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Abstract: Vortex generators are used in aircraft wings and wind turbine blades. These devices allow
them to maintain a stable turbulent behavior in the wind wake. Vortex generators, or VGs, improve
the transition from laminar to turbulent boundary layer regime, avoiding abrupt shedding. HAWT
wind turbines have high rotational velocity. Currently, HAWT turbines are being redesigned with
fixed vortex generators, achieving higher energy production. This paper presents a wind tunnel
analysis of a fixed-wire blade with S822 airfoil and active VGs bio-inspired by the flight-stabilizing
feathers of the peregrine falcon. Vibrations measured on the blade show a reduction in intensity at
wind velocities close to 15 m/s. The measured wake velocities show fluctuations at higher tunnel
wind velocities. An FFT spectral analysis of the wind wake velocities showed differences between
the spectral components. When activating the VGs in oscillation at a constant frequency, a reduction
of the vibrations on the blade was observed for wind velocities around 20 m/s.

Keywords: S822; vortex generators; bio-inspired; wind tunnel; vibration; CFD

1. Introduction

Wind turbines have become increasingly popular in recent years as a means of gener-
ating electricity from renewable sources. These turbines convert the kinetic energy of the
wind into electrical power using a rotor and a generator. However, there are still challenges
associated with wind turbines, such as their efficiency, reliability, and cost-effectiveness.
One way to address these challenges is by using vortex generators. Vortex generators are
small devices that are attached to the blades of a wind turbine. Their purpose is to increase
the efficiency of the turbine by manipulating the airflow around the blade. By creating
vortices, these generators can improve the aerodynamics of the blade, resulting in increased
lift and reduced drag. This, in turn, leads to greater power output from the turbine. The
use of vortex generators is not a new concept in the field of aerodynamics. They have been
used in aviation for decades to improve the performance of aircraft wings. However, their
application in wind turbines is a more recent development. Researchers have been explor-
ing the use of vortex generators in wind turbines for several years, and the results have
been promising. One of the main advantages of vortex generators is that they can be easily
retrofitted onto existing wind turbines. This means that older turbines can be upgraded to
improve their performance, without the need for costly replacements. Additionally, vortex
generators are relatively inexpensive to manufacture and install, making them an attractive
option for wind farm operators. Another advantage of vortex generators is their ability to
improve the reliability of wind turbines.

By reducing the stress on the blades, these generators can extend the lifespan of the
turbine, reducing maintenance costs and downtime. This can be especially important in
remote locations where access to the turbine may be difficult or expensive. The design of
wind turbines with additional devices on their blades is a growing line of research in several
parts of the world, these designs usually have approaches such as: Energy production [1–3],
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structural vibration mitigation systems [4,5], use of composite materials [6] and CFD
simulation (Computational Fluid Dynamics) [7]. These simulations allow to appreciate the
3D behavior of the fluid when interacting with novel devices such as blade tips, UAV’s
with different number of blades, and aerial spraying applications [8–10]. Another approach
is the creation of mechanical improvements based on living organisms [10,11], previous
works study wind turbine blade shapes inspired by living organisms for the purpose of
noise reduction and performance analysis [12]. In this work we analyze the behavior of an
airfoil blade used in high velocity turbines such as the S822 [13–15], with vortex generators
devices inspired by the peregrine falcon [16–18], previous studies highlight that this bird
has flight stabilizer feathers on its back.

This bird reaches downward velocities of more than 350 km/h; therefore, we seek to
create a linear array of vortex generators with similar geometries to the ones present in the
bird. Adding a servomechanism, and thus achieving active or mobile vortex generators,
will vary its angle of inclination by means of a wireless activation circuit and allow analysis
through a hot-wire sensor and a 3D accelerometer to measure the effects on the structural
vibration presented by the blade. The motivation of this work is to contribute to the design
of future wind turbines with better performance and greater rotational stability, aiding to
solve the need for the creation of more efficient wind turbines.

2. Materials and Methods

To analyze the behavior of active and peregrine falcon bio-inspired generators and
to observe a possible stabilization effect on a blade with an S822 profile, the following
experimental research methodology is proposed, organized into four phases in Figure 1.
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Figure 1. Methodology.

The first phase, or the exploration phase, is composed of the review of previous similar
works, followed using a CFD simulation tool that allows observation of the behavior of
physical variables such as pressure, velocity, and kinetic energy of turbulence or TKE. These
variables show the behavior of the wind wake and its turbulence. Phase two, or the design
phase, consists of 3D scanning and the creation of the bio-inspired vortex generator using a
3D CAD design tool. Phase three, or the simulation phase, consists of the simulation of a
blade without vortex generators and another blade with the vortex generators designed
in phase two. Fourth phase, or the experimentation phase, consists of the use of the wind
tunnel to measure the blade vibration with vortex generators and the wake wind velocity.

There are commercial tape-type vortex generators used on the blade surfaces of power
wind turbines [19]. The differences in the power values in kW for a HAWT wind turbine
at constant wind velocities show differences for turbines with vortex generators, obtain-
ing differences of 20% more energy production when using vortex generators (Figure 2).
Therefore, being able to analyze a blade using bio-inspired vortex generators contributes
to the creation of turbines with better utilization of energy resources. Previous studies
conclude that the use of vortex generators on the blades can significantly improve the
aerodynamic characteristics of NACA airfoils, increasing the lift coefficient and eliminating
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boundary layer separation, in some cases reducing the aerodynamic drag coefficient. The
position of the VGs is also important, since in some cases, no improvement in aerodynamic
performance is observed, which could be related to the size of the VGs [20].

Energies 2023, 16, x FOR PEER REVIEW 3 of 21 
 

 

studies conclude that the use of vortex generators on the blades can significantly improve 

the aerodynamic characteristics of NACA airfoils, increasing the lift coefficient and elim-

inating boundary layer separation, in some cases reducing the aerodynamic drag coeffi-

cient. The position of the VGs is also important, since in some cases, no improvement in 

aerodynamic performance is observed, which could be related to the size of the VGs [20]. 

  
(a) HAWT (b) HAWT + VG’s 

Figure 2. HAWT turbines CFD simulation. 

3. Results 

3.1. Numerical Simulations 

Figure 3 shows that with a 3D scanner and a dissected specimen, a CAD-3D model 

of the feathers is obtained. The collection of biological samples of feathers from the back 

of a dissected falcon was donated by the Jaime Duque Zoo in Bogota, Colombia. This was 

necessary to develop a CFD simulation of rotational mesh and thus achieve an analysis of 

the behavior of the surface pressure on the blade by varying the angle of inclination of the 

vortex generators bio-inspired by the peregrine falcon’s flight stabilizer feathers. 

m s−1 m s−1 

Figure 2. HAWT turbines CFD simulation.

3. Results
3.1. Numerical Simulations

Figure 3 shows that with a 3D scanner and a dissected specimen, a CAD-3D model of
the feathers is obtained. The collection of biological samples of feathers from the back of
a dissected falcon was donated by the Jaime Duque Zoo in Bogota, Colombia. This was
necessary to develop a CFD simulation of rotational mesh and thus achieve an analysis of
the behavior of the surface pressure on the blade by varying the angle of inclination of the
vortex generators bio-inspired by the peregrine falcon’s flight stabilizer feathers.

Figure 4 shows the development of the CAD design and construction of the vortex
generator based on previous studies of the descending flight of the peregrine falcon [17].
These studies led us to observe the elevation of six feathers on the back of the falcon, so
a feather arrangement was recreated on the surface of a vortex generator at a scale of
approximately 10:1. In this way, we achieved the addition of a linear arrangement of vortex
generators with an axis of rotation and then placed this axis in the quarter chord of a blade
with an S822 airfoil; this airfoil is used for aerogenerators with high rotation velocity [21].
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Figure 4. (a) Peregrine falcon, (b) bio-inspired vortex generator, (c) blade with S822 airfoil.

Yellow circles show the feathers selected for the construction of the bio-inspired vortex
generator (Figure 4). By means of 3D CFD simulation, it is possible to observe the behavior
of the fluids; using the ANSYS software tool and the CFX solver (Figure 2), the construction
of two simulation domains was performed, one static and the other in rotation by the linear
matrix of vortex generators, or VGs. Using the transient mode, it was possible to change
the tilt angle Θ or rotate the mesh during the simulation time. Figure 5 shows a transition
region analysis, and it was decided to select a value of y+= 20 [22]. This allows to know the
behavior of the fluid with a not so fine mesh and to reduce the CFD simulation time.
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Figure 5. Boundary layer on a plane.

By using Equations (1) and (2) developed by Frank M. White [23], the separation
between nodes was calculated in order to configure the size of the elements in surfaces and
areas near the blade and vortex generators. These values are shown in Table 1.

Table 1. Computed grid spacing for a given y+.

V ρ µ L y+ ∆s Rex

10 m/s 1.28
kg/m3

1.8 × 10−5

kg/m s
0.08 m 20 0.0005 m 71111

With the finite volume meshes of (Figure 6) obtained for y+ = 20, the following
simulation parameters were configured (Table 2).
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Table 2. Summary of simulation parameters of the first CFD.

Simulation Parameter Value

Simulation Type Transient
Turbulence Model kw-SST
Total Simulation Time 5 s
Time Step 0.08 s
Loops 800
Fluid Air at 25 ◦C
Wind Velocity 20 m/s
Pressure 1 atm
Turbulence Level 5%
Velocity Subdomain Rotation 1 rev/s

Previously, a convergence analysis or mesh sensitivity was conducted with 3D tetrahe-
dral element edge sizes on the feather surface of 10 mm, 5 mm, 3 mm, 1 mm, and 0.5 mm [8].
Very similar simulated values were observed starting from 3 mm; therefore, all meshes
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of the CFD simulations were configured with a maximum finite surface size of 1 mm,
obtaining rotative meshes of the blade. The construction of the meshes for a first CFD
simulation was performed; with this simulation, we seek to analyze what advantages exist
in a blade with an S822 profile with and without VGs. To compare the simulation results,
we set up a simulation in transient mode with a rotational domain and thus generated the
curve of lift coefficients (CL) for the two blades as a function of the angle of attack Alpha
that will vary with each time step (Figure 7).
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Figure 6 shows the CAD and meshes of rotating and static or envelope domain, the
simulation time and time steps were configured to obtain the curves of the forces in the
direction of the y-axis or lift experienced by the two types of blades. Using a spreadsheet,
the CL coefficient curves were generated with Equation (3).

The curves in Figure 7 show the behavior of the dynamically simulated lift of the two
blades with an S822 profile, one with vortex generators and the other without. The figure
shows an improvement in the lift values of all the pitch angles of this coefficient, which
indicates an aerodynamic difference in the blades when adding these devices at fifteen
degrees of pitch or theta = 15◦, the maximum CL value obtained in the blade without a
vortex generator.

CL =
L(

1
2

)
∗ ρ ∗V2 ∗ A

(3)

The CL curves in Figure 8 show an angle of alpha = 28◦. For this reason, contour planes
of velocity, pressure, and turbulence kinetic energy or TKE were generated at this angle
of attack, and thus, we compared the results and observed possible differences associated
with the addition of bio-inspired vortex generators in the blade. The behavior of the CL
curves is similar to that obtained in previous blade works, such as those carried out by Tim
Colonius [24] and Jasvipul Chawla [25].

Figure 8 shows that the CP pressure curve presents an overpressure behavior in the
vortex generators (Figure 8d) with respect to the blade without vortex generators (Figure 8b)
using CFD-Post software.

The simulated contour planes in Figure 9 were obtained at the time step associated
with the maximum CL. The velocity contours show an increase in the size of the low velocity
wake generated by the blade by adding the vortex generators in linear array aligned in the
quarter chord. The pressure contours show that the vortex generators increase the negative
pressure in the air near the leading edge of the blade. The turbulence kinetic energy
contours show a considerable reduction in the values and contour sizes of this variable
with the addition of passive or static VGs with 15 degrees of pitch or theta, Θ = 15◦.
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airfoil S822, α = 0, (d) blade with airfoil S822 + VGs, α = 0.

The surface pressure, as well as the other variables observed by means of contour
planes, shows an interesting behavior since higher values of pressure are observed in the
upper surface or surface where the VGs are located. This indicates that the location of
vortex generators increases the pressure in the upper surface of the blades.
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Figure 9. Contours planes simulated: (a) Velocity, (b) Pressure, (c) TKE, (d) Surface pressure.

A second CFD simulation was performed with the following parameters: mode:
transient, total simulation time: 5 s, time step: 0.04 s, loops: 800, turbulence model: kw-SST,
fluid: air at 25 ◦C, incoming wind velocity: Vwind = 20 m/s, pressure: 1 atm, turbulence
level: 5%, and velocity of subdomain rotation: Vrot = 1 rev/s. For static domain, we
obtained 1,089,442 nodes and 3,144,901 elements, and for rotational domain, we obtained
865,109 nodes and 4,787,115 elements (Figure 10).
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Figure 10. (a) Rotative domain, (b) static domain.

Figure 11 shows a prototype blade section of 350 mm height and an 80 mm chord with
an aerodynamic base that was designed for prototype attachment to the wind tunnel and
protection of the acquisition circuit. CFD simulation was performed to analyze whether the
housing generates interference in the fluid near the blade. At wind velocity 20 m/s, no low-
velocity contours associated with interference near the leading edge of blade were observed.
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Figure 11. (a) Velocity Contour Isometric view, (b) Velocity Contour lateral view.

The simulated pressure contours in Figure 12 show that at tilt angles greater than
zero, the surface pressure on the upper surface of the blade increases. The largest pressure
increases are observed near the bio-inspired vortex generators.

The velocity contours in Figure 13 are obtained with planes spaced at 10 mm. The
velocity contours are adjusted in line mode without filling. This post-processing allows
observation of the vortices generated in the wind wake. Figure 13 shows contours at
60 degrees tilt angle of the VGs and 15 degrees. Circular vortex cores are observed at 60◦,
and at the 15◦ angle, wavy wind velocity contours are observed.

Figure 14 shows roughly the behavior of the wind boundary layer, showing increases
in wind velocity in regions above the vortex generator (orange) and a growth in the low
wake velocity zone (green).
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Figure 12. Pressure: (a) Blade with S822 and Θ = 60◦, (b) blade with S822 and Θ = 15◦.
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Figure 14. CFD simulation for rotating VGs, Velocity contours: (a) Θ = 0◦, (b) Θ = 15◦, (c) Θ = 60◦.
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3.2. Experimental Analysis

Figure 15 shows the electromechanical assembly of the sensors with the acquisition
circuit and servomotor for the activation of the designed bio-inspired vortex generators.
These devices were printed by 3D printing of Formlabs 3+ resin with Gray V4 resin or
standard resin then coupled to a stainless-steel shaft of 2 mm diameter, achieving a linear
arrangement of the VGs. This shaft is in the quarter chord of the profile and is coupled to a
5 VDC servomotor.
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Figure 15. Blade prototype with S822 and housing measuring circuit.

The prototype was placed in a subsonic wind tunnel of the School of Aeronautical
Engineering of Sao Carlos, SP, Brazil, and the operation of the acquisition system and
servomechanism for the vortex generators’ lineal array inclination was tested (Figure 16).
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Figure 16. (a) Prototype in wind tunnel, (b) Anemometer Rev-p, (c) Accelerometer MMA7361.

Figure 17 shows the prototype blade section placed in the subsonic wind tunnel when
the vortex generators in lineal array were activated at five different tilt angles, theta = 0◦,
15◦, 30◦, 45◦, and 60◦, to measure the differences when varying this tilt angle. A subsonic
wind tunnel is a type of wind tunnel that is designed to simulate airflows at speeds below
the speed of sound. These wind tunnels are commonly used in the fields of aerospace and
automotive engineering to study the aerodynamic properties of aircrafts and vehicles.
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Figure 17. (a) Angles of inclination Θ, (b) wind tunnel and blade prototype.

A subsonic wind tunnel typically consists of a long, narrow tube with a fan or com-
pressor at one end to generate a steady flow of air. Models of aircrafts or vehicles are placed
inside the tunnel and subjected to different airflow conditions. The properties of the airflow
are measured using sensors and instruments placed throughout the tunnel. Subsonic wind
tunnels are important tools for engineers because they allow them to study the behavior of
airflows in a controlled environment. This information can then be used to design more
efficient and effective aircrafts and vehicles.

Figure 17 shows the design of the wind tunnel experiment to compare the CFD
simulations of the 3D blade. The blade prototype has a circuit and sensors that communicate
wirelessly, and due to the power characteristics of the hot-wire sensor, or Rev-p sensor, it
was necessary to use a DC ATX source with +12VDC, +5VDC.

Figure 18 shows the wind velocity measurement captured by the digital hot-wire
sensor. The wind velocity changes were observed after the blade section and the VGs
interacted. Each color indicates the tilt angle of the VG linear array. The temperature, as a
function of the samples with a sampling time ts = 0.005 s, was measured by the hot-wire sen-
sor, having temperature fluctuations between 10 ◦C and 11 ◦C between measurements. The
digital hot-wire sensor was implemented with a digital 3D accelerometer with the purpose
of analyzing the vibration of the structure by means of the accelerations of the blade.
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Figure 18. Wind velocity and wind temperature measured with Rev-p sensor.

Figure 19 shows the measured vibrations without their mean value. The elimination
of the mean value facilitates the appreciation of the differences between the signals. The
accelerations are measured in units of gravities g. The accelerometer is located at the base
of the blade structure. In the y-direction, increases in vibration amplitudes were observed
in association with the increase in tunnel wind velocity. The highest amplitudes occurred
for angle theta = 0◦ (blue curve). The measured vibrations without their mean value on
the Z-axis as well as on the Y-axis show that the amplitudes of the accelerations of the
prototype structure increase with the tunnel wind velocity.
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Figure 19. Acceleration in 3D direction without average value.
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Figure 20 shows the segments of the measured signals to analyze the wind fluctuations
measured by the digital hot-wire sensor. This is done with the purpose of comparing
the results of the wind fluctuations when changing the angle of inclination of the vortex
generators. The sensor is located behind the trailing edge at 40 mm so that the measure-
ments can be associated to the behavior of the wake generated by the blade with active
vortex generators.
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For the section of the first 2000 samples in Figure 20 or tunnel wind velocity of 5 m/s,
a constant behavior of the wake wind velocity measured against changes in the tilt angle of
the vortex generators is observed. The wind velocities measured by the sensor are close
and constant. The signal section between samples 2000 and 4000 shows the measured
results of the wake wind velocity when the tunnel was set to a velocity of Vwind = 8 m/s.
In the figure, the wind fluctuations are smooth with respect to the average value for all
theta tilt angles or tilt angles of the vortex generator array. For a wind velocity of 10 m/s, a
larger separation between velocity measurements of the digital hot-wire anemometer is
seen, with the blue signal or the one associated with zero degrees of tilt having the lowest
velocity value, indicating that the linear arrangement of the vortex generators generates
velocity increases in some areas of the wind wake.

For a tunnel wind velocity of Vwind = 15 m/s, it is possible to observe a larger separa-
tion between wind velocity values measured in the vortex wake with vortex generators and
without vortex generators (Figure 13). Figure 20 with tunnel wind Vwind = 15 m/s shows
greater separation between the wake wind velocity curves measured with and without
vortex generators. To compare the results of the previous wake velocity graphs in Figure 20,
we decided to calculate the RMS value of the signals and use a bar chart to facilitate their
comparison, as shown in Figure 21a.
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Figure 21 shows a comparison of the measured RMS values (red box) and the simulated
wind velocity values at the hot-wire sensor location using contour planes (red circles). The
values for the different tilt angles of the vortex or theta generators show similarities to
the simulated values, mainly for angles Θ = 45◦ and Θ = 60◦. The average values are
then subtracted from the measured wind signals to better observe the differences between
fluctuations associated with the addition of vortex generators in a linear array and their
variation by tilt angle (Figure 22).
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Segments marked with red arrows indicate the configured tunnel wind velocities.
By means of a script, the average value of each wake wind velocity signal obtained with
the digital anemometer was subtracted. This mathematical operation shows differences
between the velocity fluctuations more clearly, and thus, it is easier to compare the wake
behavior at different fixed angles of inclination of the vortex generator array for the tunnel
wind velocity of Vwind = 5 m/s (Figure 22). Figure 22 shows the wind velocity measured
without the mean value at a tunnel velocity of 8 m/s. For each color or angle of inclination,
signals conformed by sinusoids of different frequencies with higher amplitude values are
observed. For measurements at Vwind = 5 m/s, Figure 22 shows wind velocity signals
measured in the wake with the digital anemometer without the mean value.

This subtraction of the average value allows us to see differences and a considerable
increase in the amplitude of the fluctuations at a greater angle of inclination of the vortex
generator array on the blade with respect to the signals obtained with Vwind = 8 m/s.
At a wind tunnel velocity of 15 m/s, the velocity fluctuations measured by the digital
anemometer in the wake are observed with greater amplitude when the vortex generator
array is observed at 30◦ and 60◦, shown with yellow and green color signals in Figure 22.
At a wind tunnel velocity of 20 m/s, the velocity fluctuations measured by the digital
anemometer in the wake are observed with greater amplitude with respect to the previous
lower wind tunnel velocity measurements, and a more defined sinusoidal behavior is
observed for the two tilt angles theta= 45◦ and theta = 60◦.

To complement the analysis of the fluctuations of the wind signal associated to the
wake behavior and the effect of the generators at different inclination angles, the RMS
values were calculated for the measured signals without mean value and organized in a
bar chart for comparison. Figure 23 shows that the behavior of RMS values is random at
velocities of 5 m/s and 8 m/s, while for values of 10 m/s, 15 m/s, and 20 m/s, an increasing
behavior in the RMS values is observed. Due to the differences between the measured
signals and their oscillatory behavior in the time domain, it was decided to perform a short
frequency analysis of the measured wind signals to find differences between the signals
that allow to establish the characteristics of the effect of vortex generators at different tilt
angles and more knowledge about the behavior of the wake generated by the vortex blade
with active vortex generators (Figure 23).
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The analysis tool FFT, or fast Fourier transform, was used to select each of the measured
wind signals and calculate the magnitude and phase spectra, these spectra allow comparing
values of the spectral components and their phases for all wind velocity curves for an angle
of Θ = 0◦ (Figure 24).
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The spectrum in Figure 25 shows the magnitude spectrum associated with the ampli-
tudes of the measured wake velocity signals at changes in wind tunnel velocity or color,
with tilt angle theta = 60◦. Increases in the values of the spectral components for frequencies
greater than 5 Hz are seen as the wind tunnel velocity increases.
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The spectrum in Figure 25 shows the phase spectrum associated with the angle or
phase of each spectral component at different wind tunnel velocities and angle theta = 60◦.
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The main differences observed in this spectrum indicate higher phase variations for sig-
nals measured at 8, 10, and 15 m/s and lower phase variations for tunnel velocities of 5
and 20 m/s.

Finally, the activation of the linear array of vortex generators was configured. The
vortex generators had a fixed oscillation frequency fosc = 1 Hz. At the same time, the tunnel
wind velocity variation was performed approximately every 40 s, obtaining the following
data from the hot-wire digital anemometer sensor (Figure 26).
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Figure 26. Wind velocity with digital anemometer for oscillating vortex generators.

Figure 26 shows the results measured by the wind velocity sensor before the oscillat-
ing movements of the vortex generators. Segments marked with red arrows indicate the
configured tunnel wind velocities. The changes present a staircase shape where each step
indicates the instances of wind tunnel velocity changes. The temperature was measured
by the anemometer sensor which, in addition to measuring the wind velocity, also mea-
sures the air temperature and the shape of the signal shows a constant behavior during
the measurement. Figure 27 shows the acceleration in the direction of the X axis of the
prototype. The mean value is subtracted from the acceleration curves, which allows a better
comparison of their behavior in the time domain. The acceleration amplitude decreases as
the wind velocity increases in the tunnel. For the acceleration in the Y-axis direction of the
prototype, the average value of the signal is subtracted from this acceleration, showing a
similar reduction in the amplitude of the acceleration as the wind tunnel velocity increases
like that seen in the acceleration in the X-axis direction. Like acceleration in the X and Y
directions, the acceleration in the Z direction shows a similar amplitude reduction behavior,
indicating that the structure reduces its vibration with increasing wind velocity because of
the vortex generator array when oscillating.

As in the previous measurements and processing, in Figures 20 and 22, the magnitude
and phase spectra are taken to identify changes in the spectral components of the wind
velocity signal measured with vortex generators oscillating at the fixed frequency fosc = 1 Hz.
Figure 28 shows the magnitude spectra with closer and lower attenuation peaks associated
with the effect of the oscillation of the linear array of vortex generators. The phase spectrum
shows strong variations in all measurements at different tunnel wind velocities, indicating
strong angle changes between spectral components caused by mechanical oscillations of
the active vortex generators between 0◦ and 90◦.
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Figure 27. Acceleration in the x-axis, y-axis, and z-axis directions without the average value for
oscillating vortex generators on the blade with S822 airfoil.
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Figure 28. Magnitude and phase spectrums for value for oscillating vortex generators on blade with
S822 airfoil and fosc = 1 Hz.
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4. Discussion

The designed prototype shows, by means of 3D CFD simulation, the wind behavior
when interacting with the vortex generators bio-inspired by a wind turbine blade, which
show the creation of lower velocity vortex wakes with circular cores located between the
spaces between vortex generators or VG; the surface pressure increases in the upper surface
area from the trailing edge to the VG location, as the VG tilt angle increases. The location
of the active vortex generators allows the surface pressure to increase on the top surface in
a controlled manner, which in a wind turbine blade can compensate for the bending they
experience as they are slender mechanical elements or are made of laminar airfoils.

The overpressure in the blade intradoses generated by the headwind particles allows
the rotation of the wind turbines to generate a pressure differential, as low-power wind
turbines are smaller in size and have a higher velocity of rotation, their blades tend to be
thin and flexible as they are made of elastic materials such as polymers. Blade vibrations can
be reduced by vortex generators that compensate for the fluctuating pressures generated
by the wind on the blade, these pressure fluctuations are associated with fluctuations in
wind velocity that increase in amplitude as wind tunnel speed increases. The oscillation
of the linear array of bio-inspired vortex generators showed reduction of the measured
vibration peak variation with increasing wind velocity, demonstrating that the analysis
of oscillation frequency variations can contribute to the future design of active and smart
bio-inspired vortex generators.

5. Conclusions

In this work, it was possible to analyze in a wind tunnel a fixed chord blade with an
S822 profile and a linear set of active and bio vortex generators inspired by the stabilizer
feathers of the peregrine falcon. The vibration results measured on the blade with a 3D
accelerometer showed a reduction of vibration peaks at a wind velocity of 15 m/s for
different fixed pitch or fixed theta angles of the vortex generators. The wake wind velocities
measured by digital hot-wire anemometer showed larger fluctuations at higher tunnel wind
velocities. FFT spectral analysis of the wake wind velocities measured in the wake showed
not very visible differences between the magnitude spectra for the fixed tilt angles of
theta = 0 and 60. When activating the vortex generators designed with constant oscillation
or oscillating theta at 1 Hz, a reduction of the vibration in the blade was observed at
wind velocities of 15 and 20 m/s. A greater number of low peaks or components of the
magnitude spectrum closer to −20 dB were also observed.
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