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Abstract: A virtual synchronous generator (VSG) has a good adaptability to the weak grid but its
grid‑connected active power (GCAP) has the problem of a slow dynamic response under the active
power command step. An optimization strategy of the GCAP dynamic response for the VSG based
on the virtual negative impedance combined with the active power transient damping control algo‑
rithm is proposed in this paper. The optimization strategy first uses the virtual negative impedance
control method to reduce the VSG equivalent output impedance and the GCAP dynamic response
time of the VSG. Then, the transient damping as well as the inhibition ability of the GCAP dynamic
oscillation for the VSG are enhanced by the active power transient damping control algorithm. The
Matlab/Simulink simulation software is used to study the GCAP dynamic response performances of
the VSG in the condition of the active power command step, and the experimental test platform of
a VSG grid‑connected system is established. The simulation and experimental results jointly verify
the feasibility and superiority of the proposed strategy in improving the GCAP dynamic response
characteristics of the VSG under a weak grid.

Keywords: virtual synchronous generator (VSG); weak grid; grid‑connected active power; dynamic
response; virtual negative impedance; transient damping

1. Introduction
To solve the energy crisis and environmental problems, the large‑scale grid‑connection

of wind, photovoltaic, and other renewable energy sources (RESs) via power electronic
converters has become an important technical feature for the new power‑electronic‑based
power system in recent years [1,2]. Since high‑penetration RESs typically have high volatil‑
ity, intermittency, as well as uncertainty, the stability of power grids is becomingmore and
more prominent. To ensure their steady integration into the grid, the adoption of two‑way
regulation is necessary on the power generation and load sides, requiring high flexibility
and reliability in power supply and balance for the power system [3]. Currently, power
electronic converters in renewable energy generations generally adopt a grid‑following
control structure based on vector currents, which are essentially current sources that re‑
quire voltage plus frequency support from the voltage sources in the power grid to guar‑
antee that they run stably [4,5]. As much renewable energy is supplied to the power grid,
the proportion of the synchronous generator (SG) in the power system gradually decreases
while the power grid strength weakens, presenting a serious challenge to the stable opera‑
tion of power electronic converters connected to the power grid [6].

In view of this, grid‑forming control technology via power electronic converters rep‑
resented by a virtual synchronous generator (VSG) has emerged [7–9]. The VSG tunes
the power electronic converters into a controllable voltage source by referring to the SG
rotor motion equation and synchronizing the power electronic converters by controlling
its own output power rather than sampling the external voltage of the power grid. As
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such, the VSG can operate in both the stand‑alone and grid‑connected modes, which is
naturally adaptable for a weak grid [10,11]. With these advantages, the VSG has gained
widespread attention in the industry for its research, application, as well as promotion in
the new power‑electronic‑based power system. It is noteworthy that while the VSG shows
good operational stability under a weak grid, its grid‑connected active power (GCAP) has
the disadvantages of dynamic oscillation and a slow dynamic response speed, and its out‑
put frequency has overshoot under its active power command step [12,13].

For this, it has been pointed out that the VSG’s control framework is derived from
the physical SG model, which simulates the transient electromechanical features of the
SG. In addition to introducing dynamic SG stability into the VSG grid‑connected system,
there is the potential for power dynamic oscillations [14]. A virtual impedance control
method combinedwith a virtual power system stabilizer is proposed to improve the equiv‑
alent damping of a grid‑connected VSG system in [15], but the performance of the active
power dynamic response under the active power command step is not given. A transient
damping control method based on the active power first order differential compensation
is suggested in [16], which enhances the active power dynamic response of the VSG un‑
der the active power command step but the high‑frequency harmonic signals caused by
differential operations may affect the system stability. A control strategy based on the
band‑pass damped power feedback is put forth for the VSG in [17], which eliminates the
high‑frequency disturbance signals introduced by the differential operations but increases
the number of the order of the control system to the fourth order and makes the param‑
eter tuning more challenging. It is proposed in [18] that the VSG can use the lead‑lag
compensation link of active power to improve its equivalence damping, which lowers the
control order to the third order but makes the parameter design of the system more diffi‑
cult. In [19], a transient damping strategy for the VSG is based on the active differential
feedback compensation and active differential feedforward compensation, and it also pro‑
vides the parameter design process to reduce the control system to a typical second‑order
system. In [20], an optimization strategy of the GCAP dynamic response based on the ac‑
tive differential correction of the fractional order is proposed for the VSG, and the order of
the grid‑connected VSG system is lower than the second order, which has the advantage
of a simple parameter design but still requires differential operation.

As opposed to the above control strategies using differential operation, two VSG tran‑
sient power oscillation suppression methods based on the active transient feedforward
compensation and active transient feedback compensation without the active power dif‑
ferential operations are proposed in [21] but at the risk of the output frequency overshoot
in the third‑order control system. It is proposed in [22] that the transient electromagnetic
power compensation link can be used to enhance transient damping of the grid‑connected
VSG system, and a detailed step‑down scheme and parameter design guidelines for a third‑
order system are analyzed, but there is also the disadvantage of the output frequency over‑
shoot. A transient damping algorithm based on the active power command feedforward
is proposed in [23], and the grid‑connected VSG system is set to the second order, which
facilitates the design of control parameters but is vulnerable to the output frequency over‑
shoot. In addition, although these studies have achieved some results in suppressing the
GCAP dynamic oscillation in the grid‑connected VSG system, there is little analysis on the
performance of the active power dynamic response and the optimization of the dynamic
response speed of the active power when the VSG is incorporated into a weak grid.

To summarize the existing VSG active power dynamic response optimization meth‑
ods, they have limitations such as differential operation, complex parameter design, slow
dynamic response, and output frequency overshoot. To address these issues, this paper
further proposes an optimization strategy of the GCAP dynamic response based on the vir‑
tual negative impedance combined with the active power transient damping (VNIAPTD)
control algorithm for the VSG (hereafter referred to as VNIAPTD‑VSG). Herein, the low
response speed of the GCAP and the overshoot of output frequency are solved, and it is
endowed with strong damping characteristics to improve the VSG’s dynamic responses.
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Compared with the typical VSG (TVSG), the proposed VNIAPTD‑VSG significantly
improves the active power dynamic response characteristics, akin to the existing strategies
of the VSG transient power oscillation suppression. Compared with the existing strate‑
gies of the VSG transient power oscillation suppression, the proposed VNIAPTD‑VSG con‑
trol strategy addresses the issue of the low dynamic response speed of the GCAP based
on the virtual negative impedance, and then the overshoots and dynamic oscillations of
the GCAP and output frequency are solved by using the active power transient damping
control algorithm. The key contributions made in this paper and their significance are
summarized below.
(1) The small signal model of the GCAP closed‑loop system of the VSG is established

when the VSG is incorporated into a weak grid. Accordingly, it reflects that the dy‑
namic oscillation amplitude of GCAP decreases with the increase of the short circuit
ratio (SCR) but the GCAP dynamic response speed slows down yet the output fre‑
quency overshoot increases under the active power command step.

(2) The proposed control method builds a novel mechanism for improving transient
damping for the grid‑connected VSG system and breaks through the limitation of
simulating the SG. Therefore, the tradeoff of multiple control objectives is avoided
and the inherent control contradictions of the VSG are fundamentally solved, thus,
improving the dynamic response performances of the VSG as well as greatly simpli‑
fying the controller design.

(3) The proposed VNIAPTD control algorithm is simple, intuitive, does not use differen‑
tial operation, and is easy to be implemented in engineering. As such, the dynamic
response performances of the GCAP as well as the output frequency for the VSG
can be significantly improved simultaneously when the VSG is incorporated into a
weak grid.
The rest of the paper is organized as follows: In Section 2, the small signal model

and the dynamic response characteristics of the TVSG under a weak grid are presented.
In Section 3, the VNIAPTD‑VSG control strategy is proposed and its parameter design
process is given. Simulation and experimental results are presented in Section 4. Finally,
the conclusions are drawn in Section 5. The nomenclature for all symbols used in this
article is listed in the Nomenclature.

2. Small Signal Model and Dynamic Response Characteristics of the TVSG
2.1. Control Principle of the TVSG

Figure 1 depicts the basic circuit topology and control strategy block diagram of a
grid‑connected TVSG system [24].
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Therein, Udc is the DC bus voltage, Lf and Cf are the AC filter inductor and AC filter
capacitor, Zline is the line equivalent connection impedance between the TVSG and power
grid, u∗

abc and uabc are the output three‑phase voltage command and output three‑phase
voltage of the TVSG, iabc is the grid‑connected three‑phase current of the TVSG, ugabc is the
grid three‑phase voltage. The TVSG control principlemainly consists of power calculation,
primary frequency modulation, primary voltage regulation, a virtual inertia control link,
and in inner control loop. The inner control loop can adopt the commonly used cascaded
voltage and current controller to acquire better control performance and flexibility [25].

By mimicking the rotor motion equation of the SG, the swing equation of the TVSG
can be described as follows [26]:

Pref − Pe = Jω0
dω

dt
+ Kω(ω − ω0), (1)

where Pref and Pe are the active power command and output electromagnetic power of the
TVSG, respectively; Pe is approximate to the GCAP if the line loss of Zline is not consid‑
ered; J is the virtual inertia; ω0 and ω are the rated angular frequency and output angular
frequency, respectively; and kω is the primary frequency modulation coefficient.

By simulating the excitation regulator of the SG, the reactive power‑voltage regulation
equation of the TVSG can be described as follows:

E = E0 + kq(Qref − Qe), (2)

where kq is the primary voltage modulation coefficient; E0 and E are the rated voltage
amplitude and output voltage amplitude, respectively; Qref and Q are the reactive power
command and grid‑connected reactive power (GCRP), respectively. Therefore, the TVSG
control strategy accomplishes the control of the GCAP and GCRP by adjusting the phase
and amplitude of the output voltage, respectively. It is worth pointing out that the GCAP
andGCRPof the TVSG can be decoupled under the condition that theZline is inductive [25],
and this papermainly focuses on the dynamic response optimizations of theGCAP and the
output frequency for the TVSG under a weak grid, as such, the GCRP‑voltage regulation
and inner control loop of the TVSG will not be discussed further.

2.2. Small Signal Model of TVSG
In order to analyze the dynamic response characteristics of the GCAP and the output

frequency for the TVSG, it is necessary to build a small signal model of the TVSG. Figure 2
depicts the simplified power transmission model of a grid‑connected TVSG system [27].
To simplify the system model, the total equivalent line resistance R contained in Zline is
ignored, and X is used to represent the total equivalent line inductance of Zline. Based on
the power transfer theory, the Pe of TVSG can then be established as:

Pe =
3UgE

2X
δ =

3UgE(ω − ωg)

2Xs
, (3)

where Ug and ωg are the voltage amplitude and angular frequency of the power grid, re‑
spectively. Thus, the small signal model of a grid‑connected TVSG system can be obtained
by combining Equations (1) and (3), as described in detail in Figure 3.
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According to the small signal model of a grid‑connected TVSG system shown in Figure 3,
the GCAP closed loop transfer function of the TVSG can be obtained as follows:

GP_T(s)=
∆Pe

∆Pref

∣∣∣∣
∆ωg=0

=
1.5UgE

Jω0Xs2 + kωXs + 1.5UgE
, (4)

where the subscript “T” or the later “V” are applied to declare that the function or variable
is definitely used for the TVSG or VNIAPTD‑VSG. According to Equation (4), it can be
found that GP_T(s) is a typical second‑order control system, whose characteristic function
can be written by

Jω0Xs2 + kωXs + 1.5UgE = 0, (5)

where the natural oscillation angular frequency ωn and the damping ratio ζ of the TVSG
can be given by

ωn =
√

1.5UgE/(Jω0X), ζ =
kω

2

√
X/(1.5UgEJω0), (6)

Moreover, the closed‑loop transfer function of the TVSG from the active power com‑
mand disturbance to the output angular frequency according to Figure 3 can be obtained
as follows:

Gω_T(s)=
∆ω

∆Pref

∣∣∣∣
∆ωg=0

=
Xs

Jω0Xs2 + kωXs + 1.5UgE
, (7)

It can be seen from Equation (7) that Gω_T(s) is a typical second‑order control system
with a zero, and the natural oscillation angular frequency ωn of the system and the damp‑
ing ratio ζ can also be given by Equation (6). According to Equation (6), the values of ζ and
ωn decrease with the increase of J, which means the greater the dynamic oscillation ampli‑
tude and the longer the dynamic response time of Pe or ω under the Pref step disturbance.
Meanwhile, the increasing value of Xwill increase ζ and decrease ωn, i.e., when the TVSG
is integrated into a weak grid with a greater equivalent line inductance X, the dynamic
oscillation amplitude of Pe or ω will be smaller and the longer the dynamic response time
of Pe or ω will take.

2.3. Dynamic Response Characteristics of the TVSG under a Weak Grid
To verify the validity of the above theoretical analysis results, the main parameters of

a 100kVA‑TVSG in Table 1 are selected [28], and the value of ζ corresponding to different
values of J and X can be calculated by using Equation (6), as described in detail in Figure 4.

It can be seen from Figure 4 that J and X determine the value of ζ. On the one hand,
ζ varies inversely with J. When X is fixed, the increasing value of J will decrease ζ, leading
to the dynamic oscillation amplitude, settling time and the overshoot of Pe or ω when the
Pref of the TVSG is disturbed; On the other hand, ζ is proportional to X. When J is fixed,
the increasing value of Xwill increase ζ, and the value of ζ is more sensitive to the change
of X. Therefore, a larger Xwill further help to reduce the dynamic oscillation degree of Pe
or ω.

Figure 5a,b show the bode diagrams of ∆Pe/∆Pref and ∆ω/∆Pref for a grid‑connected
TVSG system with different values of ζ, respectively, which indicates the dynamic re‑
sponse characteristics of Pe and ω under the Pref disturbance.
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Table 1. The main parameters of a 100kVA‑TVSG.

Symbol Parameter Value

E0 Rated voltage amplitude 311 V
Udc DC bus voltage 700 V
ω0 Rated angular frequency 314.15 rad/s
J Virtual inertia 10 kg·m2

kq Primary voltage regulation coefficient 1.4 × 10−4 V/var
kω Primary frequency modulation coefficient 15,915.5 J/rad
Lf Filter inductance 50.6 mH
Cf Filter capacitor 270 uF
f s Sampling frequency 5 kHz
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Figure 5. Bode diagrams of a grid‑connected TVSG system with different values of ζ: (a) GCAP
responses under the Pref disturbance (∆Pe/∆Pref); (b) output frequency responses under the Pref dis‑
turbance (∆ω/∆Pref).

As explained before,GP_T(s) is a typical second‑order control system. Hence, as shown
in Figure 5a, if the ζ is too small, e.g., ζ < 0.3, the bode diagram will exist a resonance peak
before the cutting frequency, illustrating that a dynamic oscillation at the resonance fre‑
quency will occur. By increasing the value of ζ, the resonance peak will be eliminated
gradually, so the overshoot of the Pref step response will be suppressed. However, the
increase in the value of ζ also reduces the system control bandwidth, meaning a slower
dynamic response speed. Therefore, the adjustment of the ζ for a grid‑connected TVSG
system must take into account both the overshoot suppression ability and dynamic re‑
sponse speed. In general, it is recommended to choose the value of ζ in the interval of
[0.707, 1] [12].

Similarly, it can be seen from Figure 5b that the bode diagram of Gω_T(s) appears
at the resonance peak near the damped natural frequency, implying that the ω dynamic
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response waveform in the time domain will exit overshoot or dynamic oscillation under
the Pref step disturbance. With the increase of the value of ζ, the resonance peak decreases
but cannot be eliminated completely, indicating that the ω overshoot in the time domain
cannot be restrained thoroughly.

In addition, the strength and weakness characteristics of the grid can usually be char‑
acterized by the SCR [29] and are given by

SCR =
U2
N

PN
1

|Zline|
=

U2
N

PN
1
X

, (8)

where UN is the rated voltage of the power grid and PN is the rated active power of the
TVSG. The grid with 2 < SCR < 3 (corresponding to 0.481 Ω < |Zline| = X < 0.722 Ω based
on the main parameters in Table 1) is usually defined as a weak grid, while the grid with
SCR < 2 (corresponding to |Zline| = X > 0.722 Ω) is defined as an extremely weak grid.
Combining the main parameters in Table 1 with Equations (4) and (7), the step response
curves of Pe and output angular frequency deviation ∆ω of the TVSG under different SCR
conditions can be obtained, as shown in Figure 6a,b, respectively.
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Figure 6. Step response curves under different SCR conditions: (a) Pe, (b) ∆ω.

As can be seen from Figure 6a, when the SCR decreases, the overshoot and dynamic
oscillation amplitude of Pe decreases but the dynamic response speed of Pe slows down.
This implies that a small SCR is beneficial to improve the GCAP dynamic response charac‑
teristics and reduce the active power overshoot and oscillation amplitude but it decreases
the GCAP dynamic response speed. As can be seen from Figure 6b, when SCR decreases,
the dynamic oscillation degree of ∆ω decreases but the overshot of ∆ω increases. In gen‑
eral, decreasing the SCR will decrease the GCAP dynamic response speed and increase
the overshot of ∆ω under the Pref step disturbance when the TVSG is operating and con‑
nected to a weak grid. Therefore, there is an urgent need to research optimization control
strategies to improve the dynamic response performances of theGCAP and output angular
frequency for the TVSG under a weak grid.

3. VNIAPTD‑VSG Control Strategy
3.1. Virtual Negative Impedance Control Algorithm

In order to solve the problem that the Pe dynamic response speed is slow under a
disturbance of Pref when the TVSG is integrated into a weak grid, the virtual negative
impedance control algorithm is first used to reduce the total equivalent line inductance X
of the grid‑connected TVSG system so as to increase the Pe dynamic response speed.

Figure 7gives the control structurediagramof thevirtual impedance control algorithm [30].
Therein, Rv is the virtual resistance; Xv is the virtual inductance; eabc is the three‑phase
voltage command of the TVSG; e∗abc is the TVSG three‑phase voltage command after intro‑
ducing the virtual impedance control algorithm.
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According to Figures 1 and 6, the mathematical expression for ugabc can be given by:

ugabc = uabc − iabcZline = GC(s)(eabc − iabcZv)− iabcZline, (9)

whereZv =Rv + jXv is the virtual impedance,GC(s) is the equivalent gain of the inner control
loop, and GC(s) = 1 under a steady‑state condition. Equation (9) can be equivalent to

ugabc = eabc − iabc[Rv + s(X + Xv)], (10)

It is worth pointing out that the iabc differential operation link included in Equation (10)
will introduce high‑frequency harmonic signals, which lowers the operating stability of the
grid‑connected TVSG system. As such, in this paper, the fundamental virtual impedance
is directly simulated using Equation (11) in the dq coordinate system, so as to avoid the
differential operation of iabc.[

E∗
d

E∗
q

]
=

[
Ed
Eq

]
− Rv

[
id
iq

]
+ ω0Lv

[
iq
−id

]
, (11)

where Lv is the virtual negative inductor. The equivalent implementation of the virtual fun‑
damental impedance algorithm in the dq coordinate system can be obtained fromEquation (11),
as shown in Figure 8 [31].
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structure; (b) inner control loop.

Figure 8a shows the integral control structure, whereas Figure 8b shows the inner con‑
trol loop. Therein, Ed = E is the d axis output voltage amplitude, Eq = 0 is the q axis output
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voltage amplitude, E∗
d is the d axis output voltage amplitude command, E∗

q is the q axis out‑
put voltage amplitude command. In the inductive line (|Zline| =X) conditions, introducing
only the virtual negative inductance can reduce the equivalent line inductance of the grid‑
connected TVSG system, hence set Rv = 0. From Equation (11), if the TVSG is connected
to an extremely weak grid with SCR = 1 (X = 1.44 Ω), the corresponding ωn = 5.66 rad/s,
ζ = 0.45, which can directly reduce its line equivalent inductanceXeq from 1.44 Ω to 0.48 Ω
(Xeq = X + ω0Lv = 0.48 Ω) by selecting Lv = −3.1 mH, which is equivalent to increasing the
SCR from 1 to 3, and the corresponding ω′

n = 9.8rad/s >ωn, ζ ′ = 0.26 < ζ.
Based on the above theoretical analysis, it can be found from Figure 6 that the vir‑

tual negative impedance algorithm can reduce the equivalent line reactance X of the grid‑
connected TVSG system and increase the Pe dynamic response speed (ω′

n > ωn) but in‑
tensify the dynamic oscillation degrees of Pe and ω (ζ ′ < ζ).

3.2. Active Power Transient Damping (APTD) Control Algorithm
To solve the intensification of the dynamic oscillation amplitude of Pe and the dy‑

namic oscillation degree of ω for the TVSG with the virtual negative impedance control
algorithm, the APTD control algorithm is proposed to enhance the transient damping of
the grid‑connected TVSG system and restrain the dynamic oscillations of Pe and ω. The
small signal model of the grid‑connected VNIAPTD‑VSG system is shown in Figure 9a,
where A and B are the dynamic compensation coefficient and proportional compensation
coefficient of APTD, respectively.
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According to the small signal model of the grid‑connected VNIAPTD‑VSG system
shown in Figure 9a, the GCAP closed loop transfer function of VNIAPTD‑VSG can be
obtained as follows:

GP_V(s)=
∆Pe

∆Pref

∣∣∣∣
∆ωg=0

=
1.5UgEAs + 1.5UgE(1 + B)

Jω0Xeqs2 + (Xeqkω + 1.5UgEA)s + 1.5UgE(1 + B)
, (12)

By comparing Equations (4) and (12), it is not difficult to find thatGP_V(s) has an addi‑
tional differential term in the numerator compared with GP_T(s), which introduces a zero
to the grid‑connected VNIAPTD‑VSG system. The differential term can help to improve
the Pe dynamic response speed and predict the occurrence of the dynamic oscillation and
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overshoot of Pe in advance and produce an appropriate reaction in time to stop the ten‑
dencies to large dynamic oscillation and overshoot. It is worth pointing out that although
it benefits from the differential term in GP_V(s), the actual APTD algorithm does not need
to carry out differential operation by introducing the equivalent small signal model of the
grid‑connected VNIAPTD‑VSG system as shown in Figure 9b, and as such, the instability
risk that may be brought by the differential term is avoided.

According to Equation (12), it can be found that GP_V(s) is also a second‑order control
system, whose characteristic function can be written by

Jω0Xeqs2 + (Xeqkω + 1.5UgEA)s + 1.5UgE(1 + B) = 0, (13)

where thenatural oscillationangular frequencyωn1 and thedamping ratio ζ1 ofVNIAPTD‑VSG
can be given by

ωn1 =
√

1.5UgE(1 + B)/Jω0Xeq , ζ1 =
1.5UgEA + Xeqkω

2
√

1.5UgE(1 + B)Jω0Xeq
, (14)

By comparing Equations (6) and (14), it can be seen that the VNIAPTD‑VSG can select
a larger natural oscillation angular frequency by increasing the value of B and obtain a
larger damping ratio by increasing the value of A compared to the TVSG. Therefore, once
J, X, and kω are set, the natural oscillation angular frequency of the TVSG will be fixed,
while the role of A in the VNIAPTD‑VSG is the same as that of kω in the TVSG damping
control. Hence,A can be used as the additional damping coefficient of the VNIAPTD‑VSG,
which means that adjusting A can make a desirable regulation of the damping ratio ζ1 for
VNIAPTD‑VSG.

Moreover, the closed‑loop transfer function of the VNIAPTD‑VSG from the active
power command disturbance to the output angular frequency according to Figure 9a can
be obtained as follows:

Gω_V(s)=
∆ω

∆Pref

∣∣∣∣
∆ωg=0

=
Xeqs

Jω0Xeqs2 + (Xeqkω + 1.5UgEA)s + 1.5UgE(1 + B)
, (15)

It can be seen from Equation (15) that Gω_V(s) is also a second‑order control system
with a zero, and the natural oscillation angular frequency ωn1 and the damping ratio ζ1 of
the system can also be given by Equation (14). According to Equation (14), ωn1 increases
with the increasing B, i.e., the larger the value of B, the more rapid the dynamic response
speed of the system. Therefore, a larger Bmust be chosen to increase the dynamic response
speed ofPewhen theVNIAPTD‑VSG is connected to aweak grid. Conversely, ζ1 decreases
as B increases, i.e., the larger the value of B, the lower the damping capacity of the Pe dy‑
namic oscillation will be. Furthermore, increasing the value of A has no effect on the value
of ωn1 and the dynamic response speed of the grid‑connected VNIAPTD‑VSG system but
it can effectively compensate for the reduction of ζ1 caused by the increase of B. Therefore,
the Pe dynamic response speed of the grid‑connected VNIAPTD‑VSG system is improved
by adjusting the value of B first, and the ability of the system to suppress the Pe dynamic
oscillation is then enhanced by tuning the value of A in this paper.

Given that, when A = 0, the root locus of the grid‑connected VNIAPTD‑VSG system
during the increase of B from 0 to 25 (step of 0.5) can be obtained by using Equation (13),
as shown in detail in Figure 10a. According to Figure 10a, it is not difficult to find that the
value ofωn1 increases significantlywith the increase ofB in the interval ofB∈ [0, 10] but the
value of ωn1 increases slowlywith the increase of B in the interval of B ∈ (10, 25), indicating
that the ability to improve the Pe dynamic response speed is weak. At the same time, the
value of ζ1 continues to decrease with the increase of B in the interval of B ∈ (10, 25), which
will have an adverse effect on the suppression ability of thePe dynamic oscillation. In order
to weigh the dynamic response speed and its dynamic oscillation suppression ability of Pe,
set B = 10 in this paper, and then ωn1 = 32.5 rad/s, which is roughly equal to 3.3 times ω′

n.
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Likewise, when B = 10, the root locus of the grid‑connected VNIAPTD‑VSG system
during the increase of A from 0 to 3 (step of 0.05) can be obtained by using Equation (13),
as described in detail in Figure 10b.

According to Figure 10b, it is easy to find that as A is gradually increased, a pair of
conjugate poles of the system gradually move away from the imaginary axis and approach
the real axis, and both of them fall on the negative real axis when A ≥ 0.7, i.e., the system
transitions from the underdamped state to the overdamped one; the dominant poles of
the system approach the origin rapidly as A is increased when A ∈ [0.7, 2], and the damp‑
ing of the system increases rapidly; whereas A ∈ (2, 3) as A continues to increase, the
damping of the system does not increase significantly, and one of the poles will gradually
move closer to the originwhichwill threaten the operational stability of the grid‑connected
VNIAPTD‑VSG system; thus, A = 2 is fixed in this paper, corresponding to ζ1 = 3.03, which
is roughly equal to 11.7 times ζ ′ to compensate effectively for the decrease in the damping
ratio ζ1 as a result of the increase in B.

Similarly, Figure 11a,b show the bode diagrams of ∆Pe/∆Pref for the grid‑connected
VNIAPTD‑VSG system with different values of ωn1 and ζ1, respectively, which indicates
the dynamic response characteristics of Pe following a Pref disturbance. As explained be‑
fore, GP_V(s) is also a second‑order control system and can select a larger ωn1 just by in‑
creasing the value of B compared with GP_T(s). Hence, it can be seen from Figure 11a that
the increase of the value of ωn1 improves the control bandwidth of the gird‑connected
VNIAPTD‑VSG system, indicating a faster Pe dynamic response speed. However, the in‑
crease of the value of ωn1 also increases the resonance peak, illustrating that a Pe dynamic
oscillation at the resonance frequency will occur. Thus, VNIAPTD‑VSG needs to increase
the value of A to increase the value of ζ1, so as to improve the suppression ability of the Pe
dynamic oscillation.

As explained before, increasing the value of A has no effect on the value of ωn1 and
can enhance the ability of the grid‑connected VNIAPTD‑VSG system to suppress the Pe dy‑
namic oscillation. Hence, it can be seen fromFigure 11b that the resonance peak in the bode
diagrams will be eliminated gradually by increasing the value of ζ1 (B = 10, ωn1 = 33 rad/s),
so the overshoot of the Pref step response will be suppressed. As opposed to the TVSG, in‑
creasing the value of ζ1 will have no effect on the bandwidth of the VNIAPTD‑VSG, that
is, it will not reduce the Pe dynamic response speed.

In conclusion, enlarging the values of ωn1 and ζ1 of the grid‑connected VNIAPTD‑VSG
system can make both the dynamic response speed and the overshoot suppression ability
of Pe approximate to the desirable response performances simultaneously. Therefore, for
the VNIAPTD‑VSG, larger values of ωn1 and ζ1, viz., and larger values of B and A are
required. The VNIAPTD‑VSG can solve the inherent contradiction between the overshoot
suppression ability anddynamic response speed ofPe, thus, theVNIAPTD‑VSG can obtain
better Pe overshoot suppression ability and faster Pe dynamic response speed compared
to the TVSG.
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In conclusion, enlarging the values of ωn1 and ζ1 of the grid-connected VNIAPTD-
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VSG system with different values of ωn1 and ζ1, respectively, which indicates the dynam-
ic response characteristics of ω under a Pref step disturbance. 

Figure 11. Bode diagrams of GCAP responses under the Pref disturbance (∆Pe/∆Pref) for the grid‑
connected VNIAPTD‑VSG system: (a) change the value of ωn1; (b) change the value of ζ1.

Figure 12a,b show thebodediagramsof∆ω/∆Pref for thegrid‑connectedVNIAPTD‑VSG
system with different values of ωn1 and ζ1, respectively, which indicates the dynamic re‑
sponse characteristics of ω under a Pref step disturbance.
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It can be seen fromFigure 12a that the increase in the value ofωn1 improves the control
bandwidth of the grid‑connected VNIAPTD‑VSG system, indicating a faster ω dynamic
response speed. However, the increase of the value of ωn1 does not affect the resonance
peak, which indicates that a ω dynamic oscillation at the resonance frequency will still
occur. Therefore, the VNIAPTD‑VSG needs to increase the value ofA to increase the value
of ζ1, so as to improve the suppression ability of the ω dynamic oscillation. As explained
before, increasing the value of A has no effect on the value of ωn1 and can enhance the
ability of the grid‑connected VNIAPTD‑VSG system to suppress the ω dynamic oscillation.
Hence, it can be seen from Figure 12b that the resonance peak in the bode diagrams will be
eliminated gradually by increasing the value of ζ1 (B = 10, ωn1 = 33 rad/s), which illustrates
that the ω overshoot under the Pref disturbance will be suppressed effectively.

In conclusion, enlarging the values of ωn1 and ζ1 of the grid‑connected VNIAPTD‑VSG
system canmake both the dynamic response speed and overshoot suppression ability ofω get
close to the desirable response performances simultaneously. Thus, for the VNIAPTD‑VSG,
larger values of ωn1 and ζ1, i.e., larger values of B and A, are required. VNIAPTD‑VSG
can solve the inherent contradiction between the dynamic response speed and overshoot
suppression ability ofω, thus, theVNIAPTD‑VSG can obtain a betterω dynamic oscillation
suppression ability and shorter ω regulation time compared to the TVSG.
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In summary, the proposed VNIAPTD‑VSG can solve the inherent contradiction be‑
tween the control objectives of Pe and ω under the Pref step disturbance when the TVSG
is connected to a weak grid according to the above theoretical analyses, indicating that the
VNIAPTD‑VSG can obtain desirable dynamic response performances of Pe and ω simulta‑
neously, i.e., fast Pe dynamic response speed without overshoot or oscillation and yet with
a small ω overshoot amplitude.

4. Simulation and Experimental Verifications
4.1. Simulation Results and Analysis

In order to verify the feasibility of the proposedVNIAPTD‑VSG control strategy in op‑
timizing the dynamic response performances of the GCAP and output angular frequency
for the TVSG under a weak grid, a grid‑connected 100kVA‑TVSG simulation model in
Figure 1 is established by using Matlab2016a/Simulink simulation software. In the simu‑
lations, A = 2 and B = 10 are selected, and X = 1.44 Ω (corresponding to SCR = 1) is set
directly to simulate an operation scenario where the 100kVA‑TVSG is incorporated into
an extremely weak grid, and the other control parameters and main circuit parameters
are shown in Table 1. The simulation conditions are set as follows: at the initial moment,
100kVA‑TVSG is connected to an extremelyweak gridwith SCR = 1 and theGCAP is 20 kW,
while its Pref jumps from 20 kW to 60 kW at 4 s.

The purpose of this subsection is to validate the difference in the dynamic response
performances of the Pe and output frequency f between the TVSG and VNIAPTD‑VSG
in the weak grid scenario, as well as the effect of the virtual negative impedance and the
VNIAPTDcontrol algorithmon the dynamic responses ofPe and f through simulation. The
comparative simulation results of Pe and f are given in Figure 13 when different control
strategies are applied to the 100kVA‑TVSG.
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Figure 13. Comparative simulation results of the TVSG andVNIAPTD‑VSGwhen the Pref steps from
20 kW to 60 kW at 4 s: (a) Pe dynamic response curves, (b) f dynamic response curves.

Figure 13a shows the Pe dynamic response curves, whereas Figure 13b shows the
f dynamic response curves. From Figure 13a, it can be seen that the overshoot and dy‑
namic oscillation amplitude of Pe are small but that the dynamic response time is long
because the TVSG (Lv = 0) without the virtual negative impedance algorithm has a large
ζ = 0.45 but a smallωn = 5.66 rad/swhen it is incorporated into an extremelyweak gridwith
SCR = 1. When the virtual negative impedance algorithm (Lv = −3.1 mH) is applied to the
TVSG, the equivalent SCR of the grid increases from 1 to 3, correspondingly ωn increases
from 5.66 rad/s to 9.8 rad/s but ζ decreases from 0.45 to 0.26, magnifying the dynamic
response speed, overshot, and dynamic oscillation amplitude of Pe. When the proposed
VNIAPTD control algorithm is applied to theVNIAPTD‑VSG, the ζ1 of theVNIAPTD‑VSG
is 3.03 times larger than 0.45, and theωn1 of theVNIAPTD‑VSG is equal to 32.5 rad/s higher
than 9.8 rad/s, which in turn can eliminate the overshot and dynamic oscillation of Pewhile
increasing the dynamic response speed of Pe.

From Figure 13b, it can be seen that the f dynamic response has an obvious over‑
shoot phenomenon with an overshoot amplitude of 0.21 Hz when TVSG (Lv = 0) is inte‑
grated into an extremely weak grid with SCR = 1. The overshoot amplitude of f can be re‑
duced from 0.21Hz to 0.15 Hz by the virtual negative impedance algorithm (Lv =−3.1mH)
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but the dynamic oscillation of f increases, which may threaten the stable operation of the
grid‑connected TVSG system. Compared to the TVSG, the VNIAPTD‑VSG has a smaller f
overshoot amplitude and no dynamic oscillation in the dynamic response process without
affecting the rate of change of frequency (RoCoF). As such, the dynamic response perfor‑
mances of Pe and f for the VNIAPTD‑VSG under the Pref step disturbance are superior to
that of the TVSG under a weak grid.

4.2. Experimental Results and Analysis
To further validate the effectiveness of the VNIAPTD‑VSG control algorithm pro‑

posed in the paper, three‑phase 100kVA‑VSG prototypes were tested in a microgrid ex‑
periment platform [32], with the main control parameters and detailed circuit parameters
shown in Table 1. In the experiments, each 100kVA‑VSGwas controlled by an independent
DSP TMS320F28335, which implemented the proposed control algorithms, as presented
in the previous sections. Figure 14a,b show the structure diagram and photographs of the
complete microgrid experiment platform, respectively. Figure 14c shows a 100kVA‑VSG
in the test process.
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Figure 14. Microgrid experiment platform: (a) structurediagram, (b) photograph, (c) a 100kVA‑VSGprototype.

In the experiments, Lv =−2.1mHwas selected and the other parameterswere selected
in the same way as the simulation parameters in Section 4.1. The experimental conditions
were set as follows: at the initial moment, 100kVA‑TVSG was connected to an extremely
weak grid with SCR = 1 and the GCAP was 20 kW, while its Pref jumped from 20 kW to
60 kW at 4.5 s. The comparative experimental results of Pe and f are given in Figure 15
when different control strategies were applied to the 100kVA‑TVSG. Figure 15a shows the
Pe dynamic response curves, whereas Figure 15b shows the f dynamic response curves.

FromFigure 15a, it can be seen thatwhen the 100kVA‑TVSG is incorporated into an ex‑
tremely weak grid with SCR = 1, the virtual negative impedance algorithm (Lv = −2.1 mH)
can effectively improve the dynamic response speed of Pe but it increases the overshot
and dynamic oscillation amplitude of Pe. Compared to the TVSG, the VNIAPTD‑VSG first
uses the virtual negative impedance algorithm to enhance the dynamic response speed of
Pe and then uses the active power transient damping algorithm to improve the dynamic
oscillation suppression capability of Pe, i.e., the former can effectively solve the problems
of the slow dynamic response speed, overshot, and dynamic oscillation of Pe exiting in the
latter, which can correspond to Figure 13a.
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It can be seen fromFigure 15b that the TVSGhas a large overshoot amplitude of 0.2Hz
in its f dynamic response when it is integrated into an extremely weak grid with SCR = 1.
The overshoot amplitude of f can be reduced from 0.2 Hz to 0.17 Hz by the virtual negative
impedance algorithm (Lv =−2.1mH), but the dynamic oscillation of f increases. Compared
to the TVSG, the VNIAPTD‑VSG has no f dynamic oscillation and a smaller f overshoot
amplitude of 0.06 Hz without affecting the RoCoF, which means that the VNIAPTD‑VSG
has a better dynamic response performance at its f, which can correspond to Figure 13b.
This implies that the dynamic response performances of Pe and f for the VNIAPTD‑VSG
under the Pref step disturbance are superior to that of the TVSG under a weak grid. More‑
over, the f overshoot amplitude of the VNIAPTD‑VSG with Lv = −3.1mH (corresponding
to SCR = 3) in Figure 13b is smaller than that of the VNIAPTD‑VSG with Lv = −2.1mH
(corresponding to SCR = 1.85) in Figure 15b according to the theoretical analysis results in
Figure 6b.

The above simulation and experimental results demonstrate the conclusions obtained
from the previous theoretical analysis and verify the superior dynamic response perfor‑
mances of the VNIAPTD‑VSG compared with the TVSG. The main reason for these advan‑
tages is that the proposed VNIAPTD‑VSG fundamentally solves the three inherent contra‑
dictions among the different control objectives of the TVSG. Finally, these advantages of
the VNIAPTD‑VSG under the weak grid conditions and the corresponding main reasons
are shown in Table 2.

Table 2. Advantages of the proposed VNIAPTD‑VSG compared with the TVSG.

Numbers Advantages Reasons

1 VNIAPTD‑VSG can obtain better Pe overshoot suppression ability
and faster Pe dynamic response speed compared with TVSG.

VNIAPTD‑VSG can solve the inherent
contradiction between the overshoot

suppression ability and dynamic response
speed of Pe.

2
VNIAPTD‑VSG can obtain better f dynamic oscillation

suppression ability and shorter f regulation time without affecting
RoCoF compared with TVSG.

VNIAPTD‑VSG can solve the inherent
contradiction among the overshoot

suppression ability, RoCoF and dynamic
response speed of f.

3

VNIAPTD‑VSG can obtain desirable dynamic response
performances of Pe and f simultaneously, i.e., fast Pe dynamic
response speed without overshoot or oscillation yet small f

overshoot amplitude without affecting RoCoF.

VNIAPTD‑VSG can solve the inherent
contradiction between the control objectives
of Pe and f under the Pref step disturbance
when TVSG is connected to a weak grid.

5. Conclusions
In order to solve the inherent contradiction between the control objectives of Pe and f

under the Pref step disturbance when the TVSG is connected to a weak grid, an optimiza‑
tion strategy of the GCAP dynamic response for the TVSG based on the VNIAPTD control
algorithm is proposed in this paper. Through the theoretical analysis, mathematical mod‑
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eling, and parameter design, as well as through simulation and experiment verifications,
the following conclusions are drawn:
(1) When the TVSG is connected to a weak grid, the dynamic oscillation amplitude of Pe

decreaseswith SCRbut itsPe dynamic response speed slows down, yet its f overshoot
amplitude increases under the Pref step disturbance.

(2) Although the control strategy based on the virtual negative impedance algorithm can
reduce the equivalent line inductance of the grid‑connected TVSG system and the Pe
dynamic response time, it can increase the Pe dynamic oscillation amplitude and the
f dynamic oscillation degree under a disturbance of Pref when the TVSG is operating
and connected to a weak grid.

(3) The proposed VNIAPTD‑VSG can solve the inherent contradiction between the over‑
shoot suppression ability and dynamic response speed of Pe, thereby obtaining a bet‑
ter Pe overshoot suppression ability and faster Pe dynamic response speed compared
with the TVSG. The VNIAPTD‑VSG can solve the inherent contradiction among the
overshoot suppression ability, RoCoF, and dynamic response speed of f, thereby ob‑
taining a better f dynamic oscillation suppression ability and shorter f regulation
time without affecting the RoCoF compared to the TVSG. The VNIAPTD‑VSG can
solve the inherent contradiction between the control objectives of Pe and f, thereby
achieving desirable dynamic response performances of Pe and f simultaneously.
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Nomenclature

The following abbreviations are used in this manuscript:

Pref, Qref Command of active power and reactive power
Pe, Qe Grid‑connected active power and grid‑connected reactive power
J Virtual inertia
ω0, ω Rated angular frequency and output angular frequency
f Output frequency
X Circuit equivalent reactance
kω Primary frequency modulation coefficient
kq Primary voltage modulation coefficient
E0, E Rated voltage amplitude and output voltage amplitude
Ug, ωg Grid voltage amplitude and gird angular frequency
ωn, ωn1 Natural oscillation angular frequency
ζ, ζ1 Damping ratio
Rv, Xv Virtual resistance and virtual inductance
Lv Virtual negative inductor
A Dynamic compensation coefficient of APTD
B Proportional compensation coefficient of APTD
RESs Renewable energy sources
SG Synchronous generator
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VSG Virtual synchronous generator
GCAP Grid‑connected active power
GCRP Grid‑connected reactive power
APTD Active power transient damping

VNIAPTD Virtual negative impedance combined
with the active power transient damping

TVSG Typical VSG
VNIAPTD‑VSG VSG with VNIAPTD control algorithm
SCR Short circuit ratio
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