eV [22]. Spinel ferrites have a wide
optical bandgap and can be combined with different transition and rare-earth elements to
be used as phosphors in HER [33]. However, we can use the magnetic ferrite nanomaterials
for visible light HER after their successful removal with an external magnetic field, and
more efforts should be expended to develop a suitable set-up. On the other hand, Pt/Ir/Ru
are the most effective catalysts, and the cost of industry scale-up can be minimized with
the development of Pt/Ir/Ru-spinel ferrite nanocomposites for H2 evolution. After the
removal of the catalyst, the reusability of the photocatalyst can be checked, which will
need successive characterizations. The present overview describing all the aspects of
spinel ferrite nanomaterials will be beneficial for the next generation photocatalysts for H2
evolution reactions and could open new routes for their future applications, such as in fuel
cells, which are the best photocatalysts. We strongly believe that addressing these research
gaps will help to develop efficient, effective, and highly stable, low-cost ferrite-based
photocatalysts for sustainable H2 generation and utilization.
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Ag@Au A core-shell structure with the Au core and Ag shell
CdS Cadmium Sulfide
CdSe Cadmium Selenide
CO2 Carbon Dioxide
COVID-19 Coronavirus Disease of 2019
GDP Gross Domestic Product
H2 Hydrogen
Ir Iridium
NRs Nanorods
NWs & NTs Nanowires & Nanotubes
RP Red Phosphor

TiO2/g-C3N4/p-g-C3N4
metal-free phosphorus doped graphitic carbon nitride-P25
(TiO2) nanocomposite
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