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Abstract: The current energy transition combined with the modernization of power systems has
provided meaningful transformations in the transmission, distribution, operation, planning, monitor-
ing, and control of power systems. These advancements are heavily dependent on the employment
of new computing and communications technologies, which, combined with traditional physical
systems, lead to the emergence of cyber–physical systems (CPSs). In this sense, besides the traditional
challenges of keeping a reliable, affordable, and safe power grid, one must now deal with the new
vulnerabilities to cyberattacks that emerge with the advancement of CPSs. Aware of this perspective
and the severity of the ongoing challenges faced by the industry due to cyberattacks, this paper
aims to provide a comprehensive survey of the literature on cybersecurity in cyber–physical power
systems. For this, clear definitions, historical timelines, and classifications of the main types of
cyberattacks, including the concepts, architectures, and basic components that make up, as well as
the vulnerabilities in managing, controlling, and protecting, a CPS are presented. Furthermore, this
paper presents defense strategies and future trends for cybersecurity. To conduct this study, a careful
search was made in relevant academic and industrial databases, leading to a detailed reporting of key
works focused on mitigating cyberattacks and ensuring the cybersecurity of modern CPSs. Finally,
the paper presents some standards and regulations that technical and international institutions on
cybersecurity in smart grids have created.

Keywords: cybersecurity; cyber–physical systems; cyberattack; monitoring; control; protection;
defense strategies; future trends; power systems; energy transition

1. Introduction

The Industrial Revolution, which took place in the middle of the 18th century, changed
the daily life of the population and made possible the production of large amounts of
energy, products, and goods through the invention of the steam engine and the use of fossil
fuels, which were the great driving force of this era. This historical period transitioned
from small-scale handmade manufacturing to mass manufacturing with machines [1–3].
Due to society’s changing habits and the parallel overuse of these fuels that were rich in
coal, hydrocarbons, and later petroleum derivatives, the planet’s temperature has gradually
changed, as presented in countless measurements and studies carried out over time [4–7].
The global average temperature is a simple parameter used to measure the climatic changes
that the planet goes through over time. Global warming is a phenomenon that directly
influences this parameter. As the burning of fossil fuels develops, it promotes the increase
of CO2 concentration in the atmosphere and therefore increases the greenhouse effect
and global warming [7,8]. The unregulated growth in the global average temperature
entails numerous impacts on the planet. Reference [9] addresses a review of the literature
about the impacts that climate change generates due to the increase in the planet’s average
temperature. In addition, this study addresses the effects that climate change brings to
planet Earth, human life, and the environment. The increasing occurrence of emergency
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events has also demanded new response action plans. Therefore, planning actions that can
adapt to these climate changes must also be developed [10].

In [11], a perspective of climate change impacts from poorer countries’ outlook is
presented. This topic is extended in [12], pointing out that, in climate change, developed
countries have become even richer, while poorer countries are economically penalized and
suffer more from the environmental impacts. Therefore, the adverse effects are dispropor-
tionate and have increased economic disparities worldwide. Unregulated climate change
harms all living beings on Earth due to the negative impacts imposed on the planet’s
sustainability [13]. In addition, the effects on the energy performance of city buildings are
mostly influenced by how they are built and distributed in urban areas [14]. Thus, from an
energy point of view, current climate change influences the planning and building design
of future smart cities [15] and the technologies involved in those projects [16].

In this perspective, the diversification of power generation sources (use of renewable
energy, e.g., solar and wind power), the insertion of electric vehicles (EVs), the use of new
technologies, and the increasing reliability and robustness of the electric grid are current
points of interest. These factors and the growing environmental concern have driven the
progressive transformation of the traditional electric system in smart grids (SGs) [17–19].
This new and complex electric grid concept includes traditional and renewable energy
sources, including intermittent generations, demand management characteristics, and a
greater degree of management and distributed control requirement due to the bidirectional
power flow possibility. This change from the conventional system to SGs has gradually
occurred with the inclusion of structures known in the literature as microgrids (MGs). How-
ever, the widespread adoption of these changes in a global energy matrix scale still depends
on the definition of multiple financial, technological, and regulatory aspects [17–19].

In addition, the advancement of 5G cellular network technology, the development
of the Internet of Things, and the use of big data [20,21] have powered the development
of the so-called Industry 4.0 [22] and advanced automated technologies systems [23–25]
such as automatically guided vehicles, advanced industrial processes control systems,
sustainable development solutions, and other technologies that use big sets of information
to enhance in a transformative way our social organization. In this sense, our modern
society is undergoing transformations that imply a greater interconnection between people
and technology. Given this scenario, this interrelationship requires greater data acquisition,
distribution, and storage security. Developed countries such as the United States (US) and
the United Kingdom (UK) are proposing strategies to ensure the cybersecurity of these
systems [26,27] to mitigate the number of cyber threats and achieve cyber resilience. Cyber
resilience consists of the ability of a system to suffer cyberattacks and maintain the integrity,
security, confidentiality, and availability of its data and services. In this new age of big data
and advanced communication systems, cybersecurity is a complex challenge for the safe
use and development of new technologies.

Seeking to meet the need for the integration of new sources of energy, the entry and
integration of new technologies into the grid, global concerns about the environment,
diversification of the energy matrix, and the growing consumption of energy, the electrical
system is in the process of modernizing its operation, planning, maintenance, communi-
cation, management, and control. Therefore, the power system is gradually transforming
into SGs, and consequently, the vulnerabilities of this new system become the target of
cyberattacks. Thus, their cybersecurity becomes a critical issue in ensuring reliability and
safety in the operation of power systems. Observing this problem, this paper presents a
study on cybersecurity in the power cyber–physical system with a history and classification
of the main cyberattacks available in the literature that target the electrical and industrial
sectors in general. Due to the modernization and transformation of the power system, this
paper also presents concepts, characteristics, and the vulnerabilities of the cyber–physical
system. In this perspective, this paper aims to review the literature on the cybersecurity
of electrical power systems and offer a clear perspective on key developments currently
available in the academic and industrial literature. The paper also aims to contribute a
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state-of-the-art study of cybersecurity applications in monitoring systems, control systems,
and protection systems. For this study, a comprehensive search was performed in multiple
academic and industrial database resources, including but not limited to Science Direct,
IEEE Xplore, Google Scholar, MDPI databases, and others. In addition, this paper presents
some of the major cybersecurity standards and regulations created by companies and
technical and scientific organizations that aim to standardize, regulate, and enhance the
security and reliability of smart grid operation.

Given this, this paper discusses many proposals, research strategies, techniques,
and methodologies for preventing, detecting, investigating, correcting, and mitigating
cyberattacks on industrial monitoring and control systems and fault relays in the power
system. Thus, this paper seeks to fill this gap in the literature on cyber–physical power
systems and to create a tool that assists in the prevention and correction of these types of
attacks. With these cybersecurity goals in the operation of CPPS, this paper presents the
following contributions.

• A robust review of the literature that is capable of guiding decision-making on a
possible operational scenario in which the cyber–physical power system suffers cyber-
attacks, indicating a possible solution to this problem.

• A theoretical framework capable of assisting in the planning and developing of cyber-
security systems for cyber–physical systems.

• A tool to prevent and mitigate these types of attacks.
• A review of the layers, basic components, and key vulnerabilities of the devices that

comprise the control and management system for cyber–physical systems.
• A robust history and the main types of cyberattacks against industrial systems, as well

as the main standards and regulations developed for cybersecurity in microgrids.

The structure of the paper is organized as follows. Section 2 presents key concepts,
historical timelines, and definitions of different types of cyberattacks. Section 3 discusses
preliminary concepts and the basic layers, components, and the vulnerabilities in managing
and controlling a CPS. Section 4 presents applications of cybersecurity in the monitoring
and control system and in protection systems in power systems. Furthermore, it presents
defense strategies and future trends for cybersecurity. Finally, Section 5 presents some
standards and protocols created by scientific institutions on cybersecurity in smart grids.
Section 6 makes the final considerations, giving this work’s general contributions and
suggestions for future works. Figure 1 provides the framework of the paper.
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2. Background

Cyberattacks are virtual actions that aim to infiltrate individuals’ or organizations’
computer networks, typically seeking to cause harm or disrupt service. These attacks
can have different focuses, from compromising data integrity to stealing confidential
information [28]. Therefore, developing adequate protection layers for a CPS is necessary
to ensure the security and reliable operation of power and energy systems. Still, during
recent years, the power industry has been subjected to an increasing number of cyberattack
attempts. Beginning in the 1980s, about 800 cyberattacks have been observed in the energy
sector [29].

2.1. History of Cyberattacks

In recent years, several cyberattacks have hit the control system of the electric power
sector around the world [30]. In June 2007, a power outage lasting approximately 46 min in
the Tempe area of Arizona affected about 100,000 customers, leading to a loss of 400 MW of
load. The cause of the outage was due to the accidental activation of the load reduction
program [29,31,32]. Similarly, in February 2008, a system disturbance in South Florida
caused by a transmission system failure led to a loss of 2300 MW of load [29,31,32]. These
two reported incidents were not considered intentional and malicious attacks; however,
it shows the cyber vulnerabilities in the power system. In this context, the work in [32]
presents a detailed survey and analysis to understand the motivation of the main cyber-
attacks that occurred between 2001 and 2013. In addition, this survey informs the attack
targets and describes the techniques used by the attackers [32]. The identified main targets
of cyberattacks were those directed at countries with national security risks; the country’s
strategic infrastructure, industries, and companies; global espionage; and the encourage-
ment of hacker activity [32]. A historical analysis of the major cyber incidents that have
occurred worldwide, with the first event dating back to 1903, is available in [33].

From these lists, it is possible to infer how these attacks occurred, identify possible
vulnerabilities, and observe an increasing number of attacks in recent years and the greater
complexity and refinement in cyber invasions. In 2010, the control facilities of the nuclear
power plant in Iran were attacked by a computer worm called Stuxnet [33–35]. This mal-
ware is dangerous because it self-replicates, spreads throughout the system, and exploits
unpatched vulnerabilities in the operating system of process computers [33]. Stuxnet is con-
sidered one of the main cyberattacks described in the literature, as it has caused changes in
countries’ cybersecurity strategies and policies [33,35]. A recent example of the devastating
effects of cyberattacks occurred on December 2015, in the Ukraine, where 225,000 con-
sumers lost their energy supply for a few hours due to a forced blackout [32,34,36–38]. This
event became known as the worst power system blackout caused by a cyberattack ever
recorded in the literature [32,34,36,37].

The healthcare sector, universities, research centers, hospitals, and laboratories during
the coronavirus disease pandemic (COVID-19) suffered a coordinated set of cyberattacks on
their information and communication system. These attacks aimed to extract unauthorized
information from the development of vaccines and drugs that combat COVID-19. In March
2020, a university hospital in the Czech Republic suffered a cyberattack that disrupted
its Internet network and caused delays and postponements of surgeries and emergency
care [39]. Nine other cyberattacks and breaches in the healthcare sector during the COVID-
19 pandemic are presented in more detail in [39]. Table 1 presents a historical perspective
of critical cyberattacks on industrial control systems and the power and energy sector.

In addition to cyberattacks, the power grid is also subject to cyber-terrorism actions
focusing on spreading fear to the population under service [40,41]. In this new form of
terrorism, Pakistan stands out with the largest number of attacks (439), followed by Yemen
(170), Colombia (161), and Iraq (146). Figure 2 shows the number of terrorist attacks that
the electricity sector of selected countries experienced between 2010 and 2014 [40,41].
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Table 1. Cyberattacks in industrial control systems and the power and energy sector [33,34,38,42–45].

Year Involved Countries Type of Cyberattack Cyber Incident

1982 URSS Code manipulation Pipeline destruction in Siberia due to manipulation of
control software code causes valves to malfunction [38].

1999 Bellingham, USA Code manipulation Code manipulation that led to a slowdown of a pipeline
SCADA system [38].

2000 Queensland, Australia Attack
Cyberattack on Maroochy Water Services. This wireless
attack remotely controlled 150 pumping stations and
released millions of gallons of untreated sewage [33].

2003 Ohio, USA Malware
The Ohio nuclear power plant suffers the injection of a
Malware (Slammer Worm) into its control
system [34,38].

2007 Idaho National Laboratory,
USA Attack

A hacker injected false data and controlled a generator
breaker. This cyberattack became known as the Aurora
Attack [34,38].

2008 Turkey Attack
Explosion of oil and barrels in Turkish pipelines caused
by false data injection attacks that manipulated the
control system [34,38].
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Table 1. Cont.

Year Involved Countries Type of Cyberattack Cyber Incident

2010 Iran Malware Iran’s nuclear power plant control facilities were
attacked by a malware called Stuxnet [33].

2010 China, USA, and Netherlands Malware Night Dragon malware: This cyberattack was targeted
at large companies in the energy and oil sector [33].

2011 Global Malware

Duqu/Flame/Gauss malware: This malware was
discovered by Hungarian researchers in 2011 and aims
to steal information from the control system of
companies and their suppliers [33].

2012 Global Campaign
(series of attacks)

In 2012, a set of cyberattacks targeting the oil and
natural gas industry was discovered. This series of
attacks is called the Gas Pipeline Cyber Invasion
Campaign [33].

2012 Saudi Arabia and Qatar Malware

Power generation and supply has been affected due to
this malware attack on the computer system of large
energy companies in the Middle East. This attack is
known as Shamoon Malware [33,34,38].

2013 USA and Russia Attack

In 2013, the attackers carried out a cyberattack on a
company that provides maintenance services on a
store’s air-conditioning, heating, and ventilation system.
From this attack, the hacker was able to extract financial
data from the target stores. This cyber event became
known as Target Stores Attacks [33].

2013 USA and Iran Attack

The Bowman Dam that controls the water level after
abnormal storms was accessed by Iranian invaders
through a cyberattack, according to the US. This cyber
event became known as the New York Dam Attack [33].

2013 USA and Russia Malware
The Havex malware is a trojan horse that has the ability
to remotely access and collect unauthorized information
from industrial control systems [33].

2014 Germany Attack

A steel mill in Germany suffered a cyberattack based on
spear-phishing and social engineering. The attackers
gained access to the industrial control system and
caused several failures in the control, operation, and
triggering of equipment [33].

2014 Global Malware
BlackEnergy malware is a cyberattack that aims to
extract information from the various Human–Machine
Interface providers [33].

2014 USA, Turkey, Switzerland,
and Russia

Campaign
(series of attacks)

The energy sector in the USA, Turkey, and Switzerland
suffered a campaign of cyberattacks aimed at spying
and accessing confidential information from the control
process. This cyber incident became known as
Dragonfly/Energetic Bear Campaign No. 1 [33].

2015 Ukraine Attack

In 2015, the blackout in Ukraine was caused by the
injection of false data into the power grid. This cyber
event affected thousands of users for a few hours and
was considered the first successful attack on a country’s
power system [33,34,38,42].

2016 Syria and USA Attack

A water treatment company suffered a cyberattack on
its control system that modified the dosage of chemicals
used in its processing. This cyberattack became known
as the Kemuri Water Company Attack [33].

2016 Saudi Arabia and other
Middle Eastern countries Malware

After four years, the Shamoon malware was used again
for a cyberattack on the computer system of the civil
aviation sector in Saudi Arabia and other Middle
Eastern countries. This attack aimed to erase data from
the system [33].
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Table 1. Cont.

Year Involved Countries Type of Cyberattack Cyber Incident

2016 Ukraine Attack

The Ukrainian power grid once again suffered a
cyberattack that led to power outages. This time, this
attack was more robust, and a denial-of-service attack
hit the telephone system. The new malware used in this
attack is known as Crashoverride [33,42].

2017 USA and Ukraine Malware

CRASHOVERRIDE is malware responsible for
generating power interruptions in countries’ power
systems. The cyberattack in the Ukraine in 2019 used
this mechanism [33].

2017 Iran, USA, Saudi Arabia, and
South Korea

Group
(set of malwares)

APT33 is a set of malwares that aims to spy on the
aviation, energy, and petrochemical industries. In
addition, this cyberattack has the destructive ability to
erase process data and share confidential information
with attackers [33].

2017 Ukraine, Russia, USA, UK,
and Australia Attack

NotPetya is malware that was initially used against the
Ukraine and has the ability to target a nation’s critical
infrastructure. It is a destructive cyberattack of Russian
origin [33].

2017 USA Campaign
(series of attacks)

Dragonfly/Energetic Bear No. 2 is a set of cyberattacks
that target a country’s strategic infrastructure sectors,
such as the electric and nuclear power grids and the
water supply [33].

2017 Middle Eastern countries Malware

TRITON/Trisis/HatMan consists of new malware that
has the ability to access and modify confidential
information and execute algorithms that destabilize the
industrial security system [33].

2019 USA Attack

A cyberattack interfered with power grid operations in
the US on 5 March 2019. The type of attack used was
denial of service. This was the first cyberattack in the
wind and solar energy sector [34].

2019 India Malware The Kudankulam nuclear power plant in India suffered
a cyberattack in 2019 [34].

2019 Venezuela Attack
In 2019, the power grid in Venezuela was attacked,
causing a power outage for more than five days in
several states, including the capital [42,43].

2020 Portugal Ransomware (malware)
The giant Portuguese energy company, Energies of
Portugal, was attacked in 2020 by Ragnar Locker. The
attackers reportedly stole 10 TB of confidential data [43].

2020 Brazil Attack

On 16 June 2020, a Brazilian power generation and
distribution company, Light S.A., was attacked by a
Sodinokibi malware and had its operation temporarily
halted [43].

2020 Venezuela Attack
In 2020, the power grid in Venezuela was attacked,
causing a power outage in several states, except the
capital [44].

2021 USA Ransomware (malware)
A set of hackers used the ransomware attack and broke
into Colonial Pipeline’s network and digital systems,
leading to an outage of the pipeline for several days [45].

2.2. Classification of Cyberattacks

Smart microgrids are a major target of cyberattacks that can be typically clustered into
three distinct types of attack classification [31,46–51]:

(i). Availability;
(ii). Integrity;
(iii). Confidentiality.
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This section seeks to provide a general overview and description of the main types
of cyberattacks currently identified in the literature, Figure 3. The reader interested in a
detailed analysis for each cyberattack is kindly referred to the reference works cited in each
subsection.
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2.2.1. Availability

Real-time data of power grids must be readily available for access and consultation
with system operators and automated control systems. Ensuring this data security is
necessary because catastrophic consequences such as brownouts and blackouts can occur
based on its tampering and/or lack of availability. In this sense, cyberattacks focused on
data availability happen when malicious information is sent, causing network or server
congestion. Consequently, an interruption or delay of data communications occurs. This
event is called a data availability attack [31,46–51]. The next sections describe the main
attacks against data availability.

A. DoS/DDoS

Denial-of-service (DoS) attacks aim to overload the network and block system com-
munication to interrupt the user’s request for service. One way to carry out these attacks is
to intentionally send many messages on the control channel to congest the network and
obstruct communication. The attacker can carry out the attacks directly by using one’s
personal computer or indirectly through bots (the hacked system that is under the control of
the attacker), or both [50]. Furthermore, these attacks are dangerous and cause considerable
losses [50,52–54].

A variant of DoS attacks is denoted as a distributed denial-of-service (DDoS) attack. A
DDoS consists of a distributed attack coordinated by an attacker who acts as the “Attacker-
in-Chief” or several bots that attack the target and make the network resources unavailable
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to the user [50,52–57]. The DDoS attack is considered one of the most destructive network
attacks [56]. The attacker follows four steps to begin the attack [57]:

• It studies the system information to find possible vulnerabilities in the network and
then sends an attack;

• The attacker creates bots that install malicious programs on the invaded computers so
that they can be controlled. The hacked computers are called zombies;

• The attacker encourages the invaded computers to send various attack messages to
target the victim;

• The attacker extracts the information of interest and erases the data from memory.
• The main consequences of DoS/DDoS attacks are as follows [50,56]:
• Communication network slowness;
• Blocking authorized users’ access to system resources.

The following describes some types of DoS/DDoS attacks.

A1. ICMP

The Internet Control Message Protocol (ICMP) is the protocol responsible for reporting
errors to clients while delivering Internet Protocol (IP) packets. This protocol acts at the
network layer of the TCP/IP (transmission control protocol) model. The attacker generates
and sends numerous ICMP requests, congests the information traffic, and exploits the
bandwidth of the victim’s system [50,54,58]. There are two ways for ICMP to occur: the
“ping of death attack” and the “smurf attack” [50].

A2. HTTP

The Hypertext Transfer Protocol (HTTP) is the protocol responsible for transferring
hyperlinks and is the basis of data communication on the web. This protocol acts at the
application layer of the TCP/IP model. The target of these attacks receives numerous
GET and POST messages in order to overload, congest, interrupt, and confuse the traffic
of truthful information and the communication of web applications that use the HTTP
protocol [50,59]. In contrast to the ICMP attack, the HTTP attack does not exploit system
bandwidth significantly, since a high number of requests is not required [50,59].

A3. TCP SYN

The TCP SYN attack consumes system memory and makes the user’s access to services
unavailable. Furthermore, it uses an imperfection in the TCP protocol to perform the
invasion. The communication process takes place in a “three-way handshake” format.
There are three steps in this process. In the first step, the user sends the “synchronization”
(SYN) request to the network server. Then, to authorize the communication, the server
sends an acknowledgment (ACK) and returns the SYN request to the user. In the last
step, in theory, the client should send an ACK message to confirm and acknowledge
the communication. However, this message does not reach the server. In this last step,
the attacker is sending numerous fake SYN messages, and by not providing the ACK, it
generates a communication failure and network overload [50,54,60].

A4.UDP

The user datagram protocol (UDP) is a protocol that acts at the transport layer of the
TCP/IP model. In addition, it has the characteristic of being a connectionless protocol.
In this type of attack, the attacker creates and sends many packets with fake addresses
to increase network traffic. In this way, it floods the system bandwidth. The server
cannot check and respond to requests correctly and starts to crash. This attack implies the
unavailability of system services for authorized users. The attacker may have a specific
target or a totally random port [50,54,57,61,62].

2.2.2. Integrity

For adequate functioning and control of power grids, it is necessary that the data present
accuracy, coherence, and veracity. Attacks happen when some command signal or the periodic
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measurements are altered, damaging the integrity of the data [31,46–48,50,51]. False Data
Injection (FDI) is an example of an attack focused on affecting data integrity [48,49]. In the
following, key attack strategies focused on compromising data integrity are presented.

A. Cross-Site Scripting

Cross-Site Scripting (XSS) attack is an important type of code injection attack (CIA)
and one of the most common. This attack exploits the system’s security weaknesses by
executing an invalid code. The attacker creates the malicious code and propagates it
through the web browser. When the victim accesses the infected site, the attacker can
access the system’s sensitive information [50,63–65]. Thus, the integrity of the victim’s data
is in danger since the system has been hacked. The XSS attack can happen persistently,
non-persistently, or through a “document object model” (DOM) [65].

B. Data Diddling

Data Diddling Attacks consist of an attack that modifies the information in the database
without authorization, which is illegal. In addition, the attack can change the status of
files from permanent to temporary or from private to public, among other inappropriate
changes that damage the integrity of the information [50,66].

C. Salami

Salami Attacks consist of performing small attacks on the network data system to
extract an adequate amount of sensitive information without being noticed by the security
system. These attacks provide a larger attack and, consequently, larger damage to the
company [50,66].

D. Session Hijacking

A Session Hijacking attack is the misuse of a part of the network, causing the attacker
to become a participant with access to the information on that part of the system. The
attacker can send false information packets to other users as if the attacker was one of
the network administrators. The hijacker seeks to find and exploit the weaknesses and
unencrypted protocols of the network [50,67].

E. SQL Injection

The SQL Injection Attack, like the XSS attack, is an important type of code injection
attack and one of the most common. The attacker seeks to use weaknesses in SQL statements
to access database information. This attack happens when the hacker uses an improper
SQL command that provides access to a website’s database. With this improper entry,
the attacker can access all the victim’s information in this database and delete, modify,
download, or do any other improper activity [50,63,68]. Tautologies, Arbitrary String
Patterns, Group Concatenate String, Stored Procedures, and Alternate Encoding are some
types of SQL injection attacks [63].

F. Replay

A replay attack (RA) is a form of cyberattack that aims to compromise the integrity of
the information of the system components. This attack aims to monitor and record a real
sequence of sensor measurements and, during the invasion, replace the real measurements
with these previously recorded values. These recorded data are replayed and repeated
uninterruptedly until the end of the attack. Therefore, the replay attack takes place in two
stages, the monitoring stage and the replaying stage. This fraudulent replay attack does
not require deep system knowledge and usually targets and affects the operation of the
sensors, actuators, controllers, and estimators of the cyber–physical system [36,69].

2.2.3. Confidentiality

Sensitive system information should only be accessed by authorized individuals to en-
sure data confidentiality. Thus, when unauthorized individuals access the system planning,
the control, operating strategies, and user information are no longer secure. Therefore, it
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is subject to espionage and misuse by third parties. Thus, attacks on data confidentiality
can affect the functioning of the system and also cause financial and physical/technical
impacts [31,46–48,50,51].

A. Eavesdropping

The process of secretly listening in on the network to unauthorized conversations is
called eavesdropping. The eavesdropper has access to privileged and confidential informa-
tion among network users. In this way, the eavesdropper can read, insert false information
into the network, and delete or do any illicit activity with the system data [50,70]. Therefore,
with this attack, the confidentiality of communication is damaged.

B. Keylogger

Keylogger consists of a malicious software program that is installed on the system
without the knowledge and authorization of the client. It is intended to monitor and
capture the user’s activities intentionally. Subsequently, attackers have access to this
confidential data and can steal from, harm, or exploit the victims [50,71–73]. Keyloggers can
be implemented using hardware or, more usually, software, wireless, and acoustic [72,73].
A credit card machine that records and then makes the password available to others is
an example of a keylogger [71]. Therefore, this type of attack compromises the secrecy of
information.

C. Password Attacks

The simplest and cheapest way to initially protect the information systems of a user, a
company, or the government is through authentication using passwords [74]. However, this
method presents some vulnerabilities because the user can create a password considered
weak, reuse the same password on several sites, access unreliable sites, type passwords on
unreliable computers, and other actions that compromise the confidentiality of passwords
and, consequently, facilitate the action of hackers [74,75]. There are numerous ways for the
attacker to discover the user’s password. In this context, we can highlight the following [50]:

• Attack based on the combination of all characters contained in the dictionary;
• Attack using hacking software that tries numerous possible password combinations,
• Guessing attack, the attacker uses the victim’s personal data to discover the password.

The discovery of the password by a third party can lead to leaks and theft of sensitive
information, economic losses, invasion of privacy, and other catastrophic consequences for
the user.

Changing passwords periodically is a simple way to defend password integrity [76].
Generally, passwords created by the user him/herself and which are memorable are easier
to crack by attackers. Thus, some tips for creating a strong and unique password using
mnemonic passwords are given below [75,77]:

• Sentence substitution: Choose a sentence and substitute each word or digit with other
characters;

• Keyboard change: Choose a basic password and then add characters according to the
random movement chosen by the user. You must save this movement;

• Use the formula: Put the password in the format of an equation or function with
numbers and characters,

• Special character insertion: Replace conventional characters in the basic password
with special characters.

D. Snooping

Snooping is a cyberattack that has the passive characteristic where the attacker seeks to
obtain sensitive information from users [50,78]. Snooping can happen in a direct way where
the attacker unnoticed watches the victim enter his password or any other confidential
information. In this way, making a physical attack. Snooping can also be performed online,
where the hacker monitors the target via the Internet in order to obtain network data,
company confidential information, and passwords from the victim. In addition, this attack
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can happen by hacking into security cameras, switches, and routers on the network, thus
making it a digital attack [50].

E. Social Engineering

Social Engineering consists of a cyberattack that aims to target the individual rather
than the network structure of the system [79]. This attack uses persuasion techniques to
trick and manipulate victims until they reveal confidential information that benefits the
attacker [50,79,80].

Nowadays, due to the use of social networks, individuals share personal information
for free, and this fact helps criminals to profile each person and then perform a Social
Engineering attack [79]. In this way, phone calls, email exchanges, social networks, and
conventional websites are all used as objects for attacks [79,81].

Phishing; Grooming; Pretexting; Profile Cloning; Face-to-Face Interaction; Shoulder
Surfing; Quid Pro Quo Attacks; Diversion Theft Attacks; Piggybacking or Tailgating or
Trailing and Pretending; File Masquerade; Baiting; Reverse Social Engineering; Scareware
or Pop-Up Windows; and Water-Holing are some types of social engineering [81].

F. Traffic Analysis

The Traffic Analysis attack is a cyberattack where the attacker performs a previous
analysis of the communication traffic between the sender and receiver. It aims to extract
confidential information to learn about the network’s vulnerabilities. Subsequently, it
carries out the planning for the execution of the theft. This attack has a passive characteristic
and hurts the confidentiality and privacy of the users’ information [50,52].

3. Cyber–Physical System

Technological advances in industries drive the emergence of cyber–physical sys-
tems [82,83]. Figure 4 illustrates the CPS system in a block diagram. This type of system
integrates the physical aspects of a process and digital technology [84,85]. In addition,
using computational concepts, the CPS can act and expand the components on the shop
floor, being an important factor in the technology development [84]. The CPS develops a
leading role in the development of the industrial Internet of Things (IIoT) and Industry
4.0 [86]. This evolution in the industry provides better access to the information provided
by sensors and, consequently, impacts the generation of a high number of data continu-
ously, the so-called big data [87]. In this way, the CPS provides a precise and real-time
operation [82,86,88]. Currently, the CPS is the object of study in the literature, since it
impacts the economy, environment, and people’s daily lives. In this context, the work de-
veloped in [89] presents a review of the literature on CPS applications in 10 research fields:
agriculture, education, energy management, environmental monitoring, medical devices
and systems, process control, security, smart city and smart home, smart manufacturing,
and transportation systems.
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The following sections display the architecture layers and basic components of a CPS.

3.1. Cyber–Physical System Layers

The architecture of a CPS is divided into three main typical layers: perception layer,
transport layer, and the application layer. Figure 5 illustrates the architecture of a CPS from
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the layers’ point of view. In the following, the characteristics of each layer are presented
and discussed.
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3.1.1. Perception Layer

The first layer of the CPS architecture is called the perception layer. This layer holds
all the equipment that will interpret the physical phenomena and transform them into
electrical signals and, subsequently, into information. Some equipment of this first layer
is aggregators, actuators, sensors, transducers, Global Position System (GPS), cameras,
“Radio-Frequency Identification” (RFID) tags, lasers, and any other intelligent equipment of
the so-called “factory floor” [86,90]. This layer aims to collect real-time process information
to perform planning, monitoring, and control of the physical system. Due to these factors, in
the literature, this layer is also known as the “sensing layer” and “recognition layer” [56,90].

3.1.2. Transport Layer

The second layer of the CPS architecture is called the transport layer. This is the
intermediate layer between perception layer and application layer, thus being responsible
for the communication of data between the layers. This seamless communication is accom-
plished through wired or Wi-Fi Internet networks, Bluetooth technology, Infrared (IR), 4G
and 5G, Zigbee, and Internet protocols, among other technologies that aid communication.
In addition, this layer is responsible for routing and transporting data through routers,
switches, hubs, gateways, and clouds. In the literature, the intermediate layer is also known
as the transmission layer or network layer [56,90].

3.1.3. Application Layer

The last and most interactive layer of the CPS architecture is called the application
layer. The role of this layer is to receive information from the transport layer, analyze it and
send appropriate command signals to the devices located in the perception layer to act in
the physical process. The application layer uses intelligent decision-making algorithms to
analyze the information received and, consequently, make the most appropriate control
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decision for the proper functioning of the physical system [91]. In addition, system mon-
itoring is performed in this layer, seeking to map the behavior of the physical system to
assist in the decision-making process. Furthermore, the application layer can save previous
decision-making from obtaining operational improvements and future feedback [86,90].

3.2. Cyber–Physical System Components

The components that make up a CPS are divided into three groups:

(i). Physical components;
(ii). Detection components,
(iii). Control and communication components.

3.2.1. Physical Components

The physical components of a CPS are sets of equipment that enable the operation of
the physical process. The major components of a Cyber–physical Power System (CPPS) are
the power generators, transformers, switchgear, transmission line, circuit breakers, motors,
cylinders, and numerous other loads that describe the power system [92].

3.2.2. Detection Components

The sensing components are devices that are physically connected to the physical
system and are responsible for observing and extracting information from the process. This
unit highlights three types: sensors, aggregators, and actuators.

• Sensors

These devices are in the perception layer and are connected directly to the physical
system components. The sensors are responsible for interpreting the physical phenomenon
and transforming it into a signal that can be interpreted. In addition, they have the function
of collecting the information from the physical system and through the aggregators sending
it to the transport layer [86,93].

• Aggregators

These are devices that are mostly located in the transport layer and responsible for
processing the data received by the sensors. It works as a “bridge” that transports the
data obtained by the sensors, from the perception layer to the transport layer. Online data
aggregators are found in routers, switches, gateways, and other devices performing this
transport function [86,93].

• Actuators

These are devices located in the application layer. Actuators receive a message indicat-
ing their operation based on data processing and decision-making from the aggregators. In
addition, they are responsible for modifying system parameters so that the process operates
properly. Actuators receive messages in the form of electrical signals and hydraulic or
pneumatic energy and generate physical actions as responses [86,93]. Motors, valves, and
cylinders are examples of actuators.

3.2.3. Control and Communication Components

The control and communication components of a CPS are devices responsible for
monitoring and managing the physical system. In addition, they seek to control the process
to achieve z satisfactory performance, reliability, and security. Therefore, control devices
are fundamental for the robustness of the system. In this perspective, Programmable Logic
Controllers (PLCs), Distributed Control Systems (DCSs), and Remote Terminal Units (RTUs)
are elements that stand out to control, and the Supervisory Control and Data Acquisition
(SCADA) and Phasor Measurement Unit (PMU) perform the data acquisition in a CPS
system. The following sections detailed describe these components.

• Programmable Logic Controllers (PLCs)
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PLCs are digital computers that, through user programming, can automate and control
modern industrial processes. Initially, these devices were developed to replace industrial
relay panels and emulate the behavior of electrical diagrams. Besides that, this device
presents characteristics that facilitate fault diagnosis, good flexibility, resistance to vibra-
tions, immunity to electrical noise, support algorithms and loops, easy programming, low
cost, robustness, and good reliability, among other important aspects [86,94]. The basic
building blocks that make up the PLC hardware are a rack, a power supply, a programming
unit, input and output (I/O) modules, and the central processing unit (CPU) [95]. Thus,
the PLC is used for various industrial control and automation applications, from simple to
more complex systems [95].

• Distributed Control Systems (DCSs)

Centralized control for large and complex systems may present a different efficiency,
reliability, controllability, flexibility, and robustness as communication failures [96]. From
this perspective, physical system processes are divided into subsystems and locally con-
trolled through industrial computers, thus allowing the distribution of control and greater
flexibility in operator action [86,96]. In addition, monitoring can be performed through su-
pervisory systems that provide online and remote control. In this way, DCSs have reduced
implementation costs while increasing the reliability and robustness of the system [86].

• Remote Terminal Units (RTUs)

RTUs are electronic devices that extract the signal samples, investigate, and identify
possible failures and then restore the data in a distribution system [97]. In comparison with
PLC, the RTU does not perform well in algorithms and control loops, as well it presents
low immunity to vibrations and noise [86]. Its main application is focused on geograph-
ical telemetry systems, being used to extract information from the system, send/receive
messages, and perform control actions in a SCADA system [98], while presenting some
processing capacity due to its microprocessor unit [86]. In addition, some RTUs can also
control numerous systems that are connected to the control room [99].

• Supervisory Control and Data Acquisition (SCADA)

These systems use software to collect, measure, monitor, process, and control the
data and equipment in a CPS [100]. The SCADA system extracts and processes the data
generated by the PLCs and RTUs [101]. The typical SCADA system architecture features a
“Human–Machine Interface” (HMI), hardware, software, RTU, central supervisor, database,
measurement devices, and process actuation [100,102]. These systems’ communication
networks can be based on Internet protocols, providing benefits in monitoring, planning,
management, and control of the CPS. However, this can also bring some harm, such as a
higher number of cyberattacks on the vulnerabilities of the SCADA system [103].

• Phasor Measurement Unit (PMU)

PMU technology is used in power systems to measure a “quantity” called a phasor.
The phasor is a graphical representation of the magnitude and phase angle of an alternating
current electrical quantity at a specific time. In this way, it aims to improve the precision of
the visualization of electrical quantities at all points of the network and, therefore, facilitate
the diagnosis of possible failures in the system [104,105]. Using GPS for the time-stamping
of samples, PMUs can measure the frequency and the rate of change of the frequency of
electrical signals. For this reason, they are also known as synchrophasors [106]. Systems
with PMUs have a higher update rate and accuracy of around 1 µs compared to SCADA
systems [107,108]. From this perspective, using data acquisition with PMU technology
provides real-time measurement, analysis, and control of system dynamics that cannot be
achieved using a traditional SCADA system.

3.3. Cyber–Physical System Vulnerabilities

The current integration between people and machines controlled remotely in real-time
by Internet networks, data processing, and new computer and information technologies



Energies 2023, 16, 4556 16 of 34

provide benefits regarding the efficiency and performance of the control system in in-
dustries and in the automation of processes. In counterpart, this system presents new
evils concerning the cybersecurity of information on physical devices, communication,
monitoring, operation, and control of the cyber–physical system.

From this perspective, the cyber–physical system presents new weaknesses in its
operation that are known as cyber, physical, and cyber–physical vulnerabilities. The cyber
vulnerability relates to the network system, communications, smart devices, remote access,
and unintentional failure of employees and vendors [109]. The physical vulnerability is
related to physical attacks on the devices that make up the infrastructure of the cyber–
physical system, such as the sensors, transducers, actuators, motors, cylinders, pumps,
valves, transmission line cables, and distribution and transmission transformer towers,
among other physical devices that make up an industrial system [109]. Finally, there is the
cyber–physical vulnerability which represents a new type of vulnerability that is concerned
with the weaknesses and damage presented by the junction of cyber and physical devices
and components of the critical infrastructure of an industrial cyber–physical system [109].

Modern systems of monitoring, control, and industrial management are performed by
SCADA systems or other industrial control systems that use as a primary element a set of
systems with PLCs [110,111]. PLCs, through their inputs, are responsible for receiving and
processing the data received by sensors and transducers connected to the industrial process,
and through a programming logic and signal issued, they can determine how the actuators,
motors, frequency inverters, relays, transformers, and other final control elements will
work in the industrial process [110]. From this perspective, the PLC integration with new
Internet technologies makes it a target of cyberattacks on its communication network, such
as Stuxnet [111], Triton, and Black Energy [112], and consequently, such devices present
a vulnerability in cybersecurity and are part of the critical infrastructure of the industrial
control system of a CPS.

PLCs are connected to and integrated into the Internet of Things; therefore, they are
vulnerable to malicious threats in their control logic. This type of attack is called control
logic injection, and it aims to cause failures and disruptions in the processes controlled by
PLCs. In this perspective, the author of [112] presents recent work on control logic injection
attacks and points out the recommendations and current challenges in the security and
protection of information in PLC-controlled systems. Besides the control logic injection
attack, there is the denial-of-service attack, wherein a large number of malicious packets are
sent and transmitted that exploit the possible security vulnerabilities of a PLC system [113].
Thus, the author of [113] discusses a methodology capable of detecting anomalies based on
monitoring the behavior of the CPU of a PLC in a water tank control system.

Cybersecurity in management and control systems with PLCs is important to maintain
the availability, integrity, and confidentiality of process data and ensure proper and resilient
operation of the industrial system. Thus, the author of [114] presents a study that points
out the challenges in information security and discusses the security of communication
protocols in Industry 4.0 systems that use PLCs and SCADA. The author of [111] takes a
different approach than the conventional one, considering the communication network
between engineering stations and PLCs as an object of study and analysis of cybersecurity.

4. Cybersecurity Applications and Methodology

We followed a methodological approach based on the strategy proposed in the Intro-
duction, and this section presents the state-of-art of cybersecurity applications based on
multiple scholarly and industrial database resources, including but not limited to Science
Direct, IEEE Xplore, Google Scholar, and MDPI databases, among others. The literature
search on cybersecurity applications is divided into three main categories: cybersecurity
on monitoring systems, cybersecurity in control systems, and cybersecurity in protection
systems, as shown in the Figure 6. Thus, the subsections below are meant to provide the
available references of each topic of interest.



Energies 2023, 16, 4556 17 of 34

Energies 2023, 16, x FOR PEER REVIEW 18 of 35 
 

 

Direct, IEEE Xplore, Google Scholar, and MDPI databases, among others. The literature 
search on cybersecurity applications is divided into three main categories: cybersecurity 
on monitoring systems, cybersecurity in control systems, and cybersecurity in protection 
systems, as shown in the Figure 6. Thus, the subsections below are meant to provide the 
available references of each topic of interest. 

 
Figure 6. Literature search on cybersecurity applications. 

4.1. Cybersecurity on Monitoring Systems 
The cybersecurity of the monitoring system of a CPS is extremely important because 

it considers the security of the information collected by sensors and measurement instru-
ments. Therefore, for this process to achieve satisfactory results, the monitoring system 
must present information security and reliability. In this category, 10 key works were se-
lected and are shown in Table 2. 

For monitoring industrial systems, industrial cyber–physical systems (ICPSs) are 
used, consisting of a link between the software and hardware parts of the system. Refer-
ence [115] developed a methodology called Multilayer Run-Time Security Monitor (ML-
RSM), which is capable of identifying divergences caused by communications and attacks 
on the application layer, as well as preventing the spread to other control layers. The ro-
bustness of this approach is tested in a water distribution monitoring system [115]. To 
monitor and secure ICPSs, the author of [116] developed a robust tool capable of identify-
ing possible cyberattacks through hierarchically distributed intrusion detection. Further-
more, through the adaptive Kalman filter, the monitoring and detection of possible anom-
alies in the CPS are performed [116]. 

To identify the interdependence of physical and cyber failures, the Reference [117] 
proposes an Anomaly Detection System (ADS). In this system, sensors collect data in the 
physical space and cyber sensors in real-time collect and analyze the network information. 
The methodology was tested on the IEEE-33 bus model, and three types of unsupervised 
machine algorithms were used for validation: one-class support vector machines 
(OCSVMs), Local Outlier Factor (LOF), and autoencoders (AEs) [117]. The critical infra-
structures of the CPS are targets of cyberattacks, and in this context, the author of [118] 
proposes an anomaly detection methodology using machine-learning algorithms that re-
late physical and cyber–physical aspects to enhance the security of a power plant. 

Resilience is an important characteristic of achieving reliability and security in a 
cyber–physical system. Thus, the author of [119] developed a technique to continuously 
measure and monitor it. This technique detects elements that undermine resilience and 
addresses probabilistic concepts, graph analysis, game theory, attack information, and 
CPS vulnerabilities [119]. The Cyber–Physical Security Assessment Metric (CP-SAM) has 
been tested and validated on a real MG model. 

Database

Monitoring 
Systems

Control 
Systems

Protection 
Systems

Cyber Security 

Figure 6. Literature search on cybersecurity applications.

4.1. Cybersecurity on Monitoring Systems

The cybersecurity of the monitoring system of a CPS is extremely important because it
considers the security of the information collected by sensors and measurement instruments.
Therefore, for this process to achieve satisfactory results, the monitoring system must
present information security and reliability. In this category, 10 key works were selected
and are shown in Table 2.

Table 2. Cybersecurity applications: monitoring systems [115–124].

Method Attack Point Purpose Field of
Application Simulation Reference

Multilayer Run-Time
Security Monitor

Application and
communication

layer attacks.

Identify divergences
caused by

communications and
application layer

attacks and prevent
propagation to other

control layers.

ICPSs Water distribution
system. [115]

Regularized sparse
deep belief network
(RSDBN) model is

adopted;
noise-adaptive
Kalman filter

Hierarchically
distributed attack

in ICPS layers,
perception, and

application layer.

Identify potential
cyberattacks through

hierarchically
distributed intrusion

detection.

ICPSs

Numerical
simulation on an

ICPS platform with
OPNET and
benchmark

simplified Tennessee
Eastman process

[116]

Three unsupervised
machine-learning

algorithms:
OCSVMs, LOF, and

AEs

Network scanning,
denial of service,

and malicious
command data

injection.

Detection of cyber and
physical anomalies.

Critical
infrastructure of

the CPS
IEEE-33 bus model [117]

Machine-learning
algorithms

Critical
Infrastructure

Attack

Cyber and physical
anomaly detection

Critical
infrastructure of

the CPS
Power plant [118]

Multicriteria
decision-making

(MCDM), Choquet
Integral in compute

CP-SAM

Malicious and
accidental

microgrid failures

Increase the resiliency,
reliability, and security

of a microgrid by
creating a robust

cybersecurity
assessment metric.

Cyber–power
system

The test was
performed using a

real microgrid model
[119]
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Table 2. Cont.

Method Attack Point Purpose Field of
Application Simulation Reference

Big data platform
architecture for log

analysis for CPS and
prediction algorithm
based on time series

Log anomalies

Propose and
implement a log

analysis architecture
capable of identifying

and detecting
anomalies in the
power system.

Hydropower
generation control

networks

The tests were run
with a real dataset

from a CPS recorded
over 3 months

[120]

Fuzzy hesitant
methodology of the
Analytic Hierarchy
Process (AHP) and
the Technique for

Order of Preference
by Similarity to Ideal

Solution (TOPSIS)

On data
availability,

integrity, and
confidentiality.

Analyze and estimate
assessments through

an operational
procedure for the

cybersecurity of the
industrial system.

Industrial control
system in the
energy sector

Computational
simulation of six

different alternatives [121]

Blockchain
Technology

Malicious attack of
false data injection

into PLC.

Accurately monitor
data and protect the

PLC against
cyberattacks. In

addition, a system is
proposed to ensure the

operation of the
Reactor Protection

System.

Isolated networks
of nuclear power

plants

The proposed
approach is tested

through an
experiment that

injects dummy data
into PLCs

[122]

AI algorithms

Real-time
detection of
anomalies in

electrical
appliances.

Data acquisition, fault
identification,

management, and
real-time monitoring
of energy data based

on AI algorithms.

Industrial Internet
of Things

Hardware design,
server, and database

creation in open
source and computer

simulation

[123]

Adaptive method
and multicriteria

optimization

Cyberattacks and
network traffic

anomaly detection.

Creating an adaptive
system to manage and
monitor information

security.

CPS
Experimental study
of intelligent home
intrusion detection

[124]

For monitoring industrial systems, industrial cyber–physical systems (ICPSs) are used,
consisting of a link between the software and hardware parts of the system. Reference [115]
developed a methodology called Multilayer Run-Time Security Monitor (ML-RSM), which
is capable of identifying divergences caused by communications and attacks on the appli-
cation layer, as well as preventing the spread to other control layers. The robustness of
this approach is tested in a water distribution monitoring system [115]. To monitor and
secure ICPSs, the author of [116] developed a robust tool capable of identifying possible
cyberattacks through hierarchically distributed intrusion detection. Furthermore, through
the adaptive Kalman filter, the monitoring and detection of possible anomalies in the CPS
are performed [116].

To identify the interdependence of physical and cyber failures, the Reference [117]
proposes an Anomaly Detection System (ADS). In this system, sensors collect data in the
physical space and cyber sensors in real-time collect and analyze the network information.
The methodology was tested on the IEEE-33 bus model, and three types of unsupervised ma-
chine algorithms were used for validation: one-class support vector machines (OCSVMs),
Local Outlier Factor (LOF), and autoencoders (AEs) [117]. The critical infrastructures of
the CPS are targets of cyberattacks, and in this context, the author of [118] proposes an
anomaly detection methodology using machine-learning algorithms that relate physical
and cyber–physical aspects to enhance the security of a power plant.
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Resilience is an important characteristic of achieving reliability and security in a
cyber–physical system. Thus, the author of [119] developed a technique to continuously
measure and monitor it. This technique detects elements that undermine resilience and
addresses probabilistic concepts, graph analysis, game theory, attack information, and CPS
vulnerabilities [119]. The Cyber–Physical Security Assessment Metric (CP-SAM) has been
tested and validated on a real MG model.

The monitoring of security risks in the power system is important to investigate the
failures and identify the vulnerabilities of the CPS. In this context, Reference [120] proposes
an architecture analysis to identify irregularities and a learning algorithm based on time
series to predict abnormal network situations in the power system [120]. For estimating the
cybersecurity of the power system, Reference [121] used the fuzzy hesitant methodology
of the Analytic Hierarchy Process (AHP) and the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS). Furthermore, to verify the quality of the proposed
methodology, the author tested six different projects [121].

The isolated networks of nuclear power plants (NPPs), e.g., PLC networks, are not im-
mune to cyberattacks. Thus, the authors of [122] developed blockchain technology respon-
sible for monitoring data accuracy and protecting the PLC from cyberattacks. Furthermore,
a system is proposed to ensure the operation of the Reactor Protection System (RPS).

In the industrial sector, the use of the Industrial Internet of Things technology has seen
continuous growth encompassing artificial intelligence (AI), computing, and cybersecurity.
In this scenario, Reference [123] proposes an approach for data acquisition, fault identifica-
tion, management, and real-time monitoring of energy data based on AI algorithms.

Information security in the monitoring layer of the CPS is important to maintain data
integrity. In this sense, Reference [124] proposes an adaptive method that analyzes and
solves a multicriteria optimization problem where the available inputs are mutable, seeking
to ensure data integrity.

In Table 2, all the discussions mentioned above and research on cyberattacks on
monitoring systems are analyzed and detailed.

Thus, the works discussed in this section present real-time defense strategies for
protection against cyberattacks and in the detection of physical, cyber, and cyber–physical
anomalies. The strategies are based on adaptive methods, Fuzzy Logic, AI and machine-
learning algorithms, blockchain technology, prediction algorithms, and the Kalman filter.
Therefore, these are important techniques found in the literature that seeks to improve the
reliability, resilience, and cybersecurity of the devices that compose the monitoring system
of a CPS.

4.2. Cybersecurity on Control Systems

The cybersecurity of the Centralized or Distributed Control System of a CPS must be
effective against cyberattacks from the simplest to the most complex form of systems. This
is because the control system is responsible for correcting the process variables to achieve
satisfactory operating parameters. Thus, for a process to achieve satisfactory results, the
control system must be based on security and reliability information. The current power
system presents a characteristic with distributed generation and devices interfaced with
power electronics, generators, motors, and transformers connected in a grid. Thus, the
cybersecurity of frequency and voltage control in these devices is a concern to ensure the
transient and steady-state stability of the system. In this category, 10 key works were
selected and are shown in Table 3.
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Table 3. Cybersecurity applications: control systems [125–134].

Method Attack Point Purpose Field of
Application Simulation Reference

Model Predictive
Control

Cyberattacks of
denial of service and

fake data injection
types

Develop a frequency
control approach

tolerant to
cyberattacks.

Frequency Control
of power systems.

The controller was
tested on an IEEE

benchmark system.
[125]

Adaptive control
based on real-time
CI (Computational

intelligence).

Cyberattacks on the
power system.

It presents a
real-time testing
methodology for

analyzing and
controlling power

system stability and
cybersecurity.

Power System

The test
methodology was
designed based on
OPAL-RT and the

SEL351S protection
system.

[126]

Robust controller
based on Port

Controlled
Hamiltonian with

dissipation (PCHD)

False data injection
attacks

A defense approach
based on the energy
conversion perspec-

tive.

Control system for
a permanent-

magnet
synchronous mo-

tor.

The proposed
approach is tested on

an industrial CPS
that controls a
synchronous

machine.

[127]

Long Short-Term
Memory (LSTM)
with Temporal
Convolutional

Neural Network
(TCN)

False data injection
attacks

A multivariate
approach capable of
accurately detecting
the injection of false
data into the CPS in

real-time.

Smart Grid Control
System

The performance of
the designed
framework is

verified using an
IEEE system and

trained with
Tensorflow libraries

using Keras.

[128]

Sliding mode
controller (SMC)

methodology based
on Adaptive

Dynamic
Programming (ADP)

False data injection
attacks

A decentralized
control approach to
large-scale system

security was
developed to

mitigate the effects
of unknown

injection attacks.

Decentralized
Optimal Control

Problem

The test was
performed on a

two-machine Energy
system subjected to 3

separate attacks.

[129]

Designs a finite time
interval sliding

mode controller for
Markovian hopping

systems

Random injection
attacks

A control approach
that supports
probabilistic
injection of
false data.

Markovian jump
cyber–physical

systems

The test was
performed with

single-link robot arm
model.

[130]

Observer-based
controller DoS attacks

Proposes a control
algorithm approach
that is not vulnerable

to DoS attacks.

A class of
two-timescale
cyber–physical

systems

The effectiveness of
the proposed

approach was tested
in two types:
Comparison

Simulation and
through the inverted

pendulum system
controlled by a DC

motor.

[131]

H∞ controller DoS attacks

Performs a design
study of the H∞

controller to mitigate
the effects of the

DoS attack.

ICPSs

To demonstrate the
effectiveness of the
proposed approach,

numerical
simulations are

performed.

[132]
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Table 3. Cont.

Method Attack Point Purpose Field of
Application Simulation Reference

Resilient control by
dynamic nonlinear
encoding/decoding

and chaotic
oscillators.

Malicious attacks,
stealthy system

integrity attacks, and
eavesdropping

It develops a control
framework with

devices for encoding
and decoding

disordered signals
that can identify

stealthy attacks on
the cyber–physical

system.

ICPSs

For testing and
validation of the

proposed approach,
simulations are

performed for the
quadruple-tank

process.

[133]

Offense–defense
game model Malware attacks

Presents an online
technique based on
the offense-defense

game model capable
of identifying these

malware attacks.

Electrical vehicles

Numerical and
dynamic simulation

in GAMS and
MATLAB software.

[134]

The power system is considered a critical infrastructure in the control system of a CPS
due to the automation of generation, transmission, and distribution operations. In this
context, frequency control is a target of these cyberattacks, and Reference [125] sought to
tackle this problem by proposing distributed frequency controls based on Model Predictive
Control (MPC) to improve the dynamic response of the system and mitigate eventual
failures. This controller was tested on an IEEE benchmark system, and through device
speed measurement and indirect estimation of the reference value, the controller presents
the ability to withstand cyberattacks of denial of service and fake data injection types.

To analyze power system stability control and cybersecurity, Reference [126] presents
a real-time test bench for CPS. In this simulator, it is possible for the user to simulate fault
situations and analyze the impacts generated. In addition, it presents an adaptive control
for a multi-machine power system.

False data injection attacks aim to compromise the satisfactory operation and control
system of a CPS by inserting false information into the measurements of sensors and control
signals. To mitigate this type of attack, Reference [127] proposes a controller designed from
the perspective of power conversion that changes its parameters dynamically as the system
suffers cyberattacks. By adjusting the amount of damping insertion, the controller stabilizes
and ensures the dynamic operation of the system [127].

Real-time and accurate identification of the location of the attack is important to ensure
the smooth operation of the system. Thus, the authors of [128] developed a multivariate
methodology capable of accurately detecting false data injection into the CPS in real-time.
The proposal consists of a parallel framework that relates Long Short-Term Memory (LSTM)
with Temporal Convolutional Neural Network (TCN) [128].

For large systems, Reference [129] presents a decentralized control approach that uses
the sliding mode controller (SMC) methodology based on Adaptive Dynamic Programming
(ADP) to mitigate the effects of unknown injection attacks. This control strategy was
tested by three distinct attacks for a system with two machines [129]. Furthermore, the
insertion of false data into the control signal can happen randomly to cause uncertainty
and disturbances in the process. Given this vulnerability, the authors of [130] designed a
finite time interval sliding mode controller for Markovian hopping systems that supports
probabilistic fake data injection.

The application of network technologies in communication and control makes the
CPS vulnerable to DoS attacks. Therefore, to combat this type of two-timescale attack,
Reference [131] proposes a control algorithm approach using the observer concept for
a category of two-timescale CPSs (TTSCPSs) [131]. For an ICPS with a Hybrid Trigger
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Mechanism (HTM) subjected to DoS attack, the authors of [132] performed an H∞ controller
design study to mitigate the effects of this attack.

There are attacks that target manipulating the process plant conditions to harm the
integrity of the system. In this perspective, Reference [133] created a control structure with
disorderly signal encoding and decoding devices that can identify stealthy attacks on the
CPS. Therefore, it maintains the nominal operating performance without attacks on the
system and provides a robust and resilient CPS to attacks.

EVs are also a target for cyberattacks because of their interconnected network of
wireless sensors. Reference [134] presents a methodology based on the offense–defense
game model capable of identifying these malware attacks and, consequently, preventing
them from reaching EVs.

In Table 3, all the discussions mentioned above and research on cyberattacks on control
systems are analyzed and detailed.

Thus, the works discussed in this section present defense strategies for protection
against cyberattacks such as false data injection, denial of service, random injection, mal-
wares, and eavesdropping on control systems. The defense strategies are based on the
development of observer and H∞ based controllers; robust, adaptive, predictive, nonlinear
control techniques; game theory; and dynamic programming. Therefore, these are impor-
tant methodologies found in the literature that seek to improve reliability, resilience, and
cybersecurity in the control system of industries, electric transportation, smart grids, and
the power system in general.

4.3. Cybersecurity in Protection Systems

The modern power system has increasingly used situation awareness, electronics, and
computer technologies in its operation, planning, control, and protection. Consequently, while
meaningfully improving multiple processes, it has also become particularly fragile to cyber-
attacks. Among these vulnerabilities, it is worth noting that attacks on fault relays and other
safety devices that compose the protection system in power systems are critical events that
can cause blackouts and other major disruptions to the operation of the system. Thus, due to
the possibility of network connected operation, in the islanded mode, or new connections of
islanded networks, it becomes the protection system one of the main points of interest to ensure
cybersecurity in MG. In this category, 10 key works were selected and are shown in Table 4.

Table 4. Cybersecurity applications: protection systems [135–144].

Method Attack Point Purpose Field of
Application Simulation Reference

Based on the
differences between
the calculated and

measured
overlapping voltages

for LCDRs

Injection of false
data into LCDRs

The proposed
methodology aims to

detect the types of
injections of false data

against LCDRs.

LCDRs

The developed
methodology is

validated using the
IEEE-39 bus model

and the OPAL
simulator.

[135]

A state observer
with unknown input

Injection of false
data into LCDRs

Detect injection of false
data and distinguish it
from internal LCDRs
operational failures.

LCDRs

The developed
methodology is

validated using the
IEEE-39 bus model.

[136]

The developed
method consists of
passive oscillator

circuits

Injection of false
data into LCDRs

Presents a study on the
impacts of attacks on
time synchronization

and false data in
microgrids and acts to

solve the problem
from the physical

perspective.

LCDRs

The proposed
method is analyzed
in simulation and
validated through

numerical analysis.

[137]

Model-based on
intelligent learning

with Multilayer
Perceptron

Injection of false
data into LCDRs

The detection of
cyberattacks against
LCDRs is performed

using a learning-based
framework.

LCDRs

The developed
methodology is

confirmed using the
IEEE-39 bus model.

[138]
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Table 4. Cont.

Method Attack Point Purpose Field of
Application Simulation Reference

The anomaly-based
framework that

employs the
Isolation Forest

algorithm

Injection of false
data into LCDRs

Detect cyberattacks
and differentiate from

a fake attack on
systems that use

LCDRs as protection.

LCDRs

The developed
methodology is

validated in
benchmark IEEE

9-bus in
PSCAD/EMTDC

environment.

[139]

Methodology based
on game theory

Cyberattack on
relay configuration

in power
distribution

systems

Ability to detect the
best defense plan and

mitigate the damage to
the protection relays.

Power distribution
system

The developed
methodology is

tested on the IEEE
123-node test feeder.

[140]

Multi-Agent
Distributed Deep

Learning

Injection of false
data to the relays

This technique can
detect the injection of
false data to the relays
before it simulates a

false fault.

The protection
system of a power

grid.

The proposed
cyberattack detection
method is tested on

the electrical
networks: IEEE

6-bus, IEEE 14-bus,
and IEEE 118-bus.

[141]

Adaptive technique Injection of false
data to the relays

This methodology has
the objective of

mitigating false attacks
on the protection

relays and avoiding
power interruptions in

the grid.

Protection relays

A real-time digital
simulator was used

to validate the
proposed approach.

[142]

Rule-based
algorithm and the
principle of relay

coordination

Malicious attacks
on the protection

relays

It presents a defense
strategy against

malicious attacks and
unwanted

modifications to the
protection relays.

Protection relays

The proposed
technique is tested
and validated on a

framework with
relays and a

real-time digital
simulator for

cyber–physical
systems.

[143]

Recurrent neural
network with LSTM

cells

Cyberattacks and
protection system

anomalies

Intelligent algorithm
with the ability to

monitor and detect in
real time the anomalies

of the protection
system caused by
malicious attacks.

Transmission
protection systems

The proposal is
validated on the
IEEE test system

with relays.

[144]

Line current differential relays can detect faults accurately and were quickly and
have been increasingly used in power system protection. Thus, with the integration of
technology with the cyber–physical system, the study of the vulnerabilities of relays to
cyberattacks has aroused interest. Thus, Reference [135] investigated the impacts and pro-
poses a methodology based on the differential between measured and calculated voltages
for detecting the injection of false data into line current differential relays (LCDRs). The de-
veloped methodology was validated using the IEEE-39 bus model and the OPAL simulator.
For this problem, the author of [136] proposes a technique based on a state observer with
unknown input that can detect the injection of false data and distinguish it from internal
operational faults. To make systems using LCDRs more resilient, Reference [137] presents
a study on the impacts of attacks on time synchronization and false data in microgrids.
The technique proposed in [137] solves the problem from the physical perspective, using
a passive oscillator circuit that, under failure, generates as a response a specific damped
frequency. In contrast, Reference [138], to solve the problem presented in [137], used artifi-
cial intelligence concepts. Thus, the author proposes a model based on intelligent learning
with Multilayer Perceptron (MLP) topology [138]. Moreover, for systems that use LCDRs
as protection, the author of [139] proposes an anomaly-based framework that employs the
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Isolation Forest algorithm to detect cyberattacks and differentiate them from false attacks.
This methodology was developed using the IEEE-9 bus model.

The power distribution system also presents vulnerabilities to cyberattacks. Therefore,
it is important to improve cybersecurity in these systems. In this perspective, Refer-
ence [140] presents a methodology based on game theory that is capable of detecting the
best defense plan and mitigating the damage caused to the protection relays in the system.

The protection system of a power grid uses remote relays as defense devices. However,
these components are considered critical and present vulnerabilities to cyberattacks. Thus,
Reference [141] proposes a robust neural-network-based methodology called Multi-Agent
Distributed Deep Learning (MADDL). This technique can detect the injection of false data
to the relays before the data simulate a false fault. Reference [142] proposes an adaptive
technique in which relays communicate with each other to check the state of the variables
at each point of the protection system of a microgrid. This methodology has the objective
of mitigating false attacks on the protection relays and avoiding power interruptions in the
grid caused by the attack of a false data injection. Reference [143] presents a cooperative
defense strategy against unwanted modifications of protective relay settings caused by
malicious attacks. The proposed algorithm is based on principles that aim to manage relays.

The transmission system is sensitive to cyberattacks due to embedded electronics and
computing technologies in the protection system. From this perspective, Reference [144]
developed an intelligent algorithm that was validated in the IEEE test system with relays,
which can monitor and detect in real-time possible malicious attacks that cause anomalies
to the protection system.

In Table 4, all the discussions mentioned above and research on cyberattacks in
protection systems are analyzed and detailed.

Thus, the works discussed in this section present strategies to improve and ensure
cybersecurity in the protection system and the defense devices of microgrids. The defense
strategies presented are based on AI and deep-learning algorithms, adaptive techniques,
passive oscillator circuits, game theory methodology, and state observer control. Therefore,
these are important techniques found in the literature that seek to mitigate cyberattacks to
improve the reliability, resilience, and cybersecurity of an MG protection system.

4.4. Defense Strategies and Future Trends for Cybersecurity

As discussed in this paper, the current power system is vulnerable and the target
of numerous and constant cyberattacks that aim to undermine the planning, operation,
maintenance, and supply of power to users. Thus, Sections 4.1–4.3 discussed works on cy-
bersecurity in the areas of monitoring [115–124], control [125–134], and protection [135–144]
of cyber–physical systems. The most common types of attacks were cyberattacks of fake
data injection, malware attacks, DoS attacks, and eavesdropping. Thus, it is worth not-
ing that the main defense strategies to enhance cybersecurity presented in these research
studies focus on protecting and identifying these cyberattacks:

• Strategies based on protection against cyberattacks are related to meters, sensors,
aggregators, actuators, defense devices, and all other components that make up the
physical part of a MG and a CPS.

• Identification-based strategies aim to mitigate or eliminate the unwanted effects of
cyberattacks. Detection can happen in a static manner, in which it seeks to achieve
stationary stability, and in a dynamic manner, in which dynamic information is used
in the detection process [47].

The defense strategies used in the works discussed in Sections 4.1–4.3 are based on
traditional theories and concepts of modern, robust, adaptive, and predictive control: AI,
machine-learning, and deep-learning algorithms. However, to improve cybersecurity in an
SG, the author [69,145] points out new avenues of research that use digital signal processing
techniques; blockchain techniques for SG (Reference [122] used blockchain technology to
defend the Reactor Protection System of a nuclear power plant); and use of new techniques
for creating cryptography based on quantum computing and, consequently, big data anal-
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ysis for making more efficient and reliable cybersecurity algorithms. Creating, updating,
developing, and discussing new standards, protocols, and regulations are important de-
fense strategies to improve cybersecurity in MG. Section 5 presents cybersecurity standards
and regulations in SGs.

Therefore, based on the current scenario in the power sector, it is possible to infer the
following future trends of cyberattacks in MG:

• Modernization of the electricity system: The gradual replacement of conventional
power generation by clean energy increases the penetration of renewables, modifies
the behavior, and adds the characteristic of intermittent generation to the system.
Moreover, the use of new IoT technologies and the integration between devices and
sectors provide the emergence of smart grids, which, due to the dependence on the
Internet for operation and communication, present cyber vulnerabilities. Thus, the
MG needs reliable and resilient cybersecurity in order not to harm its communication,
state estimation, frequency control, voltage regulation, and the performance of its ap-
plications, such as the possibility of operation in the islanded mode and the connection
of other islanded grids.

• Transportation and electrification: The process of electrification of transportation is a
strategy that encourages the development, production, and use of electrically powered
buses, vehicles, trains, and subways, as well as being an important factor in decreasing
the emission of polluting gases into the atmosphere. These technological vehicles
connected to charging stations modify and are part of the MG. Thus, this new means
of transportation becomes a target of cyberattacks, and the security of charging sta-
tions is considered a point of vulnerability and of research interest [146]. From this
perspective, the author of [147] designed simulation software to evaluate the cyber
vulnerability of electric vehicle charging structures and devices. Therefore, cybersecu-
rity in transportation electrification is a current problem that is under research and
development.

5. Regulations and Standards

In recent years, the inclusion of new information technologies in the modern power
system infrastructure has led it to approach the characteristics of a cyber–physical sys-
tem. In this way, it presents the benefits, pitfalls, and vulnerabilities of a CPS. Therefore,
governments, companies, and technical and scientific organizations continuously seek to
create a comprehensive document containing aspects and specifications that regulate and,
consequently, increase the safety, reliability, and operation. These documents are referred
to as cybersecurity standards and regulations. In this section, some of the key cybersecurity
standards and regulations related to smart grids are described.

i. AMI-SER

The advanced metering infrastructure (AMI) of a smart grid has vulnerabilities in
its communication infrastructure and in its supporting information infrastructure and,
consequently, compromises the cybersecurity of the electric grid [92]. Seeking to address
this perspective, the AMI System Security Requirements (AMI-SER) cybersecurity protocol
was created. The security guidelines in this document were developed in 2008 by the UCA
International users’ group (UCAIug) [47,92,148,149]. This protocol specifically addresses
cybersecurity requirements for procurement and has geographic coverage in the US. It
outlines technical standards to ensure robust security for the advanced metering infras-
tructure of a smart grid [92]. Thus, this protocol aims to provide a set of requirements that
ensure proper operation, adequate availability of services, and reliability and security of
the information in the system. AMI is the main component of a smart grid to which this
protocol is applied. In addition, this standard presents safety requirements and objectives
that can be used in manufacturers’ industrial compliance testing [92,148,149]. More details
about the standard can be found in [149].

ii. IEC 62351
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The IEC 62351 protocol is an international industry standard developed by the In-
ternational Electrotechnical Commission (IEC) whose first parts were published in 2007
and are constantly being updated [148]. IEC 62351 consists of cybersecurity standards
that aim to improve security in smart power system devices and preserve the confidential-
ity, authenticity, and integrity of information [150]. This standard specifically addresses
the cybersecurity of protocols and can be applied to all components of a smart grid ar-
chitecture [92,148]. In addition, this standard has a global scope and presents technical
solutions, safety requirements, and objectives that can be used in industrial compliance
testing. The IEC 62351 standard is separated into 16 chapters (IEC 62351-1 through IEC
62351-13; IEC 62351-90-1, IEC 62351-90-2, and IEC 62351-100-1), and each part addresses a
distinct area [47,92].

iii. NERC-CIP

The North American Electric Reliability Corporation Critical Infrastructure Protection
(NERC-CIP) standard establishes minimum parameters to be followed to ensure bulk power
system cybersecurity [92,151]. NERC-CIP presents a set of standards and requirements
that aim to build a robust and secure framework that is capable of protecting the critical
infrastructure and cyber devices of a smart grid and, consequently, assist in its reliable
operation [92,148,152]. This standard was published in 2013 with US coverage and presents
more general high-level guidance [92]. The NERC-CIP protocol is a standard capable
of protecting an enterprise’s critical infrastructure and can be applied to address critical
system issues such as security management control; identify network hot spots; provide
recovery, reporting, and response patterns; address physical and personal security; and
standardize boundary regions that present satisfactory electronic security [92,148,152].

iv. NIST Standard

The development of cybersecurity standards and techniques for US smart grids is
the responsibility of the National Institute of Standards and Technology (NIST). Thus, in
2010, the NIST standard was published that addresses cyber and information security and
risk management [92]. Although it is a protocol created in the US, it is used worldwide
in developing companies and systems [92]. This protocol presents high-level technical
solutions and general guidelines [92]. References [92,148] present other variations of the
NIST standard.

v. NIST SP 800-82

The National Institute of Standards and Technology Special Publication (SP) 800-82
(NIST SP-800-82) is the main NIST guideline governing industrial control and automa-
tion system security in the US and is also used worldwide [148]. This protocol, which
was published in 2013, presents technical solutions and special suggestions regarding
susceptibility and penetration-checking devices [92,148]. In addition, compliance with
the standard ensures that the system security control will operate correctly and obtain
satisfactory results [47]. The standard can be used in control and automation systems that
use the system SCADA [92,148].

vi. NISTIR 7628

Created in 2014 in the US and with global reach, the National Institute of Standards
and Technology Interagency Report 7628 (NISTIR 7628) is a guideline for smart grid
cybersecurity [148]. For smart system grids, this guide disseminates a set of cybersecurity
defense techniques and rules [47,148]. Furthermore, this guide contains 10 chapters and 10
Appendices divided into 3 volumes [47,153], and it is applied to all devices that constitute
the smart grid. The full standard can be found in [153].

vii. IEEE 2030 Std.2

Published in 2015 and with worldwide reach, the IEEE 2030 Std.2 standard entitled
“IEEE Guide for the Interoperability of Energy Storage Systems Integrated with the Electric
Power Infrastructure” is a set of standards created by IEEE [153]. This technical guideline
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presents 10 chapters and 5 appendices and is responsible for the minimum requirements of
Energy storage systems’ interoperability [148]. The guideline presents technical solutions
with important guidelines, strategies, and definitions that are associated with the current
cybersecurity requirements for industrial applications and projects related to an energy
storage system in smart grids [148,153]. The full standard can be found in [154].

viii. IEEE C37.240

The use of new intelligent and information technologies in the communication, control,
automation, and protection system of power system substations raises concerns from the
point of view of cybersecurity. In this context, in 2014, the IEEE published a standard
with global scope entitled “IEEE Standard Cybersecurity Requirements for Substation
Automation, Protection, and Control Systems” [155]. The standard presents sound tech-
nical solutions and engineering practices and is also responsible for providing minimum
requirements for the substation communication system to achieve adequate cybersecu-
rity [148,155]. In this way, the standard aims to seek a balance between technical and
economic feasibility with current cybersecurity concepts [148,155].

The interested reader is referred to [92,148] for additional works on the smart grid’s
cybersecurity standards and regulations.

6. Conclusions

This paper provides a review of the literature on cybersecurity in cyber–physical
systems. The research was motivated by the recent modernization actions and policies in
the energy sector, including incentives for the insertion of renewable energy sources, new
information technologies, communication, monitoring, and networks allied to IoT concepts,
artificial intelligence, machine learning, and modern control techniques. Thus, the current
energy system presents the benefits that new technologies have provided, as well as the
vulnerabilities and evils associated with modern cyber–physical systems.

The cyber–physical system can be typically described based on a three-layer archi-
tecture: perception layer, transport layer, and application layer. In addition, physical
components, sensing components, and control and communication components are the
three groups of devices that constitute a typical CPS. Power generators, transformers,
transmission lines, circuit breakers, switchgear, and power system loads are part of the
physical components of a power system. Sensors, actuators, and aggregators are part of
the sensing component group. Finally, PLC, DCS, RTU, SCADA, and PMU are part of the
control and communication components. To understand and identify vulnerabilities, it
is important to understand the interrelationship between the components and layers of a
CPS.

Based on the research conducted, it is possible to conclude that cyberattacks are a
challenging and critical reality of modern cyber–physical systems. Given the long-term
history of attacks and recent major disruptive attacks such as Ukraine’s power sector outage
in 2015, it is necessary to develop and ensure that adequate protection layers are available
and in place at all system levels. Furthermore, it is important to know the classification of
the various types of cyberattacks found in the literature to find out and understand how
each attack works. Subsequently, planning and creating mechanisms to mitigate and nullify
the effects of cyberattacks is necessary. In this context, international technical and scientific
institutions such as IEEE, IEC, NIST, and UCAIug, among others, have created a series
of standards and regulations to improve cybersecurity in smart grids and the industrial
sector. For future works, one must perform a literature survey on the relationship between
cyberattacks and cyber terrorism in cyber–physical systems.
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CI computational intelligence
CIA code injection attacks
COVID-19 coronavirus disease pandemic
CPS cyber–physical systems
CP-SAM Cyber–Physical Security Assessment Metric
CPPS cyber–physical power system
CPU central processing unit
DCS Distributed Control System
DDoS distributed denial of service
DOM document object model
DoS denial of service
EV electric vehicle
FDI false data injection
GPS Global Position System
HMI Human–Machine Interface
HTM Hybrid Trigger Mechanism
HTTP Hypertext Transfer Protocol
ICMP Internet Control Message Protocol
ICPSs industrial cyber–physical systems
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IEEE Institute of Electrical and Electronics Engineers
IIoT Industrial Internet of Things
IoT Internet of Things
IP Internet Protocol
IR infrared
LCDRs line current differential relays
LOF Local Outlier Factor
LSTM Long Short-Term Memory
MADDL Multi-Agent Distributed Deep Learning
MCDM multicriteria decision-making
MLP Multilayer Perceptron
ML-RSM Multilayer Run-Time Security Monitor
MG microgrids
MPC Model Predictive Control
NERC-CIP North American Electric Reliability Corporation Critical Infrastructure Protection
NIST National Institute of Standards and Technology
NIST SP National Institute of Standards and Technology Special Publication
NISTIR National Institute of Standards and Technology Interagency Report
NPPs nuclear power plants
OCSVMs one-class support vector machines
PCHD Port Controlled Hamiltonian with dissipation
PLC Programmable Logic Controller
PMU Phasor Measurement Unit
RA replay attack
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RFID Radio-Frequency Identification
RPS Reactor Protection System
RSDBN regularized sparse deep belief network
RTU Remote Terminal Unit
SCADA Supervisory Control and Data Acquisition
SG smart grid
SMC sliding mode controller
SP Special Publication
SYN synchronization
TCN Temporal Convolutional Neural Network
TCP Transmission Control Protocol
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution
TTSCPSs two-timescale CPSs
UCAIug UCA International users’ group
UDP user datagram protocol
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