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Abstract: In the face of multiple failures caused by extreme disasters, the power and communication
sides of the distribution network are interdependent in the fault recovery process. To improve the
post-disaster recovery efficiency of the distribution network, this paper proposes a coordinated
optimization strategy for distribution network reconfiguration and repair, which integrates the power
and communication aspects. First, the recovery process is divided into islanding–reconfiguration
and dynamic emergency repair. The coupling relationship between power and communication is
considered; that is, power failure may cause communication nodes to lose power, and communication
failure may affect the effective operation of remote control devices. Based on this, the fault recovery
process is optimized with the objective of maximizing load transfer and direct recovery while
introducing a stochastic model predictive control method to handle the uncertainty of distributed
power generation by rolling optimization of typical scenarios. Finally, the effectiveness of the
proposed strategy is verified using an improved IEEE33-node distribution network system. The
simulation results show that the proposed method can recover power to the maximum extent and
reduce loss while ensuring the safe and stable operation of the distribution system.

Keywords: distribution network; fault recovery; power–communication coupling; uncertainty
processing; stochastic model predictive control

1. Introduction

In recent years, extreme events such as earthquakes and typhoons have occurred
frequently [1,2], causing extensive damage to the power system and seriously affecting
the safety and stability of the power grid. At the same time, power and communication
devices in the distribution network have formed a strong coupling relationship, which can
easily cause the interactive propagation of faults between the two sides of the network [3,4],
leading to cascading failures that can cause major power outages. For example, in July
2021, Zhengzhou, Henan province, experienced severe and extreme rainfall, resulting in
significant damage to the power system. In total, 736 transformers failed and 6028 power
poles collapsed, leading to a large number of base stations being forced out of service due to
power outages. According to statistics, a total of 3152 base stations were affected, disrupting
the dispatch automation of the power distribution network and triggering a cascade of
failures. This led to the shutdown of 473 power distribution lines, impacting approximately
775,000 households’ electricity supply. Due to various factors, including the type and
severity of natural disasters, as well as the resilience and disaster resistance capabilities
of the equipment, it is difficult to determine which type of failure is more likely to occur.
During natural disasters, power failures result in the loss of power to communication
equipment, and communication disruptions, in turn, impact the information retrieval
and effective operation of remote control devices. Therefore, coordinating the recovery of
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both power and communication can enhance the distribution network’s ability to respond
to disasters.

Many strategies have been proposed for distribution network fault recovery, which
utilizes various resources to flexibly reconfigure the network and reduce power outages
and economic loss. Ref. [5] proposes a global dynamic reconfiguration method applicable
to multi-stage switching modes, which enhances large-scale load flow regulation capability.
Ref. [6] considers the capacitor placement problem during distribution network reconfigu-
ration and solves the established mixed-integer linear programming model using CPLEX,
effectively reducing node voltage deviations and power loss. Ref. [7] considers the scale
and location of distributed generation (DG) in distribution network reconfiguration. It uses
a water cycle algorithm based on a discrete search space to significantly improve the opera-
tional efficiency of the distribution network. Refs. [8,9] proposes a new radial constraint
formula, making distribution network reconfiguration and operation more flexible and
enhancing system resilience. However, the above studies do not involve fault repair.

In the recovery process, failure to adjust the network structure after repairing a fault
can affect the reliability of the power supply in the distribution network. Reliability is cru-
cial for maintaining system stability, and extensive research has been conducted to explore
reliability issues [10–12]. Ref. [13] establishes a multi-stage dynamic recovery model based
on traffic and energy networks. It deploys mobile energy storage devices to recover power
outages based on rapid reconfiguration, achieving coordination and cooperation of various
resources during recovery. Ref. [14] proposes a coordinated optimization strategy for distri-
bution network fault reconfiguration and repair with distributed generation, considering
the time-varying nature of the load and using an improved particle swarm algorithm for a
solution. Ref. [15] proposes a coordinated optimization strategy for distribution network
recovery, maintenance personnel, and mobile power dispatch, which is transformed into
a mixed-integer linear programming problem. The computational complexity is reduced
through preprocessing, improving system resilience. The above studies focus only on the
power grid and do not consider the impact of communication failures on distribution net-
work recovery. The actual distribution network recovery process depends on the automated
scheduling of communication systems for the power fault location, isolation, and switch
action [16,17], while the communication system also depends on a continuous and stable
power supply from the power side to maintain normal operation [18,19]. The power and
communication sides constrain each other during the distribution network fault recovery
process. Therefore, coordination between the two can make the distribution network more
efficient and faster to recover, thereby reducing economic loss caused by faults.

Currently, few studies consider the interaction between power and communication in
distribution network fault recovery. Ref. [20] proposed a fault correlation matrix that reflects
the impact of communication failures on the power side. It established a communication-
power bi-level optimization model with coupled constraints prioritizing communication
recovery. The model was solved using second-order cone relaxation and dynamic routing
algorithms. Ref. [21] quantified the elasticity of distribution networks based on a compound
Poisson process, established an optimization model with a cascading failure model, and
used an improved simulated annealing algorithm to obtain the optimal repair sequence.
Ref. [22] established a unified repair personnel scheduling and time model based on
integrating transportation, communication, and power networks. It converted it into a
mixed-integer linear programming problem using an improved single-commodity flow
model. These studies did not consider the uncertainty of distributed generation output
during fault recovery, which makes it difficult to obtain the optimal control sequence,
thereby affecting the stable operation of the distribution network and causing additional
economic loss.

To address the issues mentioned above, this paper proposes a fault recovery strategy
for power–communication coupled distribution network with consideration of uncertainty.
Firstly, the recovery process is divided into two stages: islanding–reconfiguration and
dynamic emergency repair. The joint optimization of power and communication networks
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is realized by establishing coupling constraints. Secondly, stochastic model predictive
control (SMPC) is used to replace a single prediction sequence with a set of scenarios
representing different states for rolling optimization to solve the uncertainty of distributed
generation output [23]. Finally, the effectiveness of the proposed method is verified by
using the improved IEEE 33-node distribution system.

2. Problem Overview
2.1. The Coupling Mechanism between Power and Communication

The distribution system can be divided into the power side and the communica-
tion side. The power side includes nodes, lines, distributed generation, loads, segmental
switches, tie switches, etc. In this paper, wireless communication is used. The communi-
cation side includes dispatching centers, mobile base stations, and feeder terminal units
(FTUs) [24]. FTUs are located at the power node and control the switches between the
power node and the upstream node. FTUs and dispatching centers have standby power
generation units, which can maintain normal operation even if the power side is out of
service. The power–communication coupling is reflected in the fact that the mobile base
station depends on the power supply on the power side, and the control of distribution
device, such as switches, also depends on control instructions from the communication
side. FTUs send operational data of distribution device to the dispatching center via the
mobile base station. The dispatching center sends control instructions to FTUs to control
the opening and closing of segmental (tie) switches. The system structure is shown in
Figure 1.
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During the post-disaster recovery process of the distribution network, the impact
of the power side on the communication side is mainly reflected in the disconnection of
communication nodes due to power failure after the fault, and the degree of impact of the
communication side on the power side depends on the role of communication functions in
the distribution network fault recovery process. Specifically, the types of communication
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system failures can be divided into FTU information monitoring device failures and wireless
communication network transmission failures [25]. This paper analyzes the impact of
communication on the fault recovery of the distribution network from two aspects.

• FTU information monitoring device failure

The information monitoring device collects real-time acquisition of the distribution
network’s switch status and power parameters [26]. When a failure occurs, it indirectly
affects the dispatch center’s judgment of the fault location [27], further expanding the
power outage area. Figure 2 shows the fault state analysis of the distribution network,
where a fault occurs between power nodes 3 and 4, and the segmental switch in this section
is disconnected because the FTU in this section cannot obtain measurement information.
Although no fault occurs between nodes 2 and 3, due to the failure of the FTU information
monitoring device, the dispatch center identifies a fault in this section and locates it between
nodes 2 and 4. Therefore, the segmental switch between nodes 2 and 3 is disconnected,
causing a power outage at node 3 and expanding the power outage area.

Energies 2023, 16, x FOR PEER REVIEW 4 of 21 
 

 

During the post-disaster recovery process of the distribution network, the impact of 
the power side on the communication side is mainly reflected in the disconnection of com-
munication nodes due to power failure after the fault, and the degree of impact of the 
communication side on the power side depends on the role of communication functions 
in the distribution network fault recovery process. Specifically, the types of communica-
tion system failures can be divided into FTU information monitoring device failures and 
wireless communication network transmission failures [25]. This paper analyzes the im-
pact of communication on the fault recovery of the distribution network from two aspects. 
• FTU information monitoring device failure 

The information monitoring device collects real-time acquisition of the distribution 
network’s switch status and power parameters [26]. When a failure occurs, it indirectly 
affects the dispatch center’s judgment of the fault location [27], further expanding the 
power outage area. Figure 2 shows the fault state analysis of the distribution network, 
where a fault occurs between power nodes 3 and 4, and the segmental switch in this sec-
tion is disconnected because the FTU in this section cannot obtain measurement infor-
mation. Although no fault occurs between nodes 2 and 3, due to the failure of the FTU 
information monitoring device, the dispatch center identifies a fault in this section and 
locates it between nodes 2 and 4. Therefore, the segmental switch between nodes 2 and 3 
is disconnected, causing a power outage at node 3 and expanding the power outage area. 

 
Figure 2. Distribution network fault state analysis. 

• Wireless communication network transmission failure 
The dispatch center cannot obtain complete measurement information, and it is dif-

ficult to issue relevant control instructions based on the fault situation. This can lead to 
some switches not operating normally, affecting fault reconfiguration and load transfer, 
causing more power outages and longer fault recovery time. 

2.2. Fault Recovery Strategy Framework 
With the increasing integration of DG into distribution networks, it is difficult to ob-

tain the optimal recovery strategy by optimizing based on deterministic power output. 
This paper proposes the use of SMPC for fault recovery to reduce the impact of renewable 
energy output uncertainty. The operating principles are shown in Figure 3 as follows. 
1. At the current time step, denoted as k, the prediction model is used to obtain the wind 

and solar power prediction sequence for the prediction/optimization horizon; 
2. The probability distribution of wind and solar power output is usually continuous. 

Therefore, it is approximated using a finite number of discrete deterministic samples. 
This paper employs Latin hypercube sampling (LHS) and probability distance reduc-
tion (PDR) to generate and reduce the “scenario,” obtaining typical wind and solar 
power output sequences and their corresponding probabilities [28,29]; 

3. The optimization model consists of islanding–reconfiguration and dynamic repair. 
Each scenario is incorporated into the optimization model, with the objective func-
tion consisting of the loss of load, network loss, social and economic loss, repair cost, 
etc. The constraints include the power–communication coupling constraint, power 

Figure 2. Distribution network fault state analysis.

• Wireless communication network transmission failure

The dispatch center cannot obtain complete measurement information, and it is diffi-
cult to issue relevant control instructions based on the fault situation. This can lead to some
switches not operating normally, affecting fault reconfiguration and load transfer, causing
more power outages and longer fault recovery time.

2.2. Fault Recovery Strategy Framework

With the increasing integration of DG into distribution networks, it is difficult to
obtain the optimal recovery strategy by optimizing based on deterministic power output.
This paper proposes the use of SMPC for fault recovery to reduce the impact of renewable
energy output uncertainty. The operating principles are shown in Figure 3 as follows.

1. At the current time step, denoted as k, the prediction model is used to obtain the wind
and solar power prediction sequence for the prediction/optimization horizon;

2. The probability distribution of wind and solar power output is usually continuous.
Therefore, it is approximated using a finite number of discrete deterministic samples.
This paper employs Latin hypercube sampling (LHS) and probability distance reduc-
tion (PDR) to generate and reduce the “scenario,” obtaining typical wind and solar
power output sequences and their corresponding probabilities [28,29];

3. The optimization model consists of islanding–reconfiguration and dynamic repair.
Each scenario is incorporated into the optimization model, with the objective function
consisting of the loss of load, network loss, social and economic loss, repair cost,
etc. The constraints include the power–communication coupling constraint, power
flow constraint, node voltage constraint, radial topology constraint, repair resource
constraint, etc. The optimization problem is then solved to obtain control sequences
for opening and closing switches and repair order for the optimization period. Only
the first control variable sequence is issued;

4. In the next time step, i.e., the k + 1 time step, the actual measured values of wind
and solar power are used as the initial values for the k + 1 time step, thus achieving
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feedback correction of the prediction model. Then, the process is repeated from step 1
for the next horizon optimization.
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3. Fault Recovery Optimization Model

The optimization model is divided into two parts: islanding–reconfiguration and
dynamic repair. After optimization, the control sequences for opening/closing and repair
order within the optimization period can be obtained. In order to minimize prediction
errors as much as possible, repeated rolling optimization is used instead of a one-time
global optimization, and only the first control variable sequence is issued.

3.1. Part 1

Part 1 is islanding–reconfiguration. This part considers the impact of communication
failures on the normal operation of segmental and tie switches, achieving load transfer and
grid reconfiguration. Firstly, islanding is achieved using a topological search method based
on the DG load transfer capability. Then, mathematical programming is used to solve the
network reconfiguration of the distribution network.

3.1.1. Objective Function

Optimization is carried out for typical scenarios based on comprehensive consideration
of factors such as loss of load, node voltage deviation, and network loss.

F = min
N

∑
s=1

ps(u1 f s
1 + u2 f s

2 + u3 f s
3) (1)
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where ps represents the probability of the s-th scenario; u1, u2, and u3 are the weight values
of the loss of load, node voltage deviation, and network loss in the objective function,
respectively; f s

1 , f s
2 , and f s

3 are the total loss of load, node voltage deviation, and network
loss in the s-th scenario; and N is the number of typical scenarios.

• Loss of load

f1 = min
M

∑
i=1

ωiPcut
i (2)

where ωi represents the load level coefficient of node i, with values of 100, 10, and 1 for
the first, second, and third level loads, respectively; M is the total number of blackout load
nodes; and Pcut

i is the load power cut off at node i.

• Node voltage deviation

The node voltage deviation can measure the degree of voltage offset, and a smaller
deviation indicates less voltage fluctuation in the distribution network, resulting in higher
power supply reliability.

f2 = min
N

∑
k=1

(|Uk −Us|/Us) (3)

where N represents the total number of main network nodes in the distribution network;
Uk represents the voltage value at node k; and Us represents the reference voltage value of
the distribution network.

• Network loss

f3 = min∑
j∈L

k jrj

(
P2

j + Q2
j

)
/U2

j (4)

where L represents the set of branches in the distribution network and kj represents the
current status of the segmental switch on branch j. If it is closed, then kj equals 1; otherwise,
kj equals 0. Pj, Qj, and Uj, respectively, represent the current active power, reactive power,
and voltage magnitude of branch j. rj represents the resistance of branch j.

3.1.2. Constraints

• Power–communication coupling constraint

The power and communication sides mutually influence each other during the re-
covery process, which results in segmental (tie) switch state constraint and power supply
constraint.

kx(y) ≤ kc
x(y) x ∈ Ωa,y ∈ Ωb (5)

Ci = D1
i ∪ D2

i · · · ∪ DM
i (6)

where kx(y) represents the status of the segmental switch x (tie switch y), and kc
x(y) represents

whether communication failure has affected the normal operation of the segmental switch
x (tie switch y). When kc

x(y) equals 1, there is no impact, and when it equals 0, there is an
impact. Ωa and Ωb represent the set of segmental switches and tie switches, respectively. Ci
represents the communication node i, and DM

i represents the power node corresponding to
the Mth power supply demand of the communication node i.

• Power flow constraint
Ui −Uj = Zij Iij
Sij = Ui I∗ij
∑a:a→i si + (Sai − Zaj|Iai|2) = ∑j:i→j Sij

(7)
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where Ui and Uj represent the voltage of node i and node j, and Sij and Iij represent the
apparent power and current of the branch from node i to node j, respectively. Sai, Zai, and
Iai represent the apparent power, impedance, and current of the branch from node k to node
i, and si represents the power capacity access in node i.

The process of transforming the power flow constraints from a nonlinear programming
model to a second-order cone programming model using second-order cone relaxation is
not described in detail here [30].

• Node voltage constraint

Umin ≤ Ui ≤ Umax (8)

where Ui represents the voltage value at node i; and Umin and Umax represent the minimum
and maximum voltage values allowed at the node.

• Branch current constraint

Il ≤ Ilmax (9)

where Il is the current flowing through branch l, and Ilmax is the maximum allowed
current on branch l.

• Radial topology constraint

In order to reduce power losses and improve power supply reliability, the configura-
tion of distribution networks is typically designed in a radial pattern, which means there
are no loops. {

∑
l∈θ

kl = ns − nb

kl ∈ {0, 1} , ∀l ∈ θ
(10)

where kl represents the binary nominal variable for the switching state of branch l: where it
equals 0, this indicates the branch is open, and where it equals 1, this indicates the branch is
closed. θ represents the set of distribution network lines; and ns and nb represent the total
number of nodes and the number of root nodes in the distribution network, respectively.

3.2. Part 2

Part 2 is dynamic recovery, in which the distribution network structure may change
after each islanding and network reconfiguration, and power and communication failures
can be directly or indirectly recovered to achieve load transfer. Therefore, considering the
social and economic loss and repair costs comprehensively, the recovery effect is quantified,
and the repair order is dynamically adjusted during recovery.

3.2.1. Objective Function

Based on the consideration of factors such as social and economic loss and repair
cost, optimization and solution are conducted based on the known structure of the current
distribution network.

G = min(λ1g1(X) + λ2g2(X)) (11)

where X = (x1, x2, . . . , xn) represents the repair strategy for the faulty device, and n is the
total number of faulty devices. λ1 and λ2 are the weight values of social and economic loss
and repair costs, respectively. g1(X) and g2(X) represent the current repair strategy’s social
and economic loss and repair costs.

• Social and economic loss

Social and economic loss involves the loss of load and the time required for fault repair
at each recovery stage. Therefore, optimizing social and economic loss is beneficial for
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supplying power to as many users as possible, reducing the impact of faults, and enhancing
the reliability of the distribution network.

g1(X) = min
n

∑
i=1

(T(xi)− T(xi−1))
3

∑
j=1

ωjPscut
j (xi) (12)

where T(xi) represents the time when the faulty device xi is repaired, and Pscut
j (xi) repre-

sents the total power loss of load level j when repairing the faulty device xi.

• Repair cost

g2(X) = min{mg + [T(xe
end) + T(xc

end)− 2T(x0)](r + v/l)} (13)

where mg is the fixed cost for repairing the faulty device. T
(
xe

end
)

and T
(
xc

end
)

are the time
when the last fault is repaired by the power repair team and the communication repair
team, respectively. T(x0) is the starting time of the repair. r, v, and l represent the labor cost
per unit time of each repair team, the driving speed of the repair vehicle, and the unit travel
cost, respectively.

3.2.2. Constraints

• Repair device constraint

Power and communication faults can be repaired only by corresponding types of
repair teams, and each repair team can repair only one faulty device at a time.

ne
∑

i=1
Cre

i = 1
nc
∑

j=1
Crc

j = 1
(14)

where ne represents the number of power system faults, and nc represents the number
of communication faults. Ce

i and Cc
j , respectively, indicate whether power device i and

communication device j are being repaired by the power repair team re and communication
repair team rc at the current time. A value of 1 indicates that they are being repaired, while
0 indicates that they have not been repaired yet.

• Repair time constraint

Regardless of the type of fault, it is considered completely recovered after one repair,
and there is no need for further repairs.

n

∑
i=1

Dk(xi) = 1, k ∈ Ωr (15)

where k represents the faulty device; Ωr represents the set of power and communication
faulty devices; Dk(xi) indicates whether the repair order of the faulty device k is the i-th: if
yes, then Dk(xi) = 1, otherwise Dk(xi) = 0.

4. Fault Recovery Strategy Based on SMPC

The actual output of DG may deviate from the predicted value. If the deterministic
output is used for optimization [31], obtaining the optimal control sequence is difficult, and
it may affect the power balance of the distribution network. This paper uses the SMPC
approach to implement the recovery of the power–communication coupled network under
uncertainties caused by renewable energy sources.

4.1. Prediction Model

Renewable energy sources such as wind and solar participate in the flexible operation
of the distribution network by increasing or decreasing their power output. Therefore, the
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changes in the power output of wind and solar power are used as the control variables,
and the prediction model is shown below [32]:

P(k + i | k) = P0(k) +
i

∑
t=1

∆u(k + t | k) i = 1, 2, · · · , N (16)

where P0(k) represents the initial output value of renewable energy sources, that is, the
actual output value, N is the number of prediction steps, and ∆u(k + t|k) represents the
prediction of the change in renewable energy output from [k + t−1, k + t] time interval at
time k. P0(k + i|k) represents the predicted value of renewable energy output at k + i time.

4.2. Typical Scenario Generation

Wind and solar power are renewable energy sources, and their power output is
uncertain. Considering the probability distribution function of the power output, many
wind and solar scenarios are obtained using Latin hypercube sampling. However, too
many samples will lead to overly complex calculations. Therefore, the probability distance
reduction method is used to reduce the number of scenarios while ensuring the accuracy of
the sample fitting.

4.2.1. Scenario Generation

LHS divides the cumulative density function into m equal regions and randomly sam-
ples from each region, achieving nearly all possible scenarios in the sampling results [33].
Compared with Monte Carlo sampling, it has the advantages of comprehensive sampling
and no obvious clustering. If there are n variables and m samples need to be drawn from a
specified interval, the specific steps of LHS are as follows:

1. Divide the cumulative distribution function of each variable into m regions;
2. Randomly sample m regions from the n variables, with a total of n × m samplings;
3. Randomly combine the N values randomly selected from each variable with the

values of other variables.

4.2.2. Scenario Reduction

The optimization solution will become too complex when there are too many scenarios.
To balance computation accuracy and time, a synchronous backtracking reduction method
based on probability distance is used to reduce the number of scenarios. This method
ensures that the wind and solar power output sample set after reduction can better reflect
the distribution of random variables while preserving boundary samples and covering
various extreme cases. The basic idea is as follows:

1. Compute the geometric distance between each pair of scenarios in the scenario sam-
ple set.

dij =

√√√√ n

∑
t=1

(
xi(t)− xj(t)

)2

, xi, xj ∈ S (17)

where S represents the set of scenarios, xi and xj, respectively, represent the i-th and
j-th scenarios, xi(t) represents the data corresponding to the t-th dimension in the
scenario i, and dij represents the distance between scenarios i and j.

2. Find the scenario xk with the closest distance to xi in the scenario set and obtain the
corresponding probability distance Di.

Di = pidik = pimin(di1, di2, · · · din) (18)

where pi represents the probability of scenario xi, dik represents the geometric distance
between xi and xk, and n is the number of scenarios.
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3. Sort all probability distances D in the scenarios, eliminate the scenario xi correspond-
ing to the minimum probability distance, and update the probability of the scenario
xk closest to it.

pk = pk + pi (19)

4. Repeat steps 1–3 until the remaining number of scenarios meets the requirements.

4.3. Feedback Correction

Due to the uncertainty of wind and solar power output and environmental factors, the
predicted wind and solar power output values by the forecasting model cannot accurately
track the actual output values, and prediction errors exist. Therefore, a feedback correction
process is introduced to minimize errors [34]. Specifically, the actual current wind and solar
power output values are used as the initial values for the new round of rolling optimization.

P0(k + 1) = Preal(k + 1) (20)

where P0(k + 1) is the initial power output of renewable energy at time k + 1, and Preal(k
+ 1) represents the actual power output value obtained at time k + 1 through distribution
network measurement devices after the control sequence issued by the dispatch center at
time k.

The fault recovery flowchart is shown in Figure A1.

5. Example Analysis

This article uses the IEEE 33-node distribution system for simulation verification, and
we adhere to the grid code specified by GB 50052-2009. The grid code provides technical
requirements and guidelines for the operation and connection of power systems. The
connection points for DG1, DG2, DG3, and DG4 are manually set to nodes 6, 13, 24, and 31,
respectively. The maximum power capacities are manually set to 800 kW, 800 kW, 1200 kW,
and 1200 kW for DG1, DG2, DG3, and DG4, respectively. DG1 and DG2 are photovoltaic
power generation, while DG3 and DG4 are wind power generation. Additionally, it is set
that DG1 is restricted to operate within the main distribution network and is unable to form
an island independently. The load profile and node load parameters are shown in Appendix
Figure A2 and Table A1, respectively. The power line fault is approximately located in the
middle of adjacent power nodes. Taking power node “0” as the origin, the power node and
communication node coordinates are shown in Appendix Tables A2 and A3. It is assumed
that there is one power repair team and one communication repair team at power node
“0”. The fixed repair costs for power and communication faults are 1000 and 2000 yuan,
respectively, and the repair time for the faulty device is half an hour. The repair vehicle
speed is 60 km per hour, costing 10 yuan per kilometer. The labor cost is 100 yuan per hour,
and the recovery starts at 12:00. The rolling optimization interval in this article is 15 min,
and the optimization period is 1 h. The number of scenarios generated by LHS is set to
1000, and the reduced typical scenarios number is 5. The CPLEX solver in MATLAB 2018a
was used to solve the optimization model.

Assuming that there are five power faults and three communication faults in the
distribution network, the power faults are located on power lines 8–9, 16–17, 20–21, 2–22,
and 22–23, and the communication faults are caused by the failure of wireless transmission
on 44–47 due to the communication base station-44 fault, the failure of the control command
receiving device on 27–43 caused by the FTU-27 failure, and the location error caused by the
information monitoring device failure on FTU-8. The power and communication topology
of the distribution network are shown in Figure 4a,b. Tables 1 and 2, respectively, show the
coupled network’s power supply and control relationships.
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Table 1. Coupled network’s power supply relationships.

Communication Node Power Node Communication Node Power Node

38 1, 4 43 25, 27, 28
39 6, 8, 9 44 30, 32
40 12, 14 45 5, 7
41 8, 21 46 3, 5, 23
42 22, 24 47 24, 26

Table 2. Coupled network’s control relationships.

Communication Node Switch

38 1, 2, 3, 4, 5, 6
39 7, 8, 9, 10, 11, 33
40 12, 13, 14, 15, 16, 17, 34
41 18, 19, 20, 21, 35
42 22, 23, 24, 37
43 25, 26, 27, 28, 29
44 30, 31, 32, 36

5.1. Simulation Results Analysis

The predicted wind and solar power output on the day of the fault is shown in Figure 5.
Figure 6a,b shows 1000 wind and solar power output scenarios generated by LHS in the
first optimization period. Figure 7a,b shows five typical wind and solar power output
scenarios obtained after scenario reduction in the first optimization period.
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Figure 7. Scenario reduction.

Typical wind and solar output scenarios were used to optimize the control sequence
for each optimization period. Rolling optimization was used instead of global optimization
to minimize prediction errors, and only the first control variable sequence was issued. The
device being repaired by the repair team was not included in the optimization of the repair
order. Therefore, the focus was on the topology and repair order of the distribution network
when the eight faults were repaired. Figure 8 shows the topology of the distribution network
in each stage of fault recovery, and Table 3 shows the repair order in each stage.

Table 3. Repair order.

Stage Time/min Devices That
Were Repaired

Devices That Were Being
Repaired

Power Repair
Team Task

Communication
Repair Team Task

1 0 f4→f5→f3→f1→f2 f6→f8→f7
2 54.4 f4 f6 f5→f3→f1→f2 f8→f7
3 68.0 f6 f5 f2→f3→f1 f8→f7
4 109.0 f5 f8 f2→f3→f1 f7
5 127.1 f8 f2 f1→f3 f7
6 179.5 f2 f7 f1→f3
7 181.9 f7 f1 f3
8 243.2 f1 f3
9 300.1 f3



Energies 2023, 16, 4618 13 of 21Energies 2023, 16, x FOR PEER REVIEW 13 of 21 
 

 

  
(a) Stage 1. (b) Stage 2. 

  
(c) Stage 3. (d) Stage 4. 

  
(e) Stage 5. (f) Stage 6. 

  
(g) Stage 7. (h) Stage 8. 

 
Figure 8. Topology of distribution network in each stage. 

  

1 2 3 4 87 105 6 9 11 14

22

1312 15 16 17

27

19

23 24

21

25

18

26 28 29 30 31 32

DG1 DG2

DG3

DG4

20

1 2 3 4 87 105 6 9 11 14

22

1312 15 16 17

27

19

23 24

21

25

18

26 28 29 30 31 32

DG1 DG2

DG3

DG4

20

1 2 3 4 87 105 6 9 11 14

22

1312 15 16 17

27

19

23 24

21

25

18

26 28 29 30 31 32

DG1 DG2

DG3 DG4

20

1 2 3 4 87 105 6 9 11 14

22

1312 15 16 17

27

19

23 24

21

25

18

26 28 29 30 31 32

DG1 DG2

DG3
DG4

20

1 2 3 4 87 105 6 9 11 14

22

1312 15 16 17

27

19

23 24

21

25

18

26 28 29 30 31 32

DG1 DG2

DG3
DG4

20

1 2 3 4 87 105 6 9 11 14

22

1312 15 16 17

27

19

23 24

21

25

18

26 28 29 30 31 32

DG1

DG2

DG3
DG4

20

1 2 3 4 87 105 6 9 11 14

22

1312 15 16 17

27

19

23 24

21

25

18

26 28 29 30 31 32

DG1

DG2

DG3
DG4

20

1 2 3 4 87 105 6 9 11 14

22

1312 15 16 17

27

19

23 24

21

25

18

26 28 29 30 31 32

DG1

DG2

DG3
DG4

20

：Tie line (tie switch closed)；

：First grade load； ：Secondary load； ：Tertiary load；

：Main network recovery area； ：DG recovery area；

：Tie line (tie switch is not closed)； ：Communication failure reflected on the power side；

：Power failure；

Figure 8. Topology of distribution network in each stage.

As shown in Figure 8 and Table 3, with the repair of faulty devices and the continuous
change of DG output, the distribution network topology and the blackout load will also
change, and the repair order will be dynamically adjusted. Table 3 shows that the power
repair order in stage 3 has changed compared to stage 2. The reason is that when f6
(communication base station-44) is repaired, tie switch-36 can receive the control command
from the dispatch center. Before f6 is repaired, f2 was arranged to be repaired last because
it is too far from the repair team and takes longer to repair. Additionally, tie switch-36
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cannot receive the control command, so it cannot be closed, and repairing f2 first will not
recover power to any blackout load. After f6 is repaired, it is predicted that the photovoltaic
output will gradually decrease in the next hour, causing secondary load-15 to leave the
island. Repairing f2 directly recovers secondary load-16 and indirectly reduces the amount
of future blackout load. Repairing f3 and f1 correspond to recovering tertiary load-21 and
cannot recover any load, respectively. The disadvantage of repairing f2 is that the overall
repair time takes too long, leading to social and economic loss and increased repair cost.
The optimal solution in stage 3 corresponds to prioritizing the repair of f2, so the benefits
outweigh the drawbacks, and the repair order is changed.

The power repair order in stage 5 has also changed compared to stage 4. When the
information monitoring device of FTU-8 is repaired, the measurement information in that
section can be transmitted to the dispatch center, so the fault location is reidentified. The
dispatch center believes that the power nodes in sections 8 and 9 have not failed and sends
instructions to open and close the switch in segments. On the one hand, load-8 is recovered,
and the corresponding communication base station-41 also resumes service, so the relevant
segmental switch and tie switch can work normally. On the other hand, repairing f1 can
recover loads 9 and 10, resulting in a change in the repair order, with f1 being repaired
before f3.

5.2. Comparison of Different Control Methods

Case 1 (deterministic optimization): considering the fluctuation of DG output, but only one
optimization was performed using the forecast data for the following day.
Case 2 (MPC): considering the fluctuation of DG output, reducing the influence of uncer-
tainty, and implementing rolling optimization.
Case 3 (RMPC): Robust Model Predictive Control (RMPC) based on MPC and robust
optimization theory, the modeling of DG output is performed using interval values, further
reducing the impact of uncertainty [35].
Case 4 (SMPC): based on MPC, considering typical scenarios, further reducing the impact
of uncertainty.

Case 1 involves a single global optimization without considering the uncertainty of
DG output. In Case 2, rolling optimization is used to reduce the impact of uncertainty.
Both Case 3 and Case 4 further reduce the DG uncertainty. Comparing the two, Case 3
is better suited for extreme situations but can be overly conservative. On the other hand,
Case 4 considers typical scenarios, enabling better adaptation to different situations and
providing robust control strategies, although it may have limited capabilities in handling
rare or extreme cases.

5.2.1. Comparison of Node Voltages

Using the four different control methods to implement fault recovery, and comparing
the real-time minimum and maximum node voltage values of the four methods, Figure 9
shows the node voltage values under different control methods.

According to Figure 9, the node voltage deviation is the largest for the method without
MPC, because it performs only one global optimization, leading to large errors in the DG
power prediction. The MPC method improves the prediction accuracy by considering
the fluctuation of DG output and using rolling optimization to obtain the optimal control
sequence, resulting in a significant reduction in node voltage deviation. RMPC and SMPC
further reduce the impact of uncertainty by utilizing interval modeling and typical scenario
approximation, respectively. As a result, the node voltage deviation values are smaller
compared to other methods, which is beneficial for the safe and stable operation of the
system. Comparing RMPC and SMPC, SMPC generally outperforms RMPC because it can
better adapt to different situations, while RMPC tends to be more conservative and shows
advantages only in extreme cases.
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Figure 9. Comparison of node voltage under different control methods.

5.2.2. Comparison of Optimization Results

The results of the four methods are shown in Table 4. It can be seen from the compari-
son that the method without MPC has the highest social and economic loss and repair time
values, mainly because it only performs one global optimization, and it is difficult to obtain
optimal network reconfiguration and repair order instructions. For example, in this case, f2
was repaired as a priority in the third stage, but the method without MPC did not change
the repair order, resulting in a delay in the recovery of secondary load-16, causing addi-
tional economic loss. MPC, RMPC, and SMPC have the capability of rolling optimization,
enabling them to dynamically adjust network architecture and repair order. As a result,
these three methods exhibit significant reductions in social and economic loss. Compared
to MPC, both RMPC and SMPC demonstrate lower social and economic loss because they
further reduce the impact of DG output uncertainty and can potentially recover more
power during network reconfiguration by obtaining relatively optimal control sequences.
When comparing RMPC and SMPC, SMPC achieves better fault recovery performance due
to its superior adaptability.

Table 4. Optimization results.

Method Social and Economic Loss/kWh Repair Time/min

Case 1 22,657.4 311.8
Case 2 17,017.3 288.6
Case 3 15,163.1 300.1
Case 4 14,310.5 295.4

5.3. Sensitivity Analysis
5.3.1. Analysis of Typical Scenario Numbers

The optimization results often vary with different numbers of typical scenarios. As-
suming that the number of typical scenarios is 3, 4, 5, 6, and 7, Figure 10 compares the fault
recovery effects for different numbers of typical scenarios. If the number of typical scenar-
ios is too small, it is difficult to eliminate the uncertainty of DG output, which affects the
recovery effect. On the other hand, too many typical scenarios increase the computational
complexity, so an appropriate number of scenarios needs to be selected. From Figure 10, it
can be seen that, when the number of typical scenarios increases to 5, the loss and repair
time are relatively small, and further increasing the number of scenarios has little effect on
the fault recovery performance. Therefore, the number of typical scenarios is set to five.
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5.3.2. Prediction Horizon Analysis

To discuss the impact of different prediction horizons based on SMPC on power
recovery results, we assume that the prediction horizon includes 3, 4, 5, and 6 time steps,
each with a time interval of 15 min. The impact of different prediction horizons on recovery
results is shown in Figure 11.
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As shown in Figure 11, the impact of the multi-horizon recovery strategy based on
SMPC on the recovery results was compared. It can be seen that the area below the curve
corresponding to the four time steps is the smallest, which means the minimum social and
economic loss, and the total time is shorter. The number of predicted time steps is not a
case of the larger, the better. Suppose the number of predicted time steps is too large. In
that case, the prediction error of DG output will increase, reducing the recovery strategy’s
effectiveness and bringing a computational burden. Therefore, selecting the appropriate
prediction horizon can better play the role of the RMPC method.
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6. Conclusions

Considering the concurrent fault effect of the power side and communication side, we
proposed a coordinated power–communication distribution network reconfiguration and
dynamic repair joint optimization strategy. The following conclusions are described.

(1) The power–communication coupling constraint establishes a coupling relationship
between the power side and the communication side, reflecting real-time information
on the power outage load, faulty equipment locations, and quantities during the fault
recovery process. This provides a basis for decision making.

(2) The proposed fault recovery strategy in this paper consists of two stages: islanding
and network reconfiguration, followed by recovery. The strategy considers the impact
of power–communication coupling and uncertainty. The optimization model is solved
using the CPLEX solver. Simulation results based on the IEEE 33-node system demon-
strate that the proposed method achieves fault recovery in power–communication
coupled distribution networks.

(3) Compared to deterministic optimization, MPC, and RMPC, SMPC reduce social and
economic loss by 36.8%, 15.9%, and 5.6%, respectively, and have a relatively shorter
recovery time. This indicates that, by reducing the impact of distributed generation
output uncertainty, SMPC can achieve more optimal recovery plans.

The proposed method in this study addresses the challenge of cascading failures
caused by power–communication coupling in distribution networks, which can impact the
recovery process. Moreover, it enables accelerated load recovery and reduces power outage
losses during this process. Furthermore, there is a lack of in-depth consideration of real
road conditions, including traffic congestion and actual pathways, which may influence
the recovery strategy. Therefore, these factors will be taken into account in future research.
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Table A1. Node load parameters.

Node Load Class Node Load Class Node Load Class

0 11 II 22 II
1 III 12 I 23 I
2 III 13 I 24 I
3 III 14 III 25 III
4 III 15 II 26 II
5 I 16 II 27 III
6 I 17 I 28 III
7 II 18 III 29 I
8 III 19 III 30 II
9 III 20 III 31 I
10 III 21 III 32 II

Table A2. Positions of power nodes.

Node Coordinate/m Node Coordinate/m Node Coordinate/m

0 (0, 0) 11 (9027, 345) 22 (2621, −2485)
1 (372, −142) 12 (9336, 214) 23 (4062, −2843)
2 (961, −342) 13 (11,532, −348) 24 (4356, −2354)
3 (1549, 42) 14 (11,921, −301) 25 (5734, −1653)
4 (2383, −216) 15 (13,123, 652) 26 (6239, −1647)
5 (3063, 186) 16 (14,235, −1064) 27 (7336, −1364)
6 (4339, 395) 17 (16,682, −1431) 28 (8014, −1112)
7 (5156, 274) 18 (1034, 3140) 29 (8816, −613)
8 (6923, 240) 19 (2632, 2230) 30 (10,353, −924)
9 (7719, 211) 20 (4193, 2843) 31 (10,632, −1023)
10 (8593, −132) 21 (5259, 4023) 32 (11,237, −1356)

Table A3. Positions of communication nodes.

Node Coordinate/m Node Coordinate/m

38 (2063, 15) 43 (7227, −1345)
39 (5672, −142) 44 (10,936, 214)
40 (11,961, 142) 45 (6532, −348)
41 (3549, 2942) 46 (7931, 961)
42 (3383, −1216) 47 (6123, −752)
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