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Abstract: A new prediction framework is proposed to improve short-term power load forecasting
accuracy. The framework is based on particle swarm optimization (PSO)-variational mode decompo-
sition (VMD) combined with a time convolution network (TCN) embedded attention mechanism
(Attention). The framework follows a two-step process. In the first step, PSO is applied to optimize
the VMD decomposition method. The original electricity load sequence is decomposed, and the
fitness function uses sample entropy to describe the complexity of the time series. The decomposed
sub-sequences are combined with relevant features, such as meteorological data, to form the input
sequence of the prediction model. In the second step, TCN is selected as the prediction model, and it
is embedded with an attention mechanism to improve prediction accuracy. The above input sequence
is fed to the model to obtain the PSO-VMD-TCN-Attention prediction framework. Load datasets
and various prediction models validate the PSO-optimized VMD decomposition method and the
TCN-Attention prediction model. Simulation results demonstrate that the PSO-optimized VMD
decomposition method enhances the model’s prediction accuracy, and the TCN-Attention prediction
model outperforms other prediction models in terms of prediction accuracy and ability.

Keywords: variational mode decomposition (VMD); time convolution network (TCN); attention
mechanism; short-term load forecasting; particle swarm optimization (PSO)

1. Introduction

Electricity load forecasting is crucial for the rational planning and distribution of
electric power in power grids. It is also essential for maintaining stable and safe power
grid operation. However, with the growing size of power grids and changes in power
demand, forecasting power loads is becoming increasingly challenging. For example,
the large-scale integration of new energy sources into the power system has led to more
diverse factors affecting load, and the changes in electricity demand are more random,
resulting in an increase in load uncertainty. Failing to forecast power loads accurately
can have a negative impact on the national economy and finances [1,2]. Accurate load
forecasting is a prerequisite for the stable, safe, and efficient operation of the power system.
As such, modern power systems require more accurate load forecasting methods, making
it important to find more precise load forecasting research methods.

Currently, there are three main research methods for power load forecasting. The
first method is traditional statistical model-based forecasting, which includes time series
analysis and regression forecasting [3]. These methods perform well for smooth loads but
have limitations in learning non-linear interactions between input and output variables. As
power grids evolve and become larger, non-smooth high-frequency characteristics of power
loads emerge, and the traditional statistical model-based methods struggle to achieve
high accuracy [4]. The second method is based on artificial intelligence prediction, further
subdivided into traditional machine learning and neural network methods. Traditional
machine learning includes support vector machines (SVM) [5–7], decision trees [8], random
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forests (RF) [9,10], and other methods. Neural network algorithms include recurrent
neural networks (RNN) [11], long short-term memory (LSTM) [12–15], gated recurrent
units (GRU) [16,17], convolutional neural networks (CNN) [18], and deep belief networks
(DBN) [19]. However, single machine learning methods face challenges such as high error
rates, computational complexity, and low computational efficiency. Thus, achieving high
prediction accuracy can be challenging. The third method is combination prediction [20],
divided into general and decomposition combinations. The general combination method
uses multiple algorithms for prediction and weighs the results of different algorithms,
whereas the decomposition combination method combines a single method to obtain the
best prediction model [21]. The literature [22] used the variational modal decomposition
(VMD) method to decompose the multivariate load sequences in an integrated energy
system and construct different feature sequences separately to input into a deep learning
fusion model for prediction, which avoids overfitting in the training process and improves
the prediction accuracy. In the literature [23], in order to solve the problem that the single
sum function of a kernel limit learning machine is difficult to adapt to the multiple data
features of the load, a multicore limit learning machine prediction model based on VMD
and particle swarm optimization (PSO) is proposed to obtain prediction results. In the
literature [24], an Attention-GRU prediction model based on sparrow search optimization
is proposed to forecast the electric load, and the Attention mechanism is used to assign
weights to the input sequence and then input to the GRU combinatorial network for
learning prediction. In the literature [25], an autoregressive integrated moving average
(ARIMA)-GRU prediction model based on data mining is proposed. After extracting chaotic
features by phase space reconstruction of load data, the prediction results are obtained
by applying VMD to decompose each dimensional data and re-constructing it into two
sequences of high frequency and low frequency into the model. A load decomposition
method based on complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) and sample entropy (SE) was proposed in the literature [26], and better
prediction results were obtained by a back propagation (BP) neural network with the
Transformer model for prediction.

In summary, the following problems exist with existing methods for forecasting electric
load based on portfolio forecasting: (1) General combination forecasting methods often
fail to produce accurate results for various situations because they lack generality and
adaptability. (2) The above literature mostly directly utilizes VMD to decompose the input
model data into sub-sequences with different characteristic frequencies to simplify load
characteristics and improve prediction accuracy. However, the parameter setting in VMD
is subjective, which may artificially influence the prediction results, resulting in a slightly
poor universality and generalization ability of the model. (3) The neural network model
utilized in the above-mentioned study proves to be more effective when compared to single
machine learning and traditional statistically based prediction approaches. It can effectively
extract the complex features of modern power loads. Nonetheless, due to the expansion and
development of the power grid, power load characteristics are becoming more nonlinear
and non-stationary. Although the neural network model can extract relevant features for
prediction, its high computation requirement results in relatively low predictive efficiency.
In response to the problem that the traditional method has low accuracy in predicting
the highly stochastic power load [7] and the human influence caused by the empirical
assignment of VMD parameters on the prediction results, this paper proposes a VMD
method based on PSO optimization to decompose the input load sequence and constructs
a TCN-Attention prediction model to forecast the electric load.

The main contributions of this paper are the following three points: Firstly, we employ
the PSO algorithm to optimize the parameters of the VMD method, specifically the modal
number (K) and bandwidth constraint (alpha). The fitness function used is the minimum
sample entropy of each sub-decomposition sequence, which enables the acquisition of
loading sub-sequences with low time complexity. This enables easier feature extraction in
subsequent prediction models, thereby improving prediction accuracy. This also overcomes
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the disadvantage caused by the artificial assignment of VMD parameters, which leads
to human influence on the results. Secondly, the TCN prediction model is used, which
processes time series better than CNN networks. Compared to LSTM and other recurrent
neural networks, TCN has longer input sequences. Recurrent neural networks are limited
by problems such as vanishing or exploding gradients and can only handle short sequences.
TCN also has parallel computing capabilities, which can improve the model’s training
speed and prediction efficiency. Additionally, TCN can handle longer sequences by ex-
tending convolutional operations and requires fewer parameters due to the characteristics
of local connections and weight sharing, thereby reducing the risk of overfitting. Thirdly,
the TCN network is embedded with the Attention mechanism, which assigns different
weights to different input sequences. The weight is based on their influence on the electric
load. Sequences with greater influence are assigned high weights, and those with less
influence are assigned low weights. This approach further improves the training efficiency
and prediction accuracy of the model. Finally, we verify the validity and accuracy of our
proposed model using the actual electricity load dataset in the Panama region, comparing
it with several prediction models. The effectiveness of the proposed method is verified by
comparative simulation experiments. The subsequent structure of this paper is as follows:
Section 2 provides a detailed explanation of the relevant theories and implementation meth-
ods of the PSO-optimized VMD decomposition method. Section 3 introduces the relevant
theories and network structure diagram of the TCN-Attention short-term electricity load
forecasting model. Section 4 conducts simulation experiments to verify the effectiveness
of the proposed method through comparative experiments. Section 5 summarizes the
contributions of this paper.

2. Load Sequence Decomposition Based on PSO-VMD
2.1. Particle Swarm Optimization

Particle swarm optimization (PSO) models the foraging behavior of birds in which
there is only one source of food within a flock domain. Although the birds are unaware
of the exact location of the food, they are cognizant of the distance between their current
location and the food. The current position of the particle serves as a potential solution to
the optimization problem at hand, while the process simulates the search process of the
individual. This process is carried out as follows:

(1) First, initialize the number of independent variables of the objective function, the
maximum velocity of the particle, the position information, and the maximum number
of iterations of the algorithm, and set the particle population size as M.

(2) Set the fitness function, define the individual extreme value as the optimal solution
for each particle, find the global optimal solution, and compare it with the historical
optimal solution to update the speed and position.

(3) Keep updating the velocity and position by iterating Equations (1) and (2).

vk+1
id = ωvk

id + c1r1

(
pk

id,pbest − xk
id

)
+ c2r2

(
pk

d,gbest − xk
id

)
(1)

xk+1
id = xk

id + yk+1
id (2)

(4) The PSO optimization is terminated when the set maximum number of iterations is
reached or the error between generations satisfies the set condition.

Where: d is the particle dimension; k is the number of iterations; w is the inertia
weight;c1 is the individual learning factor; c2 is the population learning factor; r1, r2 is
the random number in the interval [0, 1]; vk

id is the velocity vector of the particle i in the
dimension d of the k second iteration; xk

id is the position vector of the particle i in the
dimension d of the k second iteration; pk

id,pbest is the historical optimal position of the

particle i in the dimension d of the k second iteration; pk
d,gbest is the historical optimal

position of the population in the dimension d of the k second iteration.
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2.2. Variational Modal Decomposition

With the development of the grid scale and the change in customer-side electricity
demand, the load characteristics of the grid increasingly show high-frequency non-smooth
characteristics, which makes the feature extraction of the electric load more and more
difficult. In order to solve the problem of difficult load feature extraction and improve the
prediction accuracy, VMD is used to decompose the original load sequence into a specified
number of load sub-series; each load order has its own central frequency W and finite
bandwidth. The main process of its decomposition is as follows:

(1) Hilbert transform of the submodes to obtain the one-sided spectrum of the resolved
signal: (

δ(t) +
j

πt

)
un(t) (3)

(2) Transforming the spectrum to the baseband multiplied by the estimated center fre-
quency of the exponential signal:((

δ(t) +
j

πt

)
un(t)

)
e−jωnt (4)

(3) Estimating the bandwidth by demodulating the signal Gaussian smoothing, which
can be expressed as its constrained variational problem as Equation (5):

min
|un |,|ωn |

=

{
N
∑

n=1

∥∥∥∂t

[(
δ(t) + j

πt

)
un(t)

]
e−jωnt

∥∥∥2

2

}
N
∑

n=1
un(t) = f (t)

(5)

(4) By introducing a quadratic penalty factor α and Lagrange multiplier, it is transformed
into an unconstrained variational problem to be solved as Equation (6):

L(|un|, |ωn|, λ) = α
N
∑

n=1

∥∥∥∂t

[(
δ(t) + j

πt

)
⊗ un(t)

]
e−jωnt

∥∥∥2

2

+
∥∥∥ f (t)−

N
∑

n=1
un(t)

∥∥∥2

2
+

〈
λ(t), f (t)−

N
∑

n=1
un(t)

〉 (6)

(5) The value is updated continuously and iteratively by the alternating direction multi-
plier method:

uk+1
n (ω) =

f̂ (ω)−
N
∑

n=1
ûn(ω) + λ̂

2

1 + 2α(ω−ωn)
2 (7)

ωk+1
n =

∫ ∞
0 ω|ûn(ω)|2dω∫ ∞

0 |ûn(ω)|2dω
(8)

where: f (t) is the undecomposed main signal; un(t) is the set of nth modal decompo-
sitions of order; δ(t) is the unit pulse signal; f̂ (ω), ûn(ω), λ̂ are the Fourier transforms
of f (t), un(t), λ(t), respectively; n is the nth modal component after decomposition;
N is the total number of decompositions;ωn is the central frequency of the modalities;
∂t is the bias operator; k is the number of iterations; j is the unit of imaginary numbers;
⊗ is the convolution operator.

As a non-recursive signal processing method, the VMD decomposition method can
transform the original signal decomposition process into a variational problem, which
is better than EMD and its variant decomposition methods for non-stationary nonlinear
signals. It is also very suitable for solving the problem of difficult feature extraction due to
the nonlinear non-stationary characteristics presented by the current electric load, but it
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needs to pre-define the modal number K, which will have an artificial impact on the model
prediction effect later.

2.3. Sample Entropy

Sample entropy is a measure to describe the complexity of a time series. The algorithm
is improved compared with the approximate entropy, which reduces the error of the
approximate entropy and has higher accuracy.

The sample entropy is calculated as follows:

(1) For a time series of N data {x(n)} = x(1), x(2), · · · , x(N), a vector sequence Xm(1),
Xm(2), . . . , Xm(N −m + 1) of dimension m is formed by the serial number. Where
Xm(i) = x(i), x(i + 1), . . . , x(i + m− 1) is the m consecutive x values starting from
the i-th point.

(2) Define the distance d[Xm(i), Xm(j)] between vectors Xm(i) and Xm(j):

d[Xm(i), Xm(j)] = max
k=0,...,m−1

(|x(i + k)− x(j + k)|) (9)

(3) Count the number of distances between Xm(i) and Xm(j) that are less than or equal
to r(i = 1, 2, . . . , N −m + 1; j = 1, 2, . . . , N −m + 1, j 6= i), calculate its ratio to N −m
and denote it as Bm

i (r):

Bm
i (r) =

num{dm[X(i), X(j)] < r}
N −m

(10)

(4) Define the mean value of Bm
i (r) as:

Bm(r) =
1

N −m + 1

N−m+1

∑
i=1

Bm
i (r) (11)

(5) Increase the number of dimensions by 1 and repeat steps (1) to (4) to obtain the
average value of Bm+1

i (r) as:

Bm+1(r) =
1

N −m

N−m

∑
i=1

Bm+1
i (r) (12)

(6) Define SE as:

SE(m, r) = lim
N→∞

{
− ln(

Bm+1(r)
Bm(r)

)

}
(13)

when N is a finite value, SE can be estimated as:

SE(m, r, N) = − ln(
Bm+1(r)

Bm(r)
) (14)

where: m is the dimensionality, r is the similarity tolerance, and N is the length.

A larger value of the sample entropy indicates a higher complexity of the sequence in
time, and a smaller value indicates a lower complexity of the sequence in time. Since it can
be used to characterize the complexity of a time series on a time scale, it can be used as an
adaptation function for optimization algorithms.

Using PSO for the VMD decomposition method, the size of the sample entropy of each
subsequence obtained by PSO is calculated separately for each attempt, and the smallest
result is selected as the final result of this attempt, which continuously makes PSO attempts
to decompose the subsequence component with the smallest complexity and obtain the
VMD parameters, which can improve the prediction accuracy of the model.
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3. TCN-Attention Prediction Model
3.1. TCN

The TCN neural network integrates dilated and causal convolutions (DCC) with
residual connections (RC) to forecast time series. Figure 1 displays the network architecture.
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Figure 1. TCN network structure.

Causal convolution operates on current and past values to estimate the current out-
come, making it a causal yet time-constrained neural network model that inhibits data
leakage. Nevertheless, like other neural networks, it struggles to capture long-term fea-
tures due to its small kernel sizes. Hence, dilation convolution is introduced to enlarge
the receptive field by sampling the input interval during convolution. The mathematical
representation of dilation convolution can be seen in Equation (15).

F(t) =
u−1

∑
v=0

f (v)Xt−dv (15)

where: F(t) denotes the convolution result at Xt; d is the dilation factor; u is the convolution
kernel size; Xt−dv denotes the convolution calculation on historical load data, and f denotes
the TCN filter coefficient.

TCN employs residual connections to facilitate inter-layer data flow, preventing the
problem of gradients disappearing in more profound network structures.

TCN can process large-scale data in parallel thanks to its ability to increase the percep-
tual field by stacking layers, resizing expansion coefficients and filters, and customizing the
length of extracted historical data, preventing issues of vanishing or exploding gradients in
the traditional RNN network. Therefore, we have opted to use TCN to forecast load data.

3.2. Attention Mechanism

The Attention mechanism is a model that automatically assigns different weights to
the input sequence, which mimics the human eye’s ability to recognize things by selectively
focusing on some important information and ignoring the unimportant information. In
RNN, given the hidden state vector H = {h1, h2, . . . , ht−1} and extracting the context vector
vt from it, vt is the weighted sum of each column hi in H, which represents the information
related to the current time step, and vt is further combined with the current state ht to
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predict the load. The mechanism diagram of Attention is shown in Figure 2, and the context
vector vt is calculated using the following equation:

αi =
exp( f (hi, ht))

t−1
∑

j=1
exp

(
f
(
hj, ht

)) (16)

vt =
t−1

∑
i=1

αihi (17)

where f is the scoring function, which is used to characterize the correlation between the
previous state vector hi at time i and the state vector ht at the current moment, and then
use the softmax function to normalize these scores to obtain the attention distribution αi
of each previous state vector hi at the current moment ht, and finally selectively choose
information from the input according to these attention distributions, i.e., the attention
distribution is weighted to the input The information is weighted and summed to obtain
the context vector vt, which characterizes what the model should pay attention to at the
current moment. The attention mechanism can consider both global and local connections
to further improve the accuracy and real-time performance of load prediction [27].

Energies 2023, 16, 4616 8 of 14 
 

 

Context vectors

1x 3x nx2x
Input

RNNunit RNNunit RNNunit RNNunitRNN Cell

1h 2h 3h nh

( ), +i tf h h softmax

1a 2a 3a na

th

Attention Mechanism

Attention Output

 
Figure 2. Structural diagram of the Attention Mechanism. 

3.3. TCN-Attention Prediction Model 
TCN is adept at handling time-series data and performing parallel computing. As a 

result, an Attention mechanism is embedded within TCN to assign varying weights to the 
historical data input, enhancing the TCN model’s capability to extract historical data char-
acteristics and parallel computing ability, resulting in improved forecasting accuracy. 
Therefore, this study builds a TCN-Attention forecasting model to predict sub-sequences 
decomposed through PSO-optimized VMD, surmounting the challenges of predicting 
non-linear and non-smooth electrical load situations. The model’s structural diagram can 
be found in Figure 3. 

TCN

Outputs

0x 1x 2x tx…

…0h 1h 2h th
0a 1a 2a ta

ih

 
Figure 3. Network structure of the TCN-Attention prediction model. 

Figure 2. Structural diagram of the Attention Mechanism.

3.3. TCN-Attention Prediction Model

TCN is adept at handling time-series data and performing parallel computing. As
a result, an Attention mechanism is embedded within TCN to assign varying weights to
the historical data input, enhancing the TCN model’s capability to extract historical data
characteristics and parallel computing ability, resulting in improved forecasting accuracy.
Therefore, this study builds a TCN-Attention forecasting model to predict sub-sequences
decomposed through PSO-optimized VMD, surmounting the challenges of predicting
non-linear and non-smooth electrical load situations. The model’s structural diagram can
be found in Figure 3.
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4. Example Analysis
4.1. Example of Calculation

In order to evaluate the feasibility of the VMD-TCN-Attention mechanism prediction
model optimized by Particle Swarm Optimization (PSO), a load consumption dataset from
the Panama case published on the Kaggle platform is employed. The dataset, comprising
a series of 8952 data points with a 1-h sampling interval, is preprocessed to ensure the
consistency of data quality.

This study aims to predict short-term power consumption with a prediction step of 1 h.
The dataset is partitioned as follows: The training set encompasses the power consumption
data from 1 May 2019, 0:00, to 30 April 2020, 23:00, with 8784 samples for model training.
The remaining data, ranging from 1 May 2020 to 7 May 2020, is used for model testing and
evaluation, comprising 168 samples after partitioning.

4.2. Data Pre-Processing and Model Evaluation Metrics

Since the dataset does not contain any missing values or outliers, we normalize the
data by applying Equation (18) directly.

xnorm
i,s =

xi,s − xmin
s

xmax
s − xmin

s
(18)

where: xnorm
i,s denotes the normalized value of the s-th component of the feature vector of

the ith sample, xi,s is its value before normalization; xmax
s and xmin

s denotes the maximum
and minimum values of the s-th component of the feature vector, respectively.

This paper employs various evaluation metrics to comprehensively assess the model’s
predictive performance, including Root Mean Squared Error (RMSE), Mean Squared Error
(MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), which
are calculated using the formula below. A lower error value indicates a greater proximity
between the predicted and actual values, signifying higher model accuracy.

eRMSE =

√
1
n

n

∑
t=1

(yt − ŷt)
2 (19)
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eMSE =
1
n

n

∑
t=1

(yt − ŷt)
2 (20)

eMAE =
1
n

n

∑
t=1
|yt − ŷt| (21)

eMAPE =
1
n

n

∑
t=1

|yt − ŷt|
yt

× 100% (22)

4.3. Power Load Decomposition and Feature Construction

The decomposition of the electric load data in the training set using VMD requires
the setting of several parameters. In this paper, we apply the PSO optimization algorithm
to determine the optimal values of these parameters. The sample entropy is used as the
fitness function for the PSO algorithm, and the optimal values of each VMD parameter are
shown in Table 1.

Table 1. PSO optimized VMD parameter settings.

VMD K (Modal Number) Alpha (Bandwidth Constraint)

Values 7 9800

Figures 4 and 5, respectively, illustrate the power load curves of the original signals
and the decomposed signals for each component.

Figure 5 reveals that the IMF1 component has a relatively flat trend, indicating it
is the low-frequency component, while the other components represent high-frequency
components.

The components are combined with weather data, date data, and other relevant
features to create the input feature series for the model.
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4.4. TCN-Attention Model Parameter Settings and Prediction Accuracy

The TCN network parameters consist of a 128-neuron fully connected layer, a Relu
activation function, optimization using the Adam algorithm, a training batch size of 64, and
100 iterations. To prevent overfitting, a dropout layer is set up to deactivate some neurons
and improve the model’s generalization ability. In this case, the dropout rate is set to 0.2.

Table 2 displays the specific model parameters that have been set.
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Table 2. Parameter settings for the TCN-Attention model.

Number of
Neurons N

Activation
Function

Optimization
Algorithm Training Batch Number of

Iterations

128 Relu Adam 64 100

4.5. Analysis of the Impact of PSO Optimized VMD Decomposition on Model Prediction Accuracy

To assess the model’s effectiveness, prediction performance is compared before and
after applying VMD decomposition with PSO optimization to GRU, LSTM, and TCN
prediction models implemented through the Keras framework.

Figure 6 displays the result curves of different models before and after applying PSO-
optimized VMD decomposition for short-term power load forecasting. As seen from the
graph, the models yield significantly better results for VMD decomposition input features
after PSO optimization, indicating the optimization assisted with the improvement of the
prediction accuracy of the model.

Table 3 shows that utilizing PSO optimization in VMD models significantly outper-
forms non-optimized VMD models in short-term power load forecasting, indicating the
input features obtained by decomposing the original load sequence using PSO-optimized
VMD enhance the forecast accuracy of the model. Moreover, different forecasting models
witness varied improvements after applying PSO-optimized VMD decomposition, support-
ing the claim that the decomposition can be adapted across different forecasting models.
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Table 3. Comparison of model evaluation indicators before and after PSO optimization.

Models RMSE MSE MAE MAPE

LSTM 70.767 5007.971 57.746 0.053

GRU 75.950 5768.439 62.571 0.057

TCN 43.952 1931.787 32.267 0.030

PSO-VMD-LSTM 53.930 2908.489 42.399 0.038

PSO-VMD-GRU 37.887 1435.462 29.628 0.027

PSO-VMD-TCN 35.597 1267.151 29.216 0.027

4.6. Comparative Analysis of TCN-Attention Prediction Models

For short-term electricity load forecasting, the evaluation indexes of the TCN-Attention
method and the comparison model proposed in this paper are shown in Table 4, and the
forecasting results are shown in Figure 7.
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Table 4. TCN-Attention and comparison model evaluation indicators.

Models RMSE MSE MAE MAPE

PSO-VMD-LSTM 53.930 2908.489 42.399 0.038

PSO-VMD-GRU 37.887 1435.462 29.628 0.027

PSO-VMD-TCN 35.597 1267.151 29.216 0.027

PSO-VMD-TCN-Attention 33.079 1094.231 27.470 0.025

Figure 7 displays the prediction result curves of TCN-Attention and the comparison
model in short-term power load forecasting. It is apparent from the figure that TCN
appropriately captures the nonlinear and non-stationary characteristics of modern power
systems, resulting in higher prediction accuracy than LSTM and GRU. Moreover, with
the inclusion of the Attention mechanism, TCN accurately forecasts sudden load changes,
indicating the mechanism’s ability to assign more significant weight to influential load
features, which enhances the model’s prediction accuracy.

Table 4 displays the evaluation results of TCN-Attention and the comparison model
for short-term power load forecasting. It is clear from the table that the TCN-Attention
model outperforms the comparison model, and it extracts key features more effectively and
predicts non-smooth non-linear loads with greater accuracy and efficiency than traditional
prediction methods. This solves the issues of challenging feature extraction and low
prediction accuracy in existing models.

5. Conclusions

To address the difficulties in extracting modern electric load features and improving
prediction accuracy, this paper proposes a method of VMD decomposition based on PSO
optimization, which views load sequence decomposition as a critical factor. The short-
term electric load prediction framework of PSO-VMD-TCN-Attention is established by
combining the TCN prediction model and embedding the Attention mechanism. To verify
the effectiveness of PSO-VMD and TCN-Attention, we provide arithmetic examples. The
conclusions are presented below.

(1) By using the VMD decomposition method after PSO optimization to decompose
the load, the proposed approach overcomes the need for manual adjustment of
parameters required by the VMD decomposition method. The sample entropy is
employed as the fitness function for decomposing the load component with the least
time complexity, promoting the learning and feature extraction of the forecasting
model. The proposed method leads to improved accuracy of the model, as evidenced
by the computational analysis.

(2) The presented example verifies the high prediction accuracy of the TCN-Attention
model, which is benefited by several factors: the PSO-optimized VMD’s load sequence
construction, TCN’s efficient learning and accurate prediction abilities on load features,
and the Attention mechanism’s input sequence weight assignment.

By closely combining the two, the proposed approach resolves the problem of chal-
lenging power load feature extraction and enhances the prediction accuracy of the model,
ultimately resulting in higher accuracy prediction outcomes.
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