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Abstract: The shift towards sustainable energy sources is gaining momentum due to their environ-
mental cleanliness, abundant availability, and eco-friendly characteristics. Solar energy, specifically
harnessed through photovoltaic (PV) systems, emerges as a clean, abundant, and environmentally
friendly alternative. However, the efficacy of PV systems is subjective depending on two critical
factors: irradiance and temperature. To optimize power output, maximum power point tracking
(MPPT) strategies are essential, allowing operation at the system’s optimal point. In the presence
of partial shading, the power–voltage curve exhibits multiple peaks, yet only one global maximum
power point (GMPP) can be identified. Existing algorithms for GMPP tracking often encounter
challenges, including overshooting during transient periods and chattering during steady states. This
study proposes the utilization of fuzzy sliding mode controllers (FSMC) and fuzzy proportional-
integral (FPI) control to enhance global MPPT reference tracking under partial shading conditions.
Additionally, the system’s performance is evaluated considering potential sensor malfunctions. The
proposed techniques ensure precise tracking of the reference voltage and maximum power in partial
shading scenarios, facilitating rapid convergence, improved system stability during transitions, and
reduced chattering during steady states. The usefulness of the proposed scheme is confirmed through
the use of performance indices. FSMC has the lowest integral absolute error (IAE) of 946.94, followed
closely by FPI (947.21), in comparison to the sliding mode controller (SMC) (1241.6) and perturb and
observe (P&O) (2433.1). Similarly, in integral time absolute error (ITAE), FSMC (56.84) and FPI (57.06)
excel over SMC (91.03) and P&O (635.50).

Keywords: fuzzy PI; fuzzy sliding mode controller; maximum power point tracking; partial shading;
global maximum power point tracking

1. Introduction

In the past few years, as the demand for energy has escalated, the worldwide use of
fossil fuel resources has peaked, and locating fresh reserves has become difficult. The threat
of fossil fuel depletion and the associated impacts of global warming caused by hazardous
gas emissions have compelled the consideration of alternative energy sources [1,2]. Con-
ventional and non-conventional energy resources are available for energy generation. Con-
ventional energy resources include coal, oil, thermal, and nuclear power. Non-conventional
energy resources encompass solar, geothermal, biomass, wind, and tidal energy. These
sources are also known as renewable energy sources because they generate energy without
negatively affecting the environment [3–5].

Energies 2023, 16, 4665. https://doi.org/10.3390/en16124665 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16124665
https://doi.org/10.3390/en16124665
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-0030-8959
https://orcid.org/0000-0003-1233-1774
https://orcid.org/0000-0002-8242-4581
https://doi.org/10.3390/en16124665
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16124665?type=check_update&version=2


Energies 2023, 16, 4665 2 of 16

Amongst the aforementioned sustainable energy sources [6], photovoltaic energy
emerges as a crucial energy resource. Energy forecasts indicate that the capacity of photo-
voltaic (PV) systems will surpass wind energy production [7].

The efficiency of solar panel output is influenced by a variety of parameters, among
which the most important is maximum power point tracking (MPPT). Partial shading
occurs when a portion of a PV system’s array is obscured by shadows cast by surrounding
objects, such as trees, buildings, and passing clouds [8]. Solar irradiance and temperature
are the two main factors that have an external impact on the output of a PV array [9]. These
external factors cause the MPP of PV panels to shift. When a PV system is partially shaded,
the power–voltage characteristic curve forms various peaks. Within these peaks, there
exists only one global maximum power point (GMPP), whereas the remaining ones are
known as local MPPs [10], as shown in Figure 1.
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Figure 1. (a) Under uniform isolation, characteristics of P–V curve for PV array; (b) under partial
shading conditions, characteristics of P–V curve for PV array.

In this situation, it is possible that the PV array is operating at its local maximum power
point (LMPP). The existence of multiple maximum power points reduces the effectiveness
of the tracking algorithm. In the case of the existence of multiple peaks, it is challenging for
an algorithm to determine the best global maximum power point (GMPP) among the ones
available. Many strategies and algorithms have been used in order to maximize the solar
panel’s output, and they have had some success in achieving their goal.

An adaptive particle swarm optimization (APSO) was proposed by Roy Chowdhury et al.
in [11] to track the global maximum power point (GMPP) in varied weather situations.
Due to the complexity of the mathematical calculations and approximations involved, it
takes longer to monitor the accuracy and steady-state inaccuracy, making it difficult to
implement. In [12], Safari used the variable step size incremental conductance approach
to analyze the GMPP. It automatically adjusts the step size to strike a reasonable balance
between monitoring dynamics and energy loss reduction. When the PV array includes
many local maximum power points, the linear function might not be able to locate the point
nearest to the GMPP. The developers of [13,14] used population-based methods, such as
ant colony optimization (ACO), particle swarm optimization (PSO), and genetic algorithms
(GAs), to obtain the maximum possible power. However, constructing these algorithms is
exceedingly difficult due to their intricate nature, slow rate of convergence, and the neces-
sity for extensive parameter adjustment, which renders them vulnerable to disturbances.
Furthermore, all of these population-based algorithms demonstrate inefficiency in control
problems, primarily due to their inadequate capacity to handle uncertainty and nonlinear
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systems proficiently, as well as their limited adaptability to dynamic environmental condi-
tions. Ouahib Guenounou et al., the authors of [15], suggested MPPT using the adaptive
fuzzy logic controller (AFLC), which is divided into two rules: one regulates the converter
duty cycle, and the other regulates the controller gain. However, neither of these rules
can eliminate chattering from the MPP due to the inherent characteristics and limitations
of AFLC.

Naghmash et al. proposed a backstepping-based nonlinear controller; however, this
controller still fails to provide the necessary output without chattering, steady-state in-
accuracy, and oscillation, thereby compromising its effectiveness [16]. Syafaruddin et al.
used a hybrid artificial neural network and fuzzy logic controller to track the GMPP [17].
These soft computing algorithms performed well in terms of tracking the maximum power.
However, the complexity of these algorithms grows in proportion to the amount of data
supplied into them. Furthermore, the massive amount of data that are provided increases
the storage strain [18]. To maximize power in conditions of varying load and partial shad-
ing, the authors of [19] proposed the sliding mode control (SMC) technique, which is based
on a simple sliding surface. The variable switching frequency of the suggested method
makes filter design challenging and causes the chattering phenomenon [20]. To lessen the
steady state inaccuracy, the authors of [21] added an integral term to the sliding surface.
However, this pulse with a modulator-based controller exhibits an overshot problem.

In [22], model predictive control (MPC) was developed to improve the extraction of
maximum power from PV arrays. When compared to traditional control schemes, the MPC
technique offers a quick, dynamic reaction with a relatively high stability margin, which
makes it more suitable for MPPT of PV systems working in rapidly changing atmospheric
circumstances [23]. However, this technique also possesses a number of open instability
issues, especially when the operating point is not close to the tracked reference [24].

This study of the literature leads to the conclusion that several GMPP tracking ap-
proaches have been developed with various characteristics, such as complexity, sensing
material, convergence time, performance, cost, and compatibility, to detect the GMPP un-
der partial shading situations. Although each approach has its own advantages and
disadvantages, all traditional techniques share the common issues of chattering and
slow convergence.

The main contributions of the proposed work to address the chattering and conver-
gence issues are as follow:

1. Fuzzy PI (FPI) and fuzzy sliding mode controller (FSMC) for MPPT: This study
introduces the utilization of FPI and FSMC as controllers for effectively tracking the
global maximum power from a partially shaded PV system. These controllers offer
a reliable and efficient solution for MPPT under partial shading conditions (PSCs),
ensuring quick and finite-time convergence.

2. Neural network-based reference voltage generation: A neural network is employed
to generate the reference voltage for maximum power point tracking. The system’s
resilience and chattering minimization capabilities are evaluated by introducing
uncertainties into the system and faults in the sensors. The proposed controllers
demonstrate their effectiveness under challenging operating conditions, providing
accurate tracking of the reference voltage and maximum power, particularly in the
presence of partial shading.

3. Performance evaluation and comparison: The performance of the proposed controllers
is assessed by calculating and comparing various performance indices. Simulation
results are analyzed, and a comparison is made with conventional controllers, such as
perturb and observe (P&O) and the standard sliding mode controller. The effectiveness
of the proposed technique in terms of superior performance is characterized by
reduced chattering, improved transient responsiveness, enhanced tracking precision,
and faster convergence.
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2. System Modelling

The KYOCERA KC200GT module is used for the PV system. Four PV arrays are
connected in the series for the proposed PV system. Each array consists of two parallel
(Np) and fifteen series (Ns) modules. Each PV array generates 6 KW at nominal conditions
(25 ◦C at 1000 W/m2). The total output of the PV arrays is 24 KW. Mathematical modelling
of the PV array and its parameters is given in Appendix A.

2.1. Mathematical Modelling of the Buck–Boost Converter

A given DC voltage can be converted to both step-up and step-down voltages by
the buck–boost converter non-inverting configuration [25]. The utilized converter circuit
consists of two switches (first, switch S1, and second, S2) and two capacitors (first, capacitor
C1, and second, C2), as shown in Figure 2. Two diodes (D1 and D2) are also included in the
design. Under the assumption of continuous conduction mode (CCM), all operations are
supposed to be carried out. It operates in two switching modes. S1 and S2 are both closed
(ON) in mode 1, and S1 and S2 are both open (OFF) in mode 2.
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In the first mode, all the switches, which are S1 and S2, are turned on, while both
the diodes, which are D1 and D2, are turned off (reverse biased). According to the law of
energy conservation, 

IC1 = Ipv − IL
VL = VC1

IC2 = −VC2
R

(1)

where IC1 , IC2 , Ipv, and IL are the current of capacitor C1, the current of capacitor C2,
the current of the PV panel, and the current of inductor L, respectively. VL, VC1 , and VC2

are the voltage across the inductors, the voltage across the C1, and the voltage across the
C2, respectively.

In mode 2, both diodes (D1 and D2) are on (forward bias) and both switches (S1 and
S2) are off, and we obtain, 

IC1 = Ipv
VL = VC2

IC2 = IL −
VC2

R

(2)

where R is the load resistance.
The above equations can be expressed as follows by utilizing the capacitor charge

balance and inductor voltage balance principles,
dVC1

dt =
Ipv
C1
− IL

C1
µ

dIL
dt =

VC1
L µ− VC2

L (1− µ)

dVC2
dt = IL

C2
(1− µ)− VC2

RC2

(3)
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where C1, C2, and L are the capacitance of the first capacitor, the capacitance of the second
capacitor, and the inductance of the inductor, respectively.

Using a single switching, we assume the following values for averaging the model,
x1 =

〈
VC1

〉
x2 = 〈IL〉

x3 =
〈
VC2

〉
µ = 〈u〉

(4)

To track the global peaks for maximum power, the non-inverting buck–boost converter
state space average model is used by substituting VC2 = Vo and C1 = Ci.

The vector-matrix representation of the mode 1 state space equation is as follows, d
dt Vpv

d
dt IL
d
dt Vo

 =

0 − 1
Ci

0
1
L 0 0
0 0 0


Vpv

IL
VO

+


Ipv
Ci
0
0

 (5)

The vector-matrix representation of the mode 2 state space equation is as follows, d
dt Vpv

d
dt IL
d
dt Vo

 =

0 − 1
Ci

0
1
L 0 − 1

L
0 1

Co
0


Vpv

IL
VO

+


Ipv
Ci
0
0

 (6)

The average converter model for both modes can be obtained by applying the prin-
ciples of vector-matrix volt-second balance and capacitor charging balance equations to
obtain the following form,

 d
dt Vpv

d
dt IL
d
dt Vo

 =


0 − u

Ci
0

u
L 0

(
u
L −

1
L

)
0

(
1

Co
− u

Co

)
− 1

RLCo


Vpv

IL
VO

+


Ipv
Ci
0
0

 (7)

The average values of Vpv, IL, IL, and u are represented by x1, x2, x3, and u, respectively.
The states are written in equation form as follows under this assumption,

 .
x1.
x2.
x3

 =


0 − u

Ci
0

u
L 0

(
u
L −

1
L

)
0

(
1

Co
− u

Co

)
− 1

RLCo


x1

x2
x3

+


Ipv
Ci
0
0

 (8)

The following is the representation matrix in equation form,
.

x1 =
Ipv
Ci
− x2

Ci
u

.
x2 = x1

L u− x3
L (1− u)

.
x3 = x2

L (1− u)− x3
RC2

(9)

2.2. Reference Voltage Generation

When environmental conditions undergo abrupt changes, the power–voltage (P–V)
characteristic curve also undergoes changes. Sudden variations in climatic conditions result
in alterations to the shading pattern of the PV system and the GMPP. To determine the ref-
erence voltage generation of PV arrays under partial shading conditions, we implemented
four distinct shading patterns (G1, G2, G3, and G4) and applied a temperature (T) to the PV
system. From the power–voltage curve, we identified the global maximum power point
(GMPP) and the corresponding voltage. We manually generated and tested seven hundred
different patterns at a temperature of 298.15 K (25 ◦C) and recorded the voltage values at
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GMPP. The GMPP values obtained using multiple shading patterns at 298.15 K are listed in
Table 1.

Table 1. Shading patterns for test scenarios.

Patterns G1 G2 G3 G4 T (Kelvin)

SP1 600 600 1000 1000 298.15

SP2 200 400 600 1000 298.15

SP3 120 240 600 700 298.15

SP4 200 400 600 1000 298.15

SP5 600 600 1000 1000 298.15

SP6 1000 1000 1000 1000 298.15

The reason for manually generating these irradiance patterns and the temperature
is because in the case of partial shading, the available real profile typically provides
only one set of irradiance and temperature values with respect to time. However, to
effectively demonstrate the performance of the proposed controller in handling partial
shading scenarios, it is necessary to generate additional irradiances. This is because
real profiles often lack the diversity of shading conditions that can occur in practical
situations, such as those caused by cloud cover, building shade, tree shade, or passing
airplanes. By manually generating additional irradiances, we can simulate different levels
of shading, ranging from full sunlight to varying degrees of partial shading. This allows us
to thoroughly evaluate and validate the proposed controller’s capability to optimize the
power output under different shading conditions. For predicting the reference voltage, we
utilized the supervised learning characteristics of ANN.

This ANN model consists of five inputs, forty hidden neurons, and one output layer.
We have given four irradiance and one temperature as the input and voltage at the GMPP
as output to train the ANN for reference generation. To train the ANN, a Bayesian Regular-
ization algorithm is used in MATLAB due to its fast and accurate training. In comparison
to other algorithms, the least number of neurons is enough to train the ANN despite the
fact of noisy data and inadequate information provided by the input to the neural network.
More than seven hundred samples are used to train the ANN. It generates the reference
voltage with the least mean square error (MSE), which is 4.0676 × 10−9.

3. Proposed Controllers Design
3.1. Fuzzy PI Controller
3.1.1. Fuzzy Logic Controller (FLC)

It is hard to grasp the real-world/fuzzy issues. Fuzzy logic controller (FLC) has the
benefit of not just relying on mathematical models but instead including human logical
reasoning. Its ability to handle non-linearity and uncertainty is another benefit. When
current models are unclear, complicated, or unreliable, FLC is better equipped to handle
these situations. Fuzzification, rule base, interference engine, and defuzzification are the
four stages of FLC design. Figure 3 depicts the fuzzy logic controller.

• The IF–THEN rules of the fuzzy system containing the condition and a conclusion are
resolved in the rule base.

• A rule base is established for the output depending on the values of the inputs.
• An expert’s choice in understanding and implementing the rules of the game is the

focus of fuzzy inference. It is the process through which regulations are assessed and
then discarded.

• To obtain real-time data out of the inference engine, we use an output mapping
interface called a de-fuzzifier.
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3.1.2. Fuzzy PI (FPI) Controller Design

The performance of the PI controllers deteriorates and loses tuning accuracy when
the system experiences sudden parameter uncertainties or disturbances. This can result
in reduced effectiveness and compromised control in response to unexpected variations
or external influences. Therefore, the FPI controller is needed to modify the PI controller
parameters in accordance with the error function. Fuzzy IF-THEN rules developed for FPI
and FSMC controllers based on expert knowledge are shown in Table 2.

Table 2. FPI and FSMC IF–THEN rules.

Input Membership Functions Output Membership Functions IF–Then Rules

S. No. Linguistic Terms Linguistic Terms If Input |e(t)| Then
(
kp , ki)

1 Zero Zero Zero Zero

2 Small Small Small Small

3 Large Large Large Large

The mathematical representation of the PI controller is,

u(t) = kpe(t) + ki

∫
e(t)dt (10)

where e(t) = Vpv−Vre f and kp and ki are proportional and integral gains of the PI controller,
respectively. The above Equation (10) states that the PI’s parameters are fixed and need
to be adjusted to compensate for parameter uncertainties, load fluctuations, and electrical
fault perturbations. Then, the updated equation of the controller is,

λe(t) = A1L1e(t) + A2L2

∫
e(t)dt (11)

where A1 and A2 are the fuzzy logic controller’s outputs and L1 and L2 are learning rate
constants for kp and ki, respectively. Figure 4 depicts the FPI block diagram.

3.2. Fuzzy Sliding Mode Controller (FSMC)

The structure of the FSMC consists of an FPI and an SMC, resulting in an enhanced
ability to handle nonlinearity. FSMC combines the features of both controllers. Firstly, to
reduce chattering in response, FPI is active in a steady state. By using fuzzy IF–THEN
rules, the parameters of FPI, kp, and ki are updated. Throughout the transient state of the
fuzzy system, the SMC is active. It enhances system stability and provides a fast dynamic
response. Figure 5 represents the FSMC block diagram.
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The initial stage entails the computation of the sliding surface, a crucial component in
the control methodology. Subsequently, a control law is devised to enable the controller
to swiftly track the reference signal. By employing this control law, the controller can
promptly and accurately respond to any deviations from the desired reference, ensuring
precise and efficient tracking performance. The sliding surface can be written as,

s = e(t) + λe(t) (12)

where,
e = Vpv −Vre f (13)

Furthermore, λ e(t) is,

λe(t) = A1L1e(t) + A2L2

∫
e(t)dt (14)
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λe(t) is updated by using the FPI controller.
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By assuming y = λe(t), we obtain,

s = e(t) + y (15)

We take the derivative of the sliding surface,
.
s =

.
e(t) +

.
y (16)

Put
.
s = 0 to calculate the control law,

.
e(t) +

.
y = 0 (17)

By adding the value of e(t) in the equation,
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.
Vpv −

.
Vre f +

.
y = 0 (18)

From Equation (9),
.

Vpv =
.

x1 =
Ipv

Ci
− x2

Ci
u (19)

By putting the value of
.

Vpv in Equation (9),

Ipv

Ci
− x2

Ci
u−

.
Vre f +

.
y = 0 (20)

Simplifying the equation, we obtain the control law,

ueq =u=
Ci
x2

(
Ipv

Ci
−

.
Vre f +

.
y) (21)

The discontinuous control law is defined as,

udis = −K1(s)− K2sign(s) (22)

The final equation of the control law is,

u =
Ci
x2

(
Ipv

Ci
−

.
Vre f +

.
y
)
− K1(s)− K2sign(s) (23)

4. Results and Discussion
4.1. Voltage Tracking and Power Extracted by the Proposed Technique

In the proposed approach, as seen in Figure 6a, FPI and FSMC exactly follow the
reference voltage and provide quick convergence. When the shading pattern moves from
SP1 to SP2 with a temperature of 298.5 K, as mentioned in Table 1, the proposed algorithm
follows the reference voltages, but P&O left the path and also has oscillations. The proposed
technique has minimum chattering around MPP. Figure 6b depicts the output power of a
PV array under SP1 and SP2 shading patterns. At 0.7 s, when the shading pattern moves
from SP1 to SP2, the proposed approaches extract power without deviation and adhere
to the reference; however, P&O cannot handle the rapid change, and it is not suitable for
fast-changing environmental conditions. Likewise, in Figure 6a,b, it can also be observed
that the transient response to the shading pattern lags in SMC compared to FPI and FSMC.
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4.2. The Proposed Technique for Voltage Tracking and Power Extraction under Fault

However, partial shadowing presents the most challenging and insecure situation. In
addition, the resilience of the established control systems is tested by introducing a sensor
fault into the main channel x1. of the PV system. The magnitude of the fault is as follows,

x1 f = x1 + 60e((
2π
4 )t)+45cos(2πt), (24)

During the fault time (from 0.25 to 0.30 s), the system is studied. Under faulty sit-
uations, the proposed controllers outperform other approaches significantly in terms of
voltage tracking and PV output power variation. The proposed controllers quickly retrack
the reference and reach a steady state, as demonstrated in Figure 7a,b.
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4.3. Performance Indices Calculation

The performance of the system is evaluated by computing various errors, including
integral absolute error, integral square error, integral time absolute error, and integral time
square error. These errors are referred to as performance indices of the controllers. The
performance of the proposed controllers is assessed in terms of these performance indices,
which ensures minimal error in various scenarios.

Initially, we calculated and compared the performance indices of the PV system under
partial shading conditions. The results demonstrate that the proposed control techniques
exhibit the least error and superior performance compared to conventional controllers.
Figure 8 provides a comprehensive comparison of the proposed techniques (FPI and FSMC)
with the P&O and SMC methods in terms of performance indices.

In Figure 8a, the integral square error (ISE) is compared, and it shows that the proposed
techniques (FPI and FSMC) have the lowest ISE values, indicating better performance
compared to P&O and SMC. Meanwhile, Figure 8b focuses on the integral absolute error
(IAE), and it demonstrates that FPI and FSMC outperform the other techniques, as they
exhibit better results with lower IAE values. Additionally, Figure 8c compares the integral
time square error (ITSE). Here, it is shown that FPI and FSMC have lower error values,
suggesting improved performance when compared to the other methods.

Lastly, Figure 8d evaluates the integral time absolute error (ITAE) under partial shad-
ing conditions. The results indicate that the proposed techniques (FPI and FSMC) achieve
less error and demonstrate better performance compared to P&O and SMC.
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5. Conclusions

Under partially shading situations, the FPI and FSMC are designed and implemented
in this paper. The neural network has been trained to produce the reference voltage for
tracking of the GMPP by using the proposed controllers. The performance of the proposed
controllers is compared with conventional controllers (P&O and standard sliding mode) in
terms of voltage tracking, error, and power. Under partial shading conditions, the proposed
techniques precisely track the reference voltage and maximum power, respectively, and
provide relatively fast convergence. The resilience of the proposed controllers is also
evaluated by inserting faults into the sensors of the PV system, even though partial shading
is also an unclear, worst case scenario. Under faulty conditions, the proposed controllers
performed much better in reference voltage tracking and PV output power extraction
than the conventional approaches, even in the presence of fault. The performance of
the system is also evaluated by calculating and comparing the various errors, which are
known as performance indices. Integral absolute error, integral square error, integral time
absolute error, and integral time square error are the four types of errors. In terms of
performance indices, the proposed controllers also ensure the least error in all possible
circumstances. Minor chattering is still a problem, although there are several ways to deal
with the chattering effect. Further, the proposed techniques may be used in grid-connected
systems as well as wind energy systems in hybrid configurations.



Energies 2023, 16, 4665 13 of 16

Author Contributions: Conceptualization, M.B.Q. and M.A.R.; methodology, M.A.R.; software,
M.A.R.; validation, M.B.Q., M.A.R. and M.M.K.; formal analysis, M.A.R.; investigation, M.A.R.;
resources, P.P. and S.A.A.Q.; data curation, M.B.Q. and M.A.R.; writing—original draft preparation,
M.A.R. and M.B.Q.; writing—review and editing, M.A.R., M.M.K., P.P. and S.A.A.Q.; visualization,
M.B.Q. and M.A.R.; supervision, M.B.Q.; project administration, M.B.Q. and M.M.K.; funding acquisi-
tion, P.P. and S.A.A.Q. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by research supporting project number (RSPD2023R585, King Saud
University, Riyadh, Saudi Arabia).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The PV cell electrical circuit regarding one diode model is presented in Figure A1.
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Appendix A 
The PV cell electrical circuit regarding one diode model is presented in Figure A1. 
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The current equation is written as,

I = IPvNp − I0Np

exp

v + Rs

(
Ns
Np

)
I

VtaNs

− 1

− ν + Rs

(
Ns
Np

)
I

RpNp
(A1)

where
IPv: PV array current
Ns: series connected cell
Np: parallel connected cell
I0: saturation current of diode
Rs : resistance linked in series
Rp: resistance connected in parallel
Vt: thermal voltage
a: ideal factor (PV technology dependent)
The PV system’s thermal voltage is,

Vt =
NskT

q
(A2)

where
Ns: cell integrated in series
k: the Boltzmann’s constant = 1.38× 10−23 J/K
T: temperature of the P–N junction
q: charge of electron = 1.6 × 10−19 C
The photovoltaic current is,

IPv =
(

Ipv,n + KI∆T
) G

Gn
(A3)
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where
Ipv,n: PV current in nominal conditions (1000 w/m2)
KI : short circuit current temperature coefficient
G: irradiance at that PV surface
Gn: radiance is the specified circumstance

∆T = T − Tn (A4)

where,
T: actual temperature
Tn: nominal temperature
The diode’s saturation current is,

I0 = I0,n

(
Tn

T

)3
exp
[

qEg

aK

(
1

Tn
− 1

T

)]
(A5)

where
I0,n: under normal conditions, reverse saturation current
Eg: semiconductor energy bandgap (Eg ≈ 1.12 eV)
The nominal saturation current is,

I0,n =
Isc,n

exp
(

Voc,n
aVt,n

)
− 1

(A6)

where
Isc,n: saturation current under nominal conditions
Voc,n: under nominal conditions, open circuit voltage
Vt,n: under the “nominal temperature situation”, thermal voltage

Table A1. Photovoltaic (PV) panel parameters.

Sr. No. Parameters Values

1 Maximum Power 200 W

2 Cells in Each Module 54

3 Open Circuit Voltage 32.9 V

4 Optimum Voltage 26.3 V

5 Short Circuit Voltage 8.21 A

6 Optimum Current 7.61 A

7 Temperature Coefficient Isc 0.00318 A/°C

8 Temperature Coefficient Voc −0.123 A/°C

9 Parallel Resistance 601.3368 Ω

10 Series Resistance 0.23 Ω

Table A2. Buck–boost converter’s parameters.

Sr. No. Parameters Values

1 C1 13, 000 uF

2 C2 68 uF

3 L 17 mH

4 RL 50 Ohms
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Table A3. FPI and FSMC parameters.

Controller Parameters Values

FPI
A1 10

A2 0.1

FSMC

A1 100

A2 1

K1 300

K2 250
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