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Abstract: Recently, many activities have been undertaken to reduce the negative impact of transport
on the environment, e.g., using propulsion sources and consumed energy. Electric and hybrid
vehicles are becoming more and more popular. Methods of measuring the emissivity of the means of
transport as well as devices for determining measurements are being developed. This work presents
an indicator method (IM) for determining the emissivity of road transport, while omitting the use
of quite complicated and expensive research equipment. For typical road vehicles, it is possible to
determine the emissivity means of transport, taking into account statistical data. The values of the
indicators selected, based on statistical data analysis, were verified by comparing their values with
the results of the actual emissivity of air pollutants. As part of the research work, the emissivity values
of selected means of transport in a distribution company were determined using the IM method.
The results were compared with the actual emissivity measurements. The method of indicative
determination of emissivity makes it possible to estimate the initial emissivity level, knowing the
type of vehicle and the distance performed as part of the transport work. Thanks to a simple and
uncomplicated method, delivery planning can become more sustainable, and the selection of less
emissive means of transport can contribute to reducing the negative impact of transportation on
the environment.

Keywords: transport emissivity; air pollutants; road transport; propellants

1. Introduction

Air pollution caused by human activity related to raw material acquisition, manu-
facturing, operation, and decommissioning of transport means represents a significant
share of the total anthropogenic pollution emitted into the natural environment. Legislative
measures to reduce pollution from fuel combustion have been planned for many years
and will continue to be planned in the European Union, which took on the role of world
leader in environmental protection in the Lisbon Strategy in 2000. The issues of air pol-
lutant emissions are thoroughly defined by standards and protocols, e.g., sUNI EN ISO
140 67:2018 [1], UNI EN ISO 14064:2019 [2] (parts 1, 2, and 3), and The Greenhouse Gas
Protocol of 2004. Documents mentioned above define the principles, requirements, and
guidelines for quantifying and reporting the product’s carbon footprint, consistent with
international standards for life cycle assessment. This paper presents an indicator method
intended to determine the estimated emissivity of road transport means for the preliminary
estimation of main air pollutant components in vehicles operating in freight and passenger
transport. The paper’s research objective was to determine the indicators of main air
pollutant emissions by using publicly available statistical data. The research thesis assumes
finding a correlation between the values of indicators determined based on statistical data
with indicators determined based on real studies of the emissivity of transport means in real
driving emission (RDE) tests. The research question is whether it is possible to determine
the emissivity of vehicles using statistical emissivity indicators while ensuring the adequate
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accuracy of results compared to real studies. The statistical emissivity indicator values
for various vehicle types determined in the paper were verified through their comparison
with emissivity results obtained during the real field measurements carried out as part of a
diploma paper and based on the results of literature studies.

2. Transport Ecology and Sustainable Development

In 2021 alone, nearly 87% of all freight transported in Poland was carried by road, and
the transport work conducted by road exceeded 83%. It is also noteworthy that over the
last 20 years, road transport work has been steadily increasing compared to that of, for
example, rail transport, with rail transport having been at a comparable, constant level
for many years [3]. Transport work conducted by road has a significant impact on the
environment. Numerous environmentally friendly initiatives are being undertaken to
encourage passengers to use collective or public transport [4]. The field of freight transport
organisation is experiencing the development of environmentally friendly technologies,
and transport means using new fuels, e.g., hydrogen, electric, or hybrid drive units. The
emission standards for road transport vehicles in Europe have been rigorously tightened
over the past 20 years [5]. A sustainable transport initiative assuming more minor pollutant
emissions into the environment is also currently being developed, and the concept of
transport ecology is becoming popular [6,7]. There is a growing awareness of optimal
transport organisation, especially in urban areas. Methods that enable the determination
of emissivity, the so-called carbon footprint, of transport means are also becoming more
important [8]. Transport processes are being increasingly modelled considering new
environmental trends in transport. Regarding the promoted zero-emissions transport,
transport ecology aims to achieve and maintain sustainable development. A systemic
view on human transport activity and the relations with basic biological, chemical, and
physical systems is being proposed. The creation of environmental awareness contributes to
keeping transport activity at a sustainable level, leading to further evolution in economics
and technology, among other things. However, it is necessary to remember that transport
and transport infrastructure negatively impact, on the environment and surroundings [9].
To ensure the sustainable development of transport, it is necessary to take into consideration
the social aspects that contribute to the satisfaction of transport needs and its public utility.
The natural environment is endangered by pollution introduced directly to one of its three
essential elements, i.e., the atmosphere, surface water, and soil. Transport activity is mainly
associated with primary pollutant emissions into the air, generation of pollutants related
to any consumables and components worn during the use of transport means, and the
so-called secondary emissions.

In terms of the emissivity of transport means, it is assumed that Europe will become
the first climate-neutral continent in the world by 2050. In order to make this objective
achievable, it is necessary to work towards sustainable transformation also in the area of
transport. One of the proposed solutions is to use renewable energy [10]. It has many
potential advantages, including reduced greenhouse gas emissions, energy supply diver-
sification, and reduced dependence on the fossil fuel markets (especially diesel and gas).
The development of renewable energy sources can also stimulate employment growth by
creating jobs in the new green technologies sector. The economic branch of transport is
currently emitting approx. 22% of greenhouse gases in the European Union [11], most of
which, over 70%, is emitted by road transport (Figure 1) and passenger vehicles (Figure 2).
Rail transport is the least emissive.
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It is necessary to note the Sustainable and Smart Mobility Strategy adopted in De-
cember 2020, which fits the action plan for a sustainable economy. The objective of the
actions planned for the coming years is mainly to change the way people and goods are
transported, to combine various transport branches within a single transit, and to promote
environmentally friendly solutions for entrepreneurs. Funding for investment, rolling stock
and infrastructure modernisation will be increased, and solutions to increase resilience to
future economic shocks will be promoted.

3. Research Problem

The paper focuses on the issue of developing a method intended for the estimation of
emissivity indicators for road transport means because road transport plays a crucial role in
freight and passenger transport in Poland. The research problem identification involved an
analysis of the existing methods of calculating the emissivity of transport means along with
an analysis of the IT tools offered in an open format, including the COPERT programme
coordinated by the European Environment Agency [12]. The selection of the method
by which air pollutant emissions in transport can be calculated depends on the specific
processes responsible for emissions generation, the importance and share of the analysed
pollutants in total emissions, the scale of the contribution of a particular installation or, for
example, the transport branch in the total pollutant emissions as well as environmental
fees and the effect of a particular pollutant type on ambient air. The methods of calculating
emissivity can be based on periodical measurements, unit measurements, process balances,
and on statistical or literature data [13].

Pollution in road transport is mainly generated by fuel combustion, and non-fume
emissions, e.g., brake pad wear, tyre wear, a secondary dusting of sediments and particles
present on the roadway, etc. The pollution level in road transport is affected by the length
and distribution of the road infrastructure, fuel type and quality, engine features and
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maintenance, traffic congestion, as well as the vehicle type and the manner of operation.
The impact of transport on the surroundings is based on the evaluation of transport activity
external effects. External costs are usually associated with the negative effects of transport
on the surroundings. In terms of environmental impact, the external costs of transport with
the most significant effects on human functioning include air pollution, climate change,
and noise. Passenger vehicles contribute to the highest share of air pollutant emissions
(Figure 3). Light-duty or heavy-duty vehicles are responsible for nearly 40% of pollutant
emissions [14]. The research subject is also motivated by the systematic increase in transport
work conducted by road transport and the persistently high share of conventional fuels
used to power the vehicles operated in road transport. The structure of air pollutants based
on the fuel used is presented in the following figure:
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Diesel is a fuel type that has a particularly negative impact on the environment. Diesel
vehicles generate over 80% of all pollutants regarding particulate matter and nitrogen
oxides and are responsible for as much as 60% of carbon dioxide emissions. At this
point, it is necessary to specify the national energy mix—fossil fuels constitute nearly
80% of all sources of electricity production in Poland. This is also important in terms
of the development of low-emission vehicles, especially electric vehicles. These vehicles
are emission-free at the place of their operation, especially in urban areas, while their
emissions are transferred to the site of electricity production. Methods of evaluating
pollutant emissions in road transport described in the literature may also include field tests
encompassing road traffic measurements on a selected road section, especially in urban
areas [15]. In such cases, the level of pollutant emissions is affected by traffic freedom,
traffic intensity, the structure of the vehicles driven on the analysed section, as well as
the fuel type and its unit consumption, among other things. The traffic freedom indicator
determines the changes in traffic conditions with consideration of the feelings of drivers
and other road users. It is assumed that there are six main classes of traffic freedom: class
A describes free traffic with great freedom of choosing one’s driving speed, while class E
describes uneven traffic in which the traffic intensity corresponds to the road’s capacity. By
determining the average daily traffic on a given day, the structure of moving vehicles with
the division to diesel or petrol vehicles and the available data determining the consumption
of fuels per 100 km of distance travelled, and by using literature studies, it is possible to
attempt to determine the emissivity indicators for transport means [16]. However, the
emission values determined by using these indicators, while only being approximate, will
also reflect the real traffic conditions on the analysed road sections in the analysed day
periods [17].
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Studies are being carried out with the purpose of evaluating energy consumption
and exhaust emissions by vehicles with different drive units during real operation. Many
authors propose solutions intended to reduce pollutant emissions in terms of designing
new engines and the percentage determination of decreasing emissions by transport means,
among others, due to the implementation of new technical solutions that reduce pollutant
emissions and fuel consumption [18]. The literature contains numerous elaborations that
point to real vehicle emissivity in real operating conditions [19]. In particular, the real
leading air pollutant emission indicators are analysed in comparison to the values declared
by vehicle manufacturers and exhaust emission standards. However, the analyses of the
emissivity of pollutants generated by vehicles can differ substantially depending on testing
conditions, which may be affected by ambient temperature, natural topography, and road
conditions, among others [19]. Methods based on the measurements of the real emissivity
of transport means are characterised by the highest accuracy, however, they are only
micro-scale tests, and it is difficult to generalise them for a greater population of transport
means moving on a selected road section. Emissivity tests can be carried out for various
vehicle types, in various traffic conditions, in different natural topographies, and using
selected fuels. The literature presents interesting comparative results of emissivity studies
carried out on various transport means utilising, e.g., electric, hybrid or conventional drive
units [20]. Clear progress in emissivity reduction is being made in hybrid vehicles, but
electric vehicles, especially those powered by renewable sources, appear to be the most
promising option [20,21]. Furthermore, emissivity remains a study subject in terms of
measuring the emissions of transport means at intersections and locations with increased
traffic congestion. The most common conclusion from such analyses is that appropriate
spatial planning and road designing that ensure the least number of stops favours the
reduction of the emissivity of transport means [22]. Particularly in urban traffic conditions,
the combination of good practices in the spatial designing of roads and the promotion of
vehicles powered by, for example, natural gas and the adaptation of conventional vehicles
powered by gas [23], may contribute substantially to the reduction of air pollutants. The
introduction of new power sources for vehicles intended for passenger transport in urban
areas also contributes to the reduction of air pollutants, taking into consideration such
factors as road inclination, street crowding, fuel consumption, or passenger load [24]
and route height difference [25], among others. Research is being carried out on gas and
particulate matter components emitted by commercial vehicles used in urban distribution,
especially in terms of the impact of the transported load’s size on emissivity [26]. The
results of studies on the increased emissions of air pollutants in urban traffic conditions
confirm the impact of traffic congestion and street crowding on this phenomenon [27]. The
increase in pollutant emissions in urban areas is caused by the increased numbers of traffic
jams as well as increased acceleration and deceleration frequencies. One possible solution
to reduce emissions used in conventional vehicles, e.g., intended for load distribution in
urban areas and diesel, may be the use of various types of bio-components (including
heavy alcohols), the combustion of which significantly reduces air pollutant emissions.

As mentioned in EU strategic documents, diesel vehicles will be used at least until
2050 [28]. The results of transport means emissivity are also affected by the conditions
and type of the tests carried out. In addition to RDE tests [29,30], which are considered
to be the most accurate tests for the emissivity of transport means, exhaust emissions
can also be measured behind a moving vehicle. In this case, it is necessary to maintain
an adequate distance and take into account the dispersion of exhaust components [31].
Due to the significant role of transport ecology and the increasing demand to reduce
transport’s negative impact on the environment, researchers are also carrying out studies
of air pollutant emissions in heavy-duty vehicles [32]. However, the working conditions
and the vehicle load are important when carrying out emissivity tests on heavy-duty
commercial vehicles. It is necessary to compare the emissivity results obtained during
laboratory testing with real emissivity tests [33]. Air pollutant emissions are also affected by
factors related to the operating temperature of the engine and exhaust system components,
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as demonstrated in ref. [34]. The literature has described many issues related to emissions
from urban transport. At present, municipal energy services are being promoted to consider
the operation of the coal system and to ensure the protection of the urban system [35].
Pro-ecological means of transport and individual ecological transport means are being
promoted [36]. Numerous factors disrupting the development in individual cities are
being identified, e.g., uncontrolled development of cities, commuting to work of people
meeting outside the city [37]. The emissivity of the means of transport is affected by land
development [38], time of day, road profile, and traffic arrangement [39]. The proposed
method is an innovative approach to estimating the emission of primary air pollutants. It
can be developed by considering other factors that significantly impact the multiplicity of
pollutant emissions, such as the age of vehicles, mileage, and general technical condition.

4. Indicator Method (IM) for Determining the Emissivity of Transport Means

Road transport contributes significantly to environmental degradation through the
extensive use of internal combustion engines that emit exhaust fumes into the atmosphere.
Considerations on the emission of pollutants in transport in the literature are often limited
to greenhouse gas emissions only, such as carbon dioxide (CO2), methane (CH4), nitrogen
oxides (NO) or nitrous oxide (N2O). However, all harmful compounds affect the soil, water,
air, flora, fauna, landscape, or humans directly and indirectly. One of the most commonly
used methods of determining transport means emissivity is RDE testing, but this requires
the use of expensive measuring equipment and carrying out time-consuming field tests.
With this in mind, the indicator method for determining transport means emissivity was
developed, which also allows us to determine the indicators of long-term external costs
arising from air pollutant emissions. In 2018, a methodology for estimating air pollutant
emissions was published by Statistics Poland, but this method did not determine the unit
values of particular air pollutants emitted by specific road transport means [40]. The data
source for the above methodology was the information from the database of the Ministry of
Digital Affairs based on vehicle odometer readings collected in the Central Vehicle Register
(CEP), indicating the amount of transport work conducted, vehicle types by age groups, the
fuel used, engine capacities, and the gross vehicle weight. Statistics Poland’s methodology
for estimating air pollutant emissions utilised the General Road Traffic Measurement 2015
results. As part of the research work on defining the indicator method, the basic types of air
pollution monitored at the level of Statistics Poland were taken into account. For this reason,
issues related to pollutants such as PM1 or black carbon have been omitted. For electric
vehicles, the emissivity indicators were determined based on the report developed by the
National Centre for Emissions Management (KOBIZE) [41]. In the indicator method, the
emissivity of particular vehicle types can be determined for passenger vehicles, light-duty
vehicles, and heavy-duty vehicles utilising different types of fuels and engines with various
capacities. Passenger vehicles were classified into categories from V1 to V7. Light-duty
and heavy-duty vehicles were categorised from T1 to T4. The indicator method enables
the estimation of the emissivity of electric transport means. In this case, the quantity is
determined as a measure of the emission generated at the electricity production location.
Electric vehicles were classified into categories from E1 to E6.

Publicly available statistical data and results of research projects made available
by Statistics Poland, the General Directorate for National Roads and Motorways and
KOBIZE [38] were used to develop indicator tables demonstrating the emission of types of
transport means classified in Table 1 in the unit of pollutant emission per one kilometre
travelled. Table 2 presents the indicators of emissivity of conventional vehicles with
reference to basic air pollutant types, i.e., methane, carbon oxide and dioxide, nitrogen
oxides and dioxides, suspended dust and non-methane volatile organic compounds.
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Table 1. Classification of transport means.

Fuel Type Vehicle Description Vehicle Type

petrol passenger vehicles below 1400 cm3 V1

petrol passenger vehicles 1400–1999 cm3 V2

petrol passenger vehicles 2000 and more V3

diesel passenger vehicles below 1400 cm3 V4

diesel passenger vehicles 1400–1999 cm3 V5

diesel passenger vehicles 2000 and more V6

LPG LPG passenger vehicles V7

petrol light-duty vehicles, GVW < 3.5 t T1

diesel light-duty vehicles, GVW < 3.5 t T2

diesel heavy-duty vehicles, GVW 3.5–12 t T3

diesel heavy-duty vehicles, GVW > 12 t T4

diesel buses B

petrol motorcycles M

electricity passenger vehicles with a capacity of up to 0.15 kWh/km E1

electricity passenger vehicles with a capacity of up to 0.17 kWh/km E2

electricity passenger vehicles with a capacity of up to 20.5 kWh/km E3

electricity light-duty vehicles with a capacity of up to 0.18 kWh/km GVW < 3.5 t E4

electricity heavy-duty vehicles with a capacity of up to 0.27 kWh/km, GVW 3.5–12 t E5

electricity heavy-duty vehicles with a capacity of up to 1.33 kWh/km, GVW > 12 t E6

Table 2. Emissivity indicators for conventional vehicles.

Vehicle Type CH4 CO CO2 N2O NOx PM2.5 PM10 NMVOC

V1 0.0038 0.5097 71.7926 0.0008 0.0724 0.0036 0.0055 0.0587

V2 0.0056 0.5070 83.7738 0.0011 0.1273 0.0037 0.0057 0.0594

V3 0.0070 0.5626 104.2086 0.0011 0.1736 0.0037 0.0057 0.0712

V4 0.0001 0.0061 29.6577 0.0019 0.1414 0.0066 0.0076 0.0011

V5 0.0006 0.0127 44.6658 0.0020 0.1952 0.0119 0.0131 0.0025

V6 0.0007 0.0161 60.7634 0.0019 0.1997 0.0132 0.0144 0.0052

V7 0.0055 0.9956 56.3022 0.0014 0.1947 0.0026 0.0040 0.0359

T1 0.0037 0.7613 82.9933 0.0018 0.0993 0.0040 0.0062 0.0268

T2 0.0003 0.1215 74.6871 0.0010 0.3498 0.0242 0.0260 0.0160

T3 0.0035 0.2172 83.8480 0.0039 1.0056 0.0303 0.0333 0.0621

T4 0.0132 0.5843 352.0844 0.0151 2.2247 0.0584 0.0700 0.0678

B 0.0097 0.2779 154.7508 0.0040 1.3161 0.0304 0.0339 0.0468

M 0.0169 2.1477 22.8067 0.0004 0.0392 0.0062 0.0067 0.3070

The presented pollutant emission indicators concern passenger or light-duty vehicles
divided up by their main fuel types, i.e., diesel, petrol, and LPG. Their values make it
possible to determine the emissivity of transport means in terms of the transports carried
out and are similar in nature. In terms of CH4 methane emissions, the emission indicator
values increase along with the increasing capacities of petrol and diesel engines. The
methane emissions generated by LPG vehicles are comparable to those of V2 type petrol
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vehicles with cubic capacities of 1400–1999 cm3. However, the highest methane emissivity
indicators were obtained for T3 type heavy-duty vehicles, the gross vehicle weight of which
exceeded 12 t, as well as buses and motorcycles. Carbon oxide emission indicators are
similar for petrol vehicles, regardless of their cubic capacity, i.e., V1, V2, and V3. The
situation is similar for V3, V4, and V6 type diesel vehicles. The highest emission values
were recorded for motorcycles and V7 type vehicles.

Calculation of air pollutant emissions for conventional vehicles indicated in Table 1
is carried out using the statistical values of the indicators presented in Table 2 and in
Figures 4–11, as well as the length of the road connecting the points of dispatch and collec-
tion of cargo or passengers covered by the types of vehicles, by the following equations:

ECH4 = l(i, j)× W1,k (1)

ECO = l(i, j)× W2,k (2)

ECO2 = l(i, j)× W3,k (3)

ENO2 = l(i, j)× W4,k (4)

ENOX = l(i, j)× W5,k (5)

EPM2.5 = l(i, j)× W6,k (6)

EPM10 = l(i, j)× W7,k (7)

ENMVOC = l(i, j)× W8,k (8)

ET = ECH4 + ECO + ECO2 ENO2 + ENOX + EPM2.5 + EPM10 + ENMVOC (9)

where individual symbols mean:
ET—the total emission of air pollutants generated by the k-th vehicle type,
l(i, j)—the length of connecting the i-th sending point with the j-th receiving point,
W1,k—CH4 emission factor—taken from Table 2, for the k-th vehicle type,
W2,k—CO emission factor—taken from Table 2, for the k-th vehicle type,
W3,k—CO2 emission factor—taken from Table 2, for the k-th vehicle type,
W4,k—NO2 emission factor—taken from Table 2, for the k-th vehicle type,
W5,k—NOX emission factor—taken from Table 2, for the k-th vehicle type,
W6,k—PM2.5 emission factor—taken from Table 2, for the k-th vehicle type,
W7,k—PM10 emission factor—taken from Table 2, for the k-th vehicle type,
W8,k—NMVOC emission factor—taken from Table 2, for the k-th vehicle type.
In contrast, carbon dioxide emission indicators increase along with increasing gross

vehicle weight in each vehicle type group. The highest carbon dioxide emissions were
recorded for T4 vehicles and buses. Carbon dioxide emissions of T4 type vehicles are over
three times higher than those of the V3 type, and T1 and T2 type vehicles. The highest
carbon dioxide emissivity indicators were recorded for T4 heavy-duty vehicles. In terms of
nitrogen oxide and dioxide emissions, the values are clearly the highest for light-duty and
heavy-duty vehicles. Particulate matter emissions in particular vehicle types increase in
different engine cubic capacities. The exceptions are petrol vehicles, the PM2.5 and PM10
emissions which in V1, V2, and V3 type vehicles are very similar and do not increase along
with an increasing engine cubic capacity. The highest particulate matter emissivity was
recorded in T4 type vehicles.
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The analysis of statistical data made available by the National Centre for Emissions
Management involved the determination of electric vehicle emissivity in terms of emissions
generated at the electricity production location [41]. This led to the development of indicator
tables intended for calculating the estimated emissivity of electric transport means in terms
of the primary air pollutants, e.g., carbon oxide and dioxide, sulphur dioxide, nitrogen
oxides, and total dust. The indicator values were determined with reference to 1 kWh of
energy consumed by the vehicle (Figures 12–16). The emissivity of electric vehicles can be
determined based on the electric engine’s type and power. It must be noted that electric
vehicle emissions mainly occur at the electricity production location; in order to limit
this phenomenon, it is recommended to promote electricity production from renewable
energy sources.

Table 3. Emissivity indicators for electric vehicles.

Vehicle Type CO2 SO2 NOx CO Total Dust

E1 108.190 0.0789 0.0809 0.0315 0.0040

E2 119.358 0.0870 0.0893 0.0347 0.0044

E3 143.090 0.1043 0.1070 0.0416 0.0053
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Table 3. Cont.

Vehicle Type CO2 SO2 NOx CO Total Dust

E4 125.64 0.0920 0.0940 0.0370 0.0050

E5 188.54 0.1370 0.1410 0.0550 0.0070

E6 924.85 0.6740 0.6920 0.2690 0.0340
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The ability to carry out comparative analyses of emissions generated by electric and
conventional vehicles is limited due to the extent of the data collected by KOBIZE and the
different nature of the pollutants monitored at electricity production locations compared
to pollutant emissions generated by conventional vehicles. However, the indicators that
can be compared are carbon dioxide, carbon oxide, and nitrogen oxides. In addition, it is
possible to determine the sulphur dioxide emission indicator for electric vehicles based
on statistical data. This is due to the fact that most electricity in Poland is produced from
fossil fuels, which are rich in sulphur compounds. The pollutant emission indicators for
electric vehicles refer to passenger or light-duty and heavy-duty vehicles and are derived
directly from statistical data analysis. The emission indicators of E1, E2, and E3 type electric
vehicles, referring to sulphur dioxide, carbon oxide, carbon dioxide, and nitrogen oxides,
increase along with increasing electric engine capacities. The situation is similar for E4



Energies 2023, 16, 4541 13 of 22

and E5 type light-duty electric vehicles, whereas, in E6 light-duty vehicles, the emissivity
indicators increase substantially.
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Calculation of air pollutant emissions for electric vehicles indicated in Table 1 is carried
out using the statistical values of the indicators presented in Table 3, as well as the length
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of the road connecting the points of dispatch and collection of cargo or passengers covered
by the types of electric vehicles, by the following equations:

EVCO2 = l(i, j)× W1,k (10)

EVSO2 = l(i, j)× W2,k (11)

EVCO = l(i, j)× W3,k (12)

EVNOX = l(i, j)× W4,k (13)

EVPM = l(i, j)× W5,k (14)

ETV = EVCO2 + EVSO2 + EVCO + EVNOX + EVPM (15)

where individual symbols mean:
ETV—the total emission of air pollutants generated by the k-th electric vehicle type,
l(i, j)—the length of connecting the i-th sending point with the j-th receiving point,
W1,k—CO2 emission factor—taken from Table 3, for the k-th vehicle type,
W2,k—SO2 emission factor—taken from Table 3, for the k-th vehicle type,
W3,k—CO emission factor—taken from Table 3, for the k-th vehicle type,
W4,k—NOX emission factor—taken from Table 3, for the k-th vehicle type,

5. Verification of the Indicator Method for Emissivity Evaluation

The indicator values provided in Tables 2 and 3 were verified by comparison with
real air pollutant emissivity values based on real measurements carried out on selected
passenger and light-duty vehicle types [26,42]. The basic technical parameters of test
vehicles are presented in Table 4. The emissivity measurements evolve along with the
development of air pollutant emission standards. Dynamic road conditions were not
taken into account in laboratory tests, hence the tests did not fully reflect the reality. For
this reason, researchers started to carry out exhaust emission measurements in real traffic
conditions. RDE tests were introduced by the Regulation of the European Union no.
2016/646 [43]. The results of the T2 vehicle’s real emissivity were taken from literature
data [26]. Tests were also carried out for a hybrid engine vehicle. Due to the lack of specific
emission indicator values for hybrid vehicles, RDE test results allowed conductance of a
comparative analysis of the emission indicators achieved by petrol and diesel vehicles with
those of hybrid engine vehicles. The hybrid vehicle tested in terms of real emissivity was
equipped with a petrol engine and an electric engine. The test vehicles were characterised
by the Euro 6 pollutant emission standard (V3 and V6), while the light-duty vehicle was
equipped with a diesel engine that met the Euro 5 standard (T2).

Table 4. Basic technical parameters of test vehicles.

Vehicle Feature/Type V3 V6 HYBRID T2

engine type Petrol engine Diesel engine Petrol and electric engines Diesel engine

engine cubic capacity 1984 cm3 1968 cm3 1798 cm3 1968 cm3

vehicle mass 1349 kg 1651 kg 1536 kg 1660 kg

emission standard Euro 6 Euro 6 Euro 6 d-Temp Euro 5

declared CO2 emissions 139 g/km 119 g/km 80 g/km 162 g/km
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Table 4. Cont.

Vehicle Feature/Type V3 V6 HYBRID T2

fuel consumption 7.3 L/100 km 6.8 L/100 km 5.0 L/100 km 9.0 L/100 km

vehicle type V3 V6 - T2

Vehicle
brand Volkswagen Golf Volkswagen Arteon Toyota Prius Volkswagen Transporter

The emissivity tests on V3, V6, and hybrid type passenger vehicles were carried
out during RDE tests in the Poznań urban area with the use of test equipment placed
inside the vehicle and in the trunk, i.e., the SEMTECH DS gaseous exhaust components
analyser and the EEPS 3090 mass spectrometer for measuring particulate matter. The
vehicles, along with the measuring equipment were prepared accordingly prior to testing,
i.e., they were exposed to a 20 ◦C temperature without external climate exposure. The
gaseous exhaust components were measured with the analyser. An exhaust fume collection
system, in which the exhaust fumes moved at a temperature of 191 ◦C to prevent water
condensation, was mounted between the exhaust analyser and the vehicle’s exhaust system.
After the exhaust fumes were fed to the analyser through a special filter, the particulate
matter was separated, and the exhaust fumes were fed into the flame ionisation detector
(FID), in which the concentration of hydrocarbons was measured. Then, the exhaust
fumes were cooled down to a temperature of 4 ◦C and moved to the non-dispersive
ultraviolet radiation (NDUV) analyser in which the concentration of nitrogen oxides was
determined. The exhaust fumes mixture was then fed into the non-dispersive infrared
radiation (NDIR) analyser to measure the concentration of carbon oxide and dioxide.
Finally, the SEMTECH DS device measured the oxygen concentration using an electro-
chemical analyser. Additionally, the separated particulate matter was fed into the second
TSI analyser (particulate matter counter). However, in the case of the particulate matter
results, the test featured a comparative analysis of the statistically determined emissivity
with literature data used to calculate the generated particulate matter mass based on the
given vehicle’s fuel consumption per 100 km [42]. Each vehicle travelled 100 km distance
during the tests. During the verification of the IM indicator method, it was assumed that
each vehicle type travels a distance of 100 km. The list of results of the vehicles’ total
emissivity determined using the IM and RDE methods is presented in Figures 17–20. The
comparison was provided for four primary air pollutants, i.e., CO, CO2, PM, and NOX.
In addition, conventional vehicles’ emission (V3, V6, T2) and hybrid vehicle performance
were compared with an electric vehicle’s emission performance. A Nissan Leaf vehicle (E2)
with a power consumption up to 0.17 kWh/km was selected for the comparative analysis.
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The IM method’s carbon dioxide emissions turned out to be lower than those obtained
in the RDE tests for each of the analysed vehicle types. The emissions determined by the
IM method for V3 and T2 type vehicles were twice as high as the values obtained in the
RDE tests, while the emissivity of the V6 type vehicle was three times higher. However,
it is noteworthy that the proportions of the obtained emission results and trends were
maintained. The emissivity of the V3 petrol vehicles is higher in both methods than that of
the V6 diesel vehicles. On the other hand, the emissivity of the T2 light-duty vehicles is
lower than that of the V3 petrol vehicles but higher than the emissivity of the V6 vehicles.
The smallest difference between the emissivity obtained in the IM method and the RDE
tests was recorded when hybrid vehicle results were compared. In terms of carbon oxide
emissions, the pollutant emission values determined by the IM method for the V3 and T2
vehicles turned out to be higher by almost half than those obtained in the RDE tests for
both vehicle types. For the V6 type vehicle, the air pollutant emissions determined by the
IM method were over three times lower than pollutant emissions obtained in the RDE tests.
The measured carbon oxide emissions of the hybrid vehicle were not substantially lower
than those of other vehicle types.

As a result of the comparative analyses, it can be seen that carbon dioxide emission in
the RDE tests is higher, on average, by 100% than the emission value calculated based on
the indicator method. Concerning carbon oxide emissions, the emissions of the V3 and T2
vehicles in road tests are lower by nearly 50% compared to the emission value calculated
under the indicator method. The reverse situation is observed for the V6 vehicle. Regarding
nitrogen oxide emissions, the emission results obtained using the indicator method and
RDE tests do not show significant differences. The values of total dust emissions using the
indicator method are over nine times lower than the results obtained in RDE tests. Very
similar results were obtained for nitrogen oxides, and the emission values determined using
the IM method were almost twice as low as those obtained in the RDE tests. The highest
differences in results were recorded for particulate matter emissions. The comparative
analysis of the PM emissions in the IM method was carried out based on the calculation of
the generated pollutant and particulate matter mass in relation to the fuel consumption.

The adopted emission values in the article for electric vehicles are appropriate for the
Polish energy system, in which nearly 80% of electricity is produced from fossil fuels. It can
therefore be concluded that the emission of electric vehicles occurs at the place of electricity
production. Notably, the emission does not occur at the location of vehicle operation,
which is essential for implementing transport in urban areas. Electric vehicles (E2) were
subjected to a comparative analysis with the number of pollutant emissions recorded in
road tests to verify the indicator method. The carbon dioxide emissions of electric vehicles
are comparable to the CO2 emissions of hybrid vehicles (Hybrid RDE). The carbon oxide
emissions of electric vehicles are 40% lower than the average emission value obtained in
RDE tests for all tested vehicles. On the other hand, the emission of nitrogen oxides from
electric vehicles is higher by about 20% than the average emissions recorded in road tests
for all tested vehicles. PM emissions for electric vehicles do not differ significantly from the
emission results for other types of vehicles in the IM method.

The above analyses enabled the determination of corrective factors for air pollutant
emissions determined by the IM method for the V3, V6, and T2 vehicle types covered in
the RDE tests. The values of the corrective factors are presented in Table 5. The corrective
factors increase or decrease the original emission value calculated by the IM method and
allow the determination of approximate air pollutant emissions. The indicators highlighted
in italics in Table 5 require a reduction in the emissivity determined by the IM method,
while other values require an increase in the emissivity determined by this method.

The above corrective factors and RDE test results demonstrate the results of tests and
observations carried out for three vehicle types. The differences in the obtained results
might have been different had the test vehicle population been more numerous. It is
advisable to carry out extended RDE tests for all vehicle types set out in Table 1 in order to
verify the IM method’s usefulness for the complete set of vehicle types.
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Table 5. Correction factors.

Vehicle Type
CO2 CO NOX PM

[g/100 km]

V3 IM 1.07 0.45 0.73 30.26

V6 IM 2.68 3.61 1.19 8.85

T2 IM 0.92 0.51 0.96 6.17

6. Example of Calculation

The research work involved an analysis of the emissivity of various transport means
that carried out transport work in specific, real-life transport relations. Real transport
plans of a distribution company located in the Mazowieckie Voivodeship and emissivity
indicators determined by the aforementioned MI method were used in the analysis. The
emissivity of three vehicle types, i.e., V3, V6, and T2, assigned to different vehicle groups
depending on the fuel type used, were analysed by using the monthly real total distance
travelled by vehicles. The analysis was carried out for indicator values determined by the
IM method and taking into account the corrective factors. The analysis results are presented
in Figures 21–24.
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Knowing the total real distance travelled by given transport means in the transport
company, it is possible to determine the emissivity of main air pollutants by using the
corrected IM method.

7. Conclusions

Based on statistical data and taking into account the corrective factors, the IM indicator
enables the determination of the emissivity of primary air pollutants generated by various
types of transport means. The method allows emissivity results for given vehicle types to be
obtained quickly and in a manner comparable to RDE tests. Freight transport organisation,
e.g., in urban areas that optimises the delivery process in terms of costs can be combined
with the calculation of the emissivity of transport means and the external costs generated.
In this way, delivery planning can become more sustainable, and the selection of transport
means with lower emissivity can contribute to reducing the transport’s negative impact on
the surroundings. The results obtained make it possible to illustrate the emissivity of main
air pollutants by the most common road transport means used for freight and passenger
transport. However, a complete verification of the IM method required carrying out RDE
tests for all vehicle types set out in Table 1.

As was mentioned above, the proposed method is an innovative approach to estimat-
ing the emission of primary air pollutants. It can be developed by considering other factors
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that significantly impact the multiplicity of pollutant emissions, such as the age of vehicles,
mileage, and general technical condition.

In the coming years, an increase in the prices of propellants is assumed at the levels
observed over the last five years. The rise in gasoline, diesel oil, and gas prices from 2017
to 2022 amounted to nearly 50%. Regarding electricity, the price increases were lower
and amounted to over 20% over the last five years. Assuming the same growth dynamics
in the subsequent five-year periods, a scenario of increases in the prices of propellants
in 2027 and 2032 is possible. In 2007–2017, petrol prices increased by nearly 8%, diesel
prices by almost 15%, and electricity prices by 30%. The smallest increase in prices was
recorded for LPG. Nevertheless, the situation in the last five years had a significant impact
on the rise in the price of propellants. Despite the end of restrictions resulting from the
pandemic, no significant decrease in fuel prices has been observed. The prices of the
propellants forecast included the pandemic period, which turned out to be an exceptional
situation. However, the situation in Ukraine is equally unique and challenging to predict.
Considering the abovementioned, in the following years, using low-emission vehicles
and producing electric energy from renewable sources will be developed. It has a good
relationship with reducing the emission of primary air pollutants from transport activity.
Indicator methods can support the design of urban areas and transport planning regarding
environmental aspects.
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22. Mądziel, M.; Campisi, T.; Jaworski, A.; Tesoriere, G. The development of strategies to reduce exhaust emissions from passenger
cars in Rzeszow city—Poland. a preliminary assessment of the results produced by the increase of e-fleet. Energies 2021, 14, 1046.
[CrossRef]
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