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Abstract: Considering the increasing amounts of renewable energy generation and energy storage
required to meet ambitious environmental goals, it is clear that the next generation of power grids will
be dominated by converter-connected devices. In addition, the increasing share of loads connected
via power electronics and the general transition to non-synchronous grids with distributed generators
make dc microgrids an attractive future alternative. However, achieving optimal utilization of
distributed generators in such cases is a complex task, as the performance depends on both the
grid and control design. In this paper, we consider such a case where the optimal utilization of
distributed generators is achieved by optimal power sharing while taking into account the grid
topology, the available generators, and the way they are controlled. For the latter, we consider a
droop-based decentralized control scheme whose primary objective is to achieve voltage regulation
in the allowable operating range. A novel mixed-integer optimization approach is proposed to
identify the optimal converter size and location in the network so that the microgrid can operate
safely and with optimal use of the available resources. Time-domain simulations are used to validate
the proposed approach and demonstrate its robustness to uncertainty in generator availability.

Keywords: current sharing; dc microgrid; droop control; MILP optimization; voltage control

1. Introduction
1.1. Background and Motivation

The need for flexibility in modern power systems has led to the emergence of micro-
grids (MGs) as a new way to incorporate more interconnected distributed energy resources
while meeting both local and larger scale grid objectives. Depending on the application,
such structures can be either completely autonomous [1] (isolated) or operate in islanded
and/or grid-connected modes [2]. The control of renewable energy resources (RES), energy
storage systems (ESS) and electrical loads, all connected to the grid via power electronic
devices, is facilitated by the use of MGs [3]. Due to the inherent dc characteristics of such
components, and the need for a converter to interface with the ac grid, dc MGs have
recently become a more attractive alternative [4,5], as they are directly compatible with
the dc electrical nature of many RES and ESS and avoid the need for ac to dc conversion.
In addition, the control and management of dc MGs are inherently simpler compared to
ac MGs because they are free from frequency and phase control tasks, which can be very
challenging [4]. In addition, issues related to reactive power and power quality manage-
ment are naturally avoided with dc MGs. It has also been shown that, under the presence
of high penetration of dc loads, dc MGs can result in economic benefits and further cost
improvements [6].
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In dc MGs, distributed generators (DGs) and loads are connected to the grid via
power converters. The most common way to connect DGs in a dc MG is through the
use of properly controlled power converters. These can be either voltage controlled or
current/power controlled. The first category of converters adjust the voltage of their
point of common coupling (PCC) to follow a given voltage setpoint, while the second
(current/power controlled) follows a predefined current or power reference [7]. In this way,
and from a grid operation perspective, the voltage-controlled DGs are dispatchable while
the current/power-controlled DGs are non-dispatchable and can be considered as constant
current/power loads. When it comes to autonomous DGs, a subset of the dispatchable DGs
is specified for the task of shaping the desired voltage levels across the grid. To achieve
this, the DGs should be properly controlled and work together. The control layer should
also take into account the protection mechanisms of the dispatchable DGs and coordinate
them to avoid the activation of protection measures. This can be facilitated by distributing
the current demand of the MG proportionally to the ratings of the DGs [8].

A commonly adopted decentralized control method for adjusting nodal voltages of
dispatchable DG units without the need for communication infrastructure is droop control.
Although such a method has several advantages, such as ease of implementation and robust
functionality, achieving current sharing among droop-based DGs is challenging because
it depends on the electrical system topology and load demand distribution. One way to
address this issue is to correct/replace the droop control with a centralized or distributed
controller (see, for example, [9–11]). These control approaches improve the real-time
operation of the microgrid to some extent and cope with the uncertain supply–demand
variations in the system. However, they only provide the desired current sharing and
voltage formation when possible. In other words, a prerequisite for the proper functioning
of the controllers is a well-designed microgrid, at least for the nominal supply–demand
scenario. In this study, we consider a dc MG with a given nominal network topology and
load characteristics. Such a system can benefit from the optimal sizing and placement of
droop-based DGs by improving the voltage profile across the buses and the quality of
current sharing among the units.

1.2. Literature Review and Research Gaps

There have been several studies reported in the open literature regarding the sizing
and siting of DGs for achieving multiple objectives in ac power systems, [12,13] as well as
in dc MGs [5,14–21], while some examples of actual experimental dc MGs can be found
in [22–27]. The sizing of various components of solar-based dc MGs was studied in [15,16],
in which a framework was proposed for the optimal size selection of photovoltaic panels,
energy storage devices, and conductors. Then, an optimal planning algorithm for islanded
dc MGs with minimum investment costs was reported in [17], while, in [18], an efficient
optimal planning methodology was demonstrated for determining the optimal network
topology. In [19], the optimal sizing of ESSs devices for MGs with lifetime considerations
was performed using metaheuristic algorithms, such as particle swarm optimization, while,
in [22], a chameleon swarm algorithm was employed for the optimal sizing of various
components of a rural MG, including RES and battery inverters. Nevertheless, the afore-
mentioned studies were mostly focused on the sizing problem alone, without considering
the impact of the DGs’ locations in the dc MG, on the current-sharing capabilities.

The component placement in dc MGs has also been studied. In [23], a mixed-integer
linear programming (MILP) approach was used to find the optimal placement of dc feeders
in hybrid dc/ac MGs, minimizing the total cost of the investment. In [24], a teaching-
learning-based optimization (TLBO) technique was used for the sizing and siting of electric
vehicle charging stations in dc MGs. A comprehensive MG planning methodology was
proposed in [25], where the problem of sizing and placement of photovoltaic arrays and
ESSs is solved for a rural area in Cambodia. The sizing and siting of ESSs in hybrid
ac/dc microgrids was studied in [26], where the MILP approach is used to reduce the
total operation cost of the system for different scenarios. The simultaneous sizing and
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siting of the DGs has also been studied in [20,21], using various methods and under
different objectives. Most of the reported works in the literature have focused on the non-
dispatchable DGs and have not considered the integration of the droop-based dispatchable
units. The optimal design of droop control coefficients was studied in [27], where a mixed-
integer convex optimization (MICVXO) approach is used to find the coefficients under
different stochastic scenarios.

Table 1 summarizes the formulated literature review. Besides these methodologies,
very recent advances in multi-agent collaborative control have been proposed [28,29], with
highly promising results for networked systems and potential uses in dc MG control.

Table 1. Summary of related work (X: includes, ×: does not include). The methods include linear
programming (LP), integer linear programming (IP), meta-heuristic (MetH) techniques, mixed-integer
second-order conic optimization (MISOCP), and mixed-integer convex optimization (MICVXO).
HOMER stands for the Hybrid Optimization of Multiple Energy Resources software.

Ref No. Sizing Placement Droop Design Method

[15] X × × LP

[16] X × × LP

[17] X × × HOMER-based

[18] X × × IP

[19] X × × MetH

[22] X × × MetH

[23] × X × MILP

[24] X X × MetH

[25] X X × MILP + Clustering

[26] X X × MILP

[20] X X × MISOCP

[21] X X × MetH

[27] × × X MICVXO

This Work X X X MILP

1.3. Contributions

Considering the availability of DGs and the grid topology, we aim to find the optimal
droop law and location of the DGs in the dc MG. This is achieved under the proposed
methodology by proper formulation of the current-sharing problem as a MILP, capturing
both problems of DG allocation and control design at the same time. A detailed description
of the treatment of the various non-linear terms emerging from the power flow equations is
included in the MILP formulation. Furthermore, a set of constraints is used to progressively
relax the optimization problem until feasible solutions are found. The proposed formulation
is then used to explore the optimal capacity allocation and droop design of DGs in a dc
MG as a function of their availability. The optimization results are then validated with time
domain simulations, demonstrating the current-sharing capabilities of the optimal design
while ensuring the MG’s operation in a dynamic framework.

In summary, the contribution of this work is an algorithm aiming to support decision-
makers in designing future dc MGs that include various types of loads, while considering
the availability of DGs and MG operational restrictions simultaneously. The design objec-
tive, in this case, is the optimal coordination of the available DGs for controlling the MG bus
voltages. The optimal coordination is reflected through the current-sharing quality and the
operational restrictions through the containment of bus voltages inside the allowable range
during operation. Generally, solving the capacity allocation and control design problems
simultaneously is difficult, and, to the best of our knowledge, it has not been satisfactorily
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tackled using existing methods. This is due to the combined effects of (1) binary variables
representing allocation decisions (which complicate the optimization procedures), (2) the
non-linearities related to the droop-based power injections, and (3) the non-linearities
related to constant power loads.

The rest of this paper is organized as follows: Section 2 includes the proposed MILP
formulation for the concurrent DGs allocation and sizing. In Section 3, optimization
results for different case studies are provided, compared, and augmented by a validity
demonstration with time domain simulations. Finally, the main concluding remarks are
provided in Section 4.

2. Simultaneous Optimal DG Placement Strategy and Droop Design Methodology

The proposed algorithm aims to find the best possible locations for DGs in a dc
grid such that they optimally share the current when droop-controlled. The difficulty of
formulating such an optimization problem lies in the fact that we have no prior knowledge
of which busses will include a DG and what its current rating will be. The associated grid
and control configurations are illustrated in Figure 1. When a DG is decided to be placed at
bus i (λg,i = 1), then it should be droop-controlled based on local voltage measurement
Vi and the reference value VDC. A generic load is connected to every bus so that constant
impedance, current and power characteristics are represented. The constant power term
is modeled via a (local) voltage-dependent current source, as depicted in Figure 1, where
a grid segment composed of two buses, i, j, connected via a line admittance Yi,j, is given
as an illustrative example. The placement decision of a DG at node i is represented by a
green circle inside the square (λg,i = 1). The local control law (diagram inside the red line
box) uses feedback from the local bus voltage Vi and determines the local current injection
from DGi. Three load components are used to model the generic load, i.e., a constant
impedance element, a constant current source, and a voltage-dependent current source,
that are grouped inside the blue line box. In contrast with the DGs, such loads are found in
every node (both i, j in Figure 1), while the absence of a DG at node j is illustrated with the
red cross inside the dashed box (λg,j = 0). The aforementioned modeling is incorporated
into the optimization problem formulation as explained below.

constant 
current

𝑌𝑌𝑖𝑖,𝑗𝑗

𝒊𝒊 𝒋𝒋

𝜆𝜆𝑔𝑔,𝑖𝑖 = 1 𝜆𝜆𝑔𝑔,𝑗𝑗 = 0

𝑫𝑫𝑫𝑫𝒊𝒊

𝑉𝑉𝑖𝑖 𝑉𝑉𝑗𝑗

𝑉𝑉𝐷𝐷𝐷𝐷

ZIP load

−
+

𝑚𝑚𝑖𝑖
−1 𝒏𝒏𝒏𝒏 𝑫𝑫𝑫𝑫

constant 
impedance

constant 
power

droop control

𝛿𝛿𝑉𝑉𝑖𝑖

Figure 1. Graphical representation of the considered dc MG structure. A line segment between two
buses is illustrated, where, at each bus, a ZIP load is assigned. Only bus i is selected for DG placement
and the corresponding local droop control is shown.

2.1. Optimal DG Allocation and Control Design as a Mixed-Integer Linear Programming Problem
2.1.1. Objective Function Formulation

We try to find a proper set of buses

Bg =
{

i ∈ B | λg,i = 1
}

(1)

which will include DGs and corresponding vectors m, Ir
g such that the droop laws for those

DGs result in optimal current sharing, while, at the same time, the bus voltages in the dc
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MG remain in the allowed region [Vmin, Vmax] [30]. The action of allocating a DG g at node
i is expressed through binary variables λg,i leading to an integer-optimization problem. If a
common voltage reference VDC is set for all DGs, then the current-droop control law can be
written as

mi Ig,i = VDC −Vi = δVi ∀ i ∈ Bg (2)

This means that current sharing can be mathematically expressed as

mi Ig,i = mj Ig,j ⇒ δVi = δVj ∀ i, j ∈ Bg (3)

which can, in turn, be translated into voltage deviation differences

∆Vi,j = δVi − δVj, ∀ i, j ∈ Bg (4)

defined at the nodes where DGs will be eventually placed. Since the set Bg is unknown a
priori to the problem solution, the validity of Equation (2) is ambiguous, and, therefore, not
all variables ∆Vi,j have a physical interpretation. For that reason, and following [13], we
consider all possible bus combinations and implement a conditional constraint activation
reasoning described in detail in the next subsection. Thus, the objective function of our
optimization problem can be formulated as

min
λg , m

∑
i∈B

∑
j∈B

∆Vi,j, ∀ i, j ∈ B. (5)

where ∆Vi,j ≥ 0 is used to focus only on the absolute values of the differences, accounting
for the different possible directions of the power flow.

2.1.2. DG Capacity Allocation Modeling through Linear Inequalities

As mentioned before, we are interested in the voltage deviations only for the buses
i, j ∈ B where DGs are actually placed, meaning that Equation (4) should be satisfied
only for those combinations of i, j. This requirement is integrated into the optimization
problem by the introduction of additional constraints which are activated conditionally on
the existence of DGs to neighboring buses. This is captured by using indicator variables δV

i,j,
representing the placement of a DG g at node i. Then, the difference of voltage deviations
for neighboring buses with DGs is defined if, and only if,

λg,i = 1∧ λg,j = 1 (6)

which, in turn, is mathematically formulated through the following integer-linear constraints

∆Vi,j + MVδV
i,j ≥ MV + δVi − δVj, ∀ i, j ∈ B. (7)

δV
i,j ≥ λg,i + λg,j − 1, ∀ i, j ∈ B. (8)

δV
i,j ≤ λg,i, δV

i,j ≤ λg,j, ∀ i, j ∈ B. (9)

In the constraints above, MV is a large negative value which drives ∆Vi,j = 0, when
λg,i = 0∨ λg,j = 0 .

2.1.3. Microgrid Operation and Power Flow Modeling for Mixed-Integer Formulations

A solution to the DG capacity allocation problem is valid only if it leads to a feasible
operating point for the dc MG, which, in turn, means that the power flow equations should
have a feasible solution. This is enforced in the MILP formulation by constraining the
problem’s solution to satisfy the power flow equations for the dc MG expressed as

Ig = YV + I` (10)
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where Y is the network admittance matrix. Besides the shunt load impedances, different
load characteristics can be easily integrated into the proposed framework, by the introduc-
tion of ZIP load models, which include different possible load type, i.e., constant current
and power loads coming from converter-interfaced devices. It is worth mentioning that
the latter type is notorious for deteriorating the system’s stability by acting as a negative
impedance. Such loads are modeled as

I`,i = Ic
i + Pc

i
1
Vi
∀ i ∈ B (11)

where Ic
i and Pc

i are the constant current and constant power terms at bus i, respectively.
Then, given that, if a DG is decided to be placed at node i, then this should be controlled by
a droop law (see Equation (2)), we can rewrite the droop equation in a way that is suitable
for MILP formulations by eliminating the droop coefficient mi and using the maximum
allowed voltage deviation and current rating of the converter instead. Eventually, the
droop-governed DG current injection can be expressed as

Ig,i =
Vmax

∆Vmax
Ir
g,i −

1
∆Vmax

Vi Ir
g,i + δI

i ∀ i ∈ B (12)

where
∆Vmax = Vmax −Vmin (13)

is the allowable and safe voltage range and δI
i are continuous indicator variables activating

the droop law, if, and only if, a DG exists in the particular node. This variable enforces
the droop law for bus i only when λg,i = 1 by incorporating the following constraints into
the problem

− Īr
g(1− λg,i) ≤ δI

i ≤ Īr
g(1− λg,i) ∀ i ∈ B (14)

where Īr
g is the maximum over all current rating values of the available DGs. The current

rating and injections of the DGs are then physically bounded as

0 ≤ Ig,i ≤ Ir
g,i ≤ λg,i Īr

g ∀ i ∈ B (15)

In addition, considering the non-negativity of the injected current by Equation (15)
(power is only generated by DGs), and given that droop coefficients are mi ≥ 0 (current
injection can only be reduced), from Equation (2), the following constraint is implied

δVi ≥ 0 ∀ i ∈ B (16)

2.1.4. Non-Linear Terms and Globally Valid Approximations

To be able to integrate constraints (Equations (7)–(16)) into the proposed MILP formu-
lation, these need to be linear. However, in the above formulation, there are two naturally
emerging non-linearities: one being the inverse of the nodal voltage at the constant power
term in Equation (11) and the other the product of the same voltage variable with the
current rating in Equation (12). Thus, it becomes clear that, if no local linearization around
an operating point is used, which would naturally heavily restrict the design problem (DG
capacity allocation), then proper reformatting is required. For that purpose, we propose
to use piecewise linear approximations of one or more variables and approximate the
non-linear terms as described below.

The piecewise linear segments rely on sets of sampled coordinates (breakpoints) of
the functions to be approximated and use adjacent points to interpolate the function. Such
points are defined in the Appendix A for our case. Then, binary variables are used to
identify the proper segment and the corresponding discrete values inside the sampled sets
to be used for interpolation. This is mathematically formulated through the following set
of linear inequalities

1T
{1:N−1} · hi = 1 ∀ i ∈ B (17)
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1T
{1:N} · αi = 1 ∀ i ∈ B (18)

αi,n ≤ hi,n−1 + hi,n ∀ i ∈ B, n ∈ N
where, hi,0 = hi,N = 0

(19)

where variables hi,n ∈ {0, 1}, ∀ n ∈ N indicate the section of the piecewise linear segment
as a SOS1 constraint type (Equation (17)) and αi,n ∈ [0, 1], ∀ n ∈ N are the weights
for the variable breakpoints of the corresponding segment as an SOS2 constraint type
(Equation (18)). The nodal voltages and their inverse can then be approximated as

Vi = V̂T
i αi ∀ i ∈ B (20)

1
Vi

= L̂T
i αi ∀ i ∈ B (21)

An extension of the previous method to more than one variable is presented in [31],
which enables us to further use piecewise approximations for the product of the voltage-
and current-rating non-linear terms, through the following additional constraints

Ir
g,i ≤

M−1

∑
m=1

βi,m Îr
g,i,m+1 ∀ i ∈ B (22)

Ir
g,i ≥

M−1

∑
m=1

βi,m Îr
g,i,m ∀ i ∈ B (23)

1T
{1:M−1} · βi = 1 ∀ i ∈ B (24)

Vi Ir
g,i ≤

N

∑
n=1

αi,n P̂r
g,i,n,m + MP(1− βi,m)

∀ i ∈ B, ∀ m = 1, . . . , M− 1

(25)

Vi Ir
g,i ≥

N

∑
n=1

αi,n P̂r
g,i,n,m −MP(1− βi,m)

∀ i ∈ B, ∀ m = 1, . . . , M− 1

(26)

where βi,m ∈ {0, 1}, ∀ m = 1, . . . , M − 1 are SOS1 type variables and act similarly as
variables hi,n, but, in this case, for the second dimension (Ir

g,i) of the multivariate non-linear
function. Equations (22) and (23) limit the value of variable Ir

g,i in the corresponding
segment and then Equations (25) and (26) bind the value of the function to be approximated
in the region defined by the coefficients αi,n (dimension Vi) and by βi,m (dimension Ir

g,i).
This is achieved by the use of a “big M” constraint, activated only for the correct segment
indicated by variable βi,m.

2.1.5. DGs Availability Constraint

From a realistic perspective, the design methodology for the capacity allocation of
the DGs in the MG should be robust against different possible scenarios of DG availability
in the network. This is captured in the proposed methodology by incorporating the
following constraint

1T
{1:B} · λg ≤ Ng (27)

where Ng = | Bg | is the maximum number of allowed DGs and represents the various
scenarios of DG availability.
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2.1.6. Constraints Related to Aggregated Generation Capacity

The problem defined from Equations (2)–(27) is, however, still unbounded in the feasi-
ble region since an infinite amount of solutions can be found for increasing the maximum
current rating levels Īr

g, meaning that we can have arbitrarily large generation capacity
in the system (see Figure 2 for a visual interpretation). On the other hand, and from a
realistic point of view, a decision-maker would try to find the least amount of capacity to be
installed that would satisfy the problem requirements and would lead to optimal operation
(optimal current sharing) with minimum investment costs. The least upper bound for the
current rating is expressed as

Ĩr
g = sup{ Īr

g ∈ R+ : @ λg, m | Equations (2)–(27)}. (28)

However, the above value is not known in advance since the feasibility region of the
power flow equations (leading to an overall feasible MILP problem) is hard to describe
analytically before a design is decided. To deal with this, we employ an iterative procedure
where constantly increasing upper bounds are tested a posteriori, until a feasible solution is
found. In this way, numerical solutions calculated are not only guaranteed to give feasible
power flow solutions but also provide us with estimates of Ĩr

g.
Any value for the maximum current rating ( Īr

g) over all DGs in the MG, should limit
the total injected current (see Equation (15)) as

∑
i∈Bg

Ir
g,i ≤ Ng Īr

g (29)

Then, a first guess for Ĩr
g can be derived by considering a theoretical worst-case

aggregated MG demand, where each component of the ZIP load is taken individually with
its corresponding worst-case voltage condition. This leads to

∑
i∈Bg

Ir
g,i ≤ ∑

i∈B

(
Ic
i + GiVmax +

Pc
i

Vmin

)
= Ī` (30)

where Gi is the load conductance at each bus and Ī` is the theoretical worst-case aggregated
load for the power system. The right-hand side of Equation (30) represents a tighter upper
bound for the total injected current compared to the one from Equation (29). Neverthe-
less, enforcing Equation (30) may not always give feasible solutions for varying Ng, and,
therefore, iterative relaxations are proposed as

∑
i∈Bg

Ir
g,i ≤ kĪ`, k ∈ Z+ (31)

where k is iteratively increased to find the minimum integer value that relaxes Equation (30)
as little as possible and gives a feasible solution simultaneously. This procedure is graph-
ically illustrated in Figure 2, where the red and green areas correspond to non-feasible
and feasible regions, respectively. The bound kĪ` is iteratively updated with increasing k
until the problem lies inside the feasible region. This concept, of iteratively solving relaxed
versions of the formulated optimization problem, is implemented through the flowchart
presented in Figure 3. First, the relaxation constraint is initialized by setting the multiplier
k of Equation (31) equal to 1. Then, the upper bound kĪ` is calculated updating constraint
Equation (31). The iterative procedure for checking problem feasibility (see Figure 2)
is initiated and the multiplier k is correspondingly incremented until feasibility is first
achieved. From the solution of this feasible problem, we can then get the approximation of
the least upper bound current rating Īr

g and the corresponding optimal solution values for
the variables λg, m, which are also the algorithm’s output.
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∄ 𝝀𝝀𝑔𝑔,𝒎𝒎 ∶ ̅𝐼𝐼𝑔𝑔𝑟𝑟 ≥ 0 ∃ 𝝀𝝀𝑔𝑔,𝒎𝒎: ̅𝐼𝐼𝑔𝑔𝑟𝑟 ≥ 0 ℝ≥0

̅𝐼𝐼𝑔𝑔𝑟𝑟̅𝐼𝐼ℓ 2 ̅𝐼𝐼ℓ 𝑘𝑘 ̅𝐼𝐼ℓ (𝑘𝑘 + 1) ̅𝐼𝐼ℓ…

non-feasible problem feasible problem

0

Figure 2. Graphical illustration of the iterative procedure for feasibility recovery of the optimization
problem. The red region represents a range of Īr

g values leading to a non-feasible problem, while the
green is the range leading to a feasible problem. The upper bound kĪ` is iteratively updated until it
first enters the green region.

Initialize relaxation constraint multiplier: k ∈ Z+ (k = 1)

Input value for upper bound: kĪ`

Update relaxation (constraint Equation (31))

Feasible
problem
(Figure 2)

Retrieve least upper bound approximation: Īr
g

Increment
multiplier:
k ← k + 1

Output optimal design values for Īr
g: λg, m

yes

no

Figure 3. Flowchart for the implementation of the procedure illustrated in Figure 2. The algorithm
iteratively updates the aggregated generation capacity constraint, relaxing the optimization problem,
until a feasible solution is achieved, which is also the output quantity of interest.

3. Results of Optimal and Concurrent DG Capacity Allocation and Droop Design

To investigate the effectiveness of the proposed methodology, a reference case study
of an autonomous dc MG was considered. For this case, the results from the optimiza-
tion problem formulation related to the simultaneous DG capacity allocation and droop
control design, as well as the robustness properties with respect to DG availability, are
demonstrated and validated by higher-fidelity time-domain simulations.

3.1. DC Microgrid Case Study

A generic, but realistic, dc MG consisting of various load types was selected as the
case study. The grid topology is depicted in Figure 4 and the corresponding parameters
are reported in Table 2. As can be seen from Table 2, different ZIP loads are attributed to
the various buses of the MG, consisting of different proportions of constant impedance,
constant current, and constant power characteristics, to capture different types of loads that
could be found in such isolated systems.
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Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Bus 6

Bus 10 Bus 11 Bus 12

Bus 7 Bus 8 Bus 9

Line 1 Line 2 Line 3 Line 4 Line 5

Line 6 Line 7 Line 8

Line 9 Line 10 Line 11 Line 12

Figure 4. Topology of the dc microgrid considered as a test case study.

Table 2. Line parameters (resistance) and load specifications (conductance, constant current, and
constant power values) for the dc microgrid of Figure 4.

Line / i ∈ B RL,i [Ω] Gi [S] Ic
i [A] Pc

i [kW ]

1 0.250 0.300 2.00 39.0963

2 0.150 0.200 3.00 26.0642

3 0.200 0.250 5.00 32.5802

4 0.250 0.100 1.00 13.0321

5 0.300 0.150 1.50 19.5481

6 0.350 0.300 2.50 39.0963

7 0.150 0.400 3.00 52.1284

8 0.250 0.300 1.50 39.0963

9 0.400 0.200 5.00 26.0642

10 0.250 0.150 2.00 19.5481

11 0.350 0.300 2.00 39.0963

12 0.650 0.200 3.00 26.0642

3.2. Problem Solution Approach

The proposed problem formulation, described in detail in Section 2.1, can be efficiently
solved using commercially available numerical optimization solvers for MILP problems.
More specifically, the Gurobi 9.1.0 solver was employed in a 28 physical core multi-node
cluster with Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60 Hz, 25 GB RAM. The robustness
properties of the algorithm, with respect to the DGs availability, were investigated by
solving different instances of the problem, ranging from full availability (a DG can be
placed to each node) to half availability (only half of the grid buses are eligible for placing
a DG).

3.2.1. DG Availability and Related Grid Patterns

The proposed optimization framework can deal with variable DG availability and
inform the decision-maker for various alternative grid design possibilities. To quantify the
effect of DG availability on the problem solution, different cases were considered (λg,i for
Ng ∈ {6, . . . , 12}); the associated optimal DG allocation solutions are graphically illustrated
in Figure 5. In this figure, following similar notation as in Figure 1, green circles represent
buses found eligible for DG placement (i.e., λg,i = 1) and red crosses indicate the buses
that are left without DGs (i.e., λg,i = 0). Different levels of DG availability are plotted in
different rows of the grid, marked with different values of Ng. From this perspective, the
analyses performed revealed different patterns associated with the grid topology and the
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number of available generators, while also specifying the distribution of DGs in the MG for
each case.

From Figure 5, we can directly observe that there exist specific dominant patterns of
the optimal solution, persisting throughout the various designs. Specifically, for most of the
designs (Ng ≤ 10), buses i = 2 and i = 5 are preferably left without a DG, whereas buses
i = 1, 6, 12 are found eligible for DG placement in all cases. Furthermore, by observing
the grid layout from Figure 4, it is easy to notice that those buses are associated with the
largest electrical distances in the network and they are spread across the whole grid area.
In this way important locations for the grid are revealed, meaning that DGs placed in such
locations can effectively support their neighbors’ nodes. Another interesting characteristic
from the results of Figure 5 is related to trend reversals, as can be seen for bus i = 4. It is
remarkable that, for Ng = 11 (which is the first case with reduced DG availability), this is
the single bus selected to be left without a DG, but, with slightly decreased DG availability
(Ng = 10), this is found eligible for placing a DG. This highlights the importance of finding
case-specific optimal solutions for the problem, instead of deducing simplistic rules from
other cases. For the remaining cases where Ng ≤ 10, we observe that the removal patterns
do not change significantly, whereas nodes that are left without DG tend to remain the
same as the ones from the previous solution for decreasing Ng. Finally, we can observe that,
for the extreme case of half availability (Ng = 6), the generators are almost perfectly spread
over the network.

1 2 3 4 5 6 7 8 9 10 11 12
6

7

8

9

10

11

12

Figure 5. Optimal allocation of the DGs in the dc microgrid, for decreasing DG availability (green
circles represent grid nodes with a DG, and red crosses represent the buses left without a DG).

3.2.2. Optimal Droop Control Design

The proposed optimization formulation does not only recover the best grid locations
for DGs (λg) depending on their availability, but, at the same time, it finds proper and
case-specific droop settings m combinations to achieve optimal current sharing among the
DGs, as presented in the results below. The current-sharing quality is expressed through
the ratio of the injected current from a DG to its rating Ig,i/Ir

g,i, and the closer these ratios
are to each other, the better the current-sharing results. Here, it is worth mentioning that
solving the problem defined in Section 2.1 means that a feasible power flow solution to the
dc MG is found simultaneously. Thus, at the optimal solution, the resulting bus voltages V
and corresponding current injections Ig should verify the droop equation (Equation (2)) as
much as possible. The droop coefficient can be recovered from the optimal solution as

mi =
∆Vmax

Ir
g

(32)

The approximation of the non-linear terms, as explained in Section 2.1.4, inevitably
leads to some numerical errors, reflected in the calculated nodal voltages and the voltage
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implied by the corresponding droop-governed current injection. To quantify this impact
and assess the quality of the optimization result, the relative error term:

εv
i =

Vi −
(
Vmax −mi Ig,i

)
Vi

. (33)

is monitored and reported along with the optimization solution. Similarly, the relative
error term εvi

i emerging from the approximation of the multivariate non-linearity Vi Ir
g,i is

calculated from the resulting nodal voltages and DG current ratings.
The above-defined metrics are presented, as an example, for two extreme cases, in

Table 3 for full availability (Ng = 12) and in Table 4 for the least availability (Ng = 6) of DGs.
Then, it is directly evident that, not only are errors very small for all cases, meaning that
the approximations are of very high quality, but also that the calculated droop coefficients
and current ratings verify the power flow solutions quite accurately. In addition, the high
current-sharing quality achieved by the proposed method is also depicted by the calculated
current ratios Ig,i/Ir

g,i for the DGs. In particular, for the case of Ng = 12, we notice that DGs

are clustered in two groups with similar (almost the same) ratios, one at
Ig,i
Ir
g,i

= 1 and another

at
Ig,i
Ir
g,i

= 0.967. Their ratios values are very close to unity, further indicating that the DGs

are almost perfectly used, given their available capacity, and that the total system capacity
is not over-designed. Similar high-quality current sharing can be observed for the extreme
case of half availability (Ng = 6), where a single value for the utilization ratio prevails.
However, we notice that, in this case, this value is much less than unity, highlighting the
importance of imposing the constraints given in Equations (28)–(31) in order to achieve
high-quality solutions. In other words, decreasing the number of available DGs requires a
significant over-sizing of the DGs that will be installed to achieve simultaneously feasible
solutions and optimal current sharing.

Table 3. Current injections and achieved current-sharing quality among DGs, along with approxima-
tion errors related to optimization modeling, for Ng = 12.

i ∈ Bg Ig,i [A] Ir
g,i [A] Ig,i

Ir
g,i

[−] mi

[
V
A

]
εv

i [%] εvi
i [%]

1 218.60 218.60 1.000 0.1680 0.3497 −0.3509

2 147.40 147.40 1.000 0.1680 0.3497 0.2578

3 185.50 191.90 0.967 0.1980 −4 × 10−14 6× 10−14

4 73.20 73.20 1.000 0.5018 0.3497 −0.3509

5 109.80 113.59 0.967 0.3345 −4× 10−14 3× 10−14

6 219.10 226.66 0.967 0.1677 −4× 10−14 5× 10−14

7 291.80 291.80 1.000 0.1259 0.3497 −0.3509

8 218.10 218.10 1.000 0.1684 0.3497 −0.3509

9 149.40 154.55 0.967 0.2459 −4× 10−14 3× 10−14

10 110.30 110.30 1.000 0.3330 0.3497 −0.3509

11 218.60 218.14 0.967 0.1680 −4× 10−14 5× 10−14

12 147.40 152.48 0.967 0.2492 1× 10−14 5× 10−14
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Table 4. Current injections and achieved current-sharing quality among DGs, along with approxima-
tion errors related to optimization modeling, for Ng = 6.

i ∈ Bg Ig,i [A] Ir
g,i [kA] Ig,i

Ir
g,i

[−] mi

[
V
A

]
εv

i [%] εvi
i [%]

1 344.06 2.064 0.1667 0.0178 0.0541 −0.0541

4 362.73 2.176 0.1667 0.0169 0.0541 −0.0541

6 269.84 1.619 0.1667 0.0227 0.0541 −0.0541

8 526.38 2.256 0.2333 0.0144 0.3236 −0.3247

10 307.61 1.846 0.1667 0.0199 0.0541 −0.0541

12 282.15 1.693 0.1667 0.0217 0.0541 −0.0541

3.3. Verification of the Optimal Design with Time Domain Simulations

As mentioned before, the proposed optimization framework ensures that the optimal
design (DG capacity allocation) for a given DG availability, will be associated with a feasible
operating point of the dc MG. This is demonstrated through time domain simulations
of a high-fidelity Simulink/Simscape model of the dc MG in Figure 4. This validation
is illustrated in Figures 6 and 7, where the steady state of the current injections and
bus voltages converge to the corresponding operating point values, as predicted by the
optimization result. A similar graphical notation is followed for both aforementioned
figures, where dashed lines correspond to the operating point values and solid lines to
the corresponding simulated variables. Different colors correspond to different DGs in
Figure 6 and different buses in Figure 7, respectively.
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0
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Figure 6. Current sharing capability in the dc microgrid, expressed through the ratios of injected
currents over current ratings for each DG and for various levels of DG availability. (a) Ng = 12.
(b) Ng = 10. (c) Ng = 8. (d) Ng = 6.
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Figure 7. Bus voltages in the dc microgrid for various levels of DG availability, corresponding
to the current-sharing results of Figure 6 (same color convention for all subfigures). (a) Ng = 12.
(b) Ng = 10. (c) Ng = 8. (d) Ng = 6.

In particular, from Figure 6, we observe the current-sharing capability of the optimal
design for various levels of DG availability (Ng). It is directly evident that the dynamic
responses of all DGs converge to the calculated values with very high accuracy, meaning
that the target current-sharing quality, associated with the optimal solution, can indeed be
reproduced in the simulation framework. In other words, the droop laws of the DGs are
designed such that the feasibility of the steady-state optimal current-sharing solution can be
recovered in the dynamic environment. Then, we can also observe that, by reducing the DG
availability, the utilization ratios tend to decrease, meaning that fewer DGs should be rated
higher to compensate for the nodes without power injection. This fact is in agreement with
the numerical results presented in Section 3.2.2. Again, we can see the grouping tendency,
where different groups are formed depending on the DG availability. However, all DGs
in the same group share the same utilization ratio, demonstrating the current-sharing
capability.

Eventually, similar results can be deduced for the voltages of the dc MG buses, which
are illustrated in Figure 7. Again, it is easily noticeable that, for all cases, the simulated
dynamic responses converge to the steady-state values as calculated from the optimal
solution with good accuracy, though not perfectly. There are some cases where a small
deviation can be observed for some buses, where the optimal steady state values tend to
slightly overestimate the simulated responses. However, this depends on the case study
and is not consistent for the various levels of DG availability. These small deviations are
attributed to the inevitable approximation errors of the non-linear terms (Section 2.1.4), but,
nevertheless, they do not affect the qualitative characteristics of the steady-state solutions.
In general, there is good agreement, and, most importantly, the nodal voltages are regulated
in the allowable voltage range, ensuring both optimal and safe grid operation. It can also
be observed that reducing the DGs’ availability is associated with more dispersed bus
voltages. This is easy to see by comparing the two extreme cases of full and half availability
(Ng = 12 and Ng = 6 in Figure 7a and Figure 7b respectively), where, for the former, all
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bus voltages are grouped close to the lower voltage limit, while, for the latter, different
voltage levels are achieved for different buses spanning the whole available range. More
specifically, when Ng ≥ 10, all the buses have voltages lower than the nominal, while, for
Ng < 10, there exist buses with over-voltage, effectively exploiting the allowable voltage
range. Finally, reducing the DG availability tends to give a higher maximum nodal voltage
value, reflecting the need to increase the voltage locally at some nodes to support others.

4. Conclusions

The optimal coordination of multiple distributed generators in dc microgrids, ensuring
their safe operation, is a challenging problem. This is because of the natural coupling
between the control design problem (decentralized) and the siting decisions that define
the grid topology. These interact through the grid dynamics and, therefore, should be
considered simultaneously to achieve optimal coordination, expressed as current-sharing
capabilities. In this paper, such a framework was proposed, enabling the proper selection
of DG locations, while ensuring a safe microgrid operation under generic ZIP loads. A
numerically efficient optimization algorithm was proposed for this task, incorporating
non-linear characteristics associated with constant power loads and the power flows in
the grid, as a function of the local controls. Such an algorithm can be used to support
decision-makers in designing future dc MG enabling the solution of the capacity allocation
and control design problems simultaneously, a task that has not yet been satisfactorily
tackled by existing methods.

An iterative procedure was devised to guarantee the feasibility of the related opti-
mization problem, while the effectiveness of the method was validated with time-domain
simulations. The results revealed inherent patterns of the microgrid related to preferred bus
locations for generator placement, leading to different possible grid designs with optimal
current sharing among the generators, depending on their availability. Various clusters
of buses and generators were identified with similar voltage levels and utilization ratios,
respectively. The proposed framework is also suitable for stochastic representation of
the loading conditions since such uncertainties could be easily integrated via a scenario
formulation, leading to corresponding stochastic optimization problems, which could be
considered a possible future research direction.
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PCC Point of common coupling
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IP Integer programming
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MISOCP Mixed-integer second-order optimization
MICVXO Mixed-integer convex optimization
MetH Meta-heuristic
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Appendix A

Nodal voltages breakpoints

V̂i =
[
V̂i,1, . . . , V̂i,N

]T , ∀ i ∈ B

Inverse nodal voltages breakpoints

L̂i =
[
Λ̂i,1, . . . , Λ̂i,N

]T
=
[
V̂−1

i,1 , . . . , V̂−1
i,N

]T
, ∀ i ∈ B

DG current-rating breakpoints

Îr
g,i =

[
Îr
g,i,1, . . . , Îr

g,i,M

]T
, ∀ i ∈ B

DG current-rating times voltage breakpoints

P̂r
g,i =


P̂r

g,i,1,1 · · · P̂r
g,i,1,M

...
. . .

...
P̂r

g,i,N,1 · · · P̂r
g,i,N,M

 = V̂i ÎrT

g,i, ∀ i ∈ B
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