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Abstract: The discovery of concretions of Chang 7 shale formations in the Ordos basin has increased
interest in the exploration of lacustrine carbonate genesis in these basins. In this paper, these
concretions were sampled and used in major, trace, and isotopic geochemistry tests. We used a
microscope to investigate these concretions, and the results showed that the concretions consisted of
carbonate rocks, the calcite was hydrothermal calcite, and obvious hydrothermal activity was present
in the Yanchang period. We used seismic data to interpret the faults, and we determined that tectonic
activity was relatively frequent in the middle–late Triassic period and that the faults were channels
for hydrothermal upwelling. During the middle–late Triassic period, tectonic movement of the basin
occurred, and synsedimentary faults developed in the Yanchang Formation. As deep hydrothermal
gushers rose through faults and fractures, they carried particles upward through the deep limestone
strata. When the hydrothermal gushers reached the lake bottom, the particles precipitated and
eventually formed concretions via diagenesis.

Keywords: hydrothermal activity; geochemistry characteristics; carbonate concretion; syndepositional
fault; Ordos Basin

1. Introduction

The hot fluid in sedimentary basins not only has an important effect on the temperature,
pressure, and chemical field of the basins, but also plays an important role in the water–
rock interactions and the generation, migration, and accumulation of oil and gas in the
basins [1–4]. Scholars have analyzed the relationship between hot water deposition and the
spatial and temporal configuration of source rocks [1,5], the effect of hot water deposition
on organic matter enrichment [6–10], the effect of hot water deposition on special trace
elements, etc. [11].

The Ordos basin is a typical continental lake basin that formed during the deposition of
the Yanchang Formation. Many scholars have also found evidence of various hydrothermal
activities occurring during this time [12]. Based on the results of studies exploring the
micro-organisms in Chang 7 source rocks, scholars think that these rocks were affected by
brief hydrothermal activity [13], the characteristics of high-gamma-ray sandstones in the
Chang 6 formation [14,15], the large amounts of tuff in the Chang 7 formation, etc. [16,17].
García [18] thinks that the sedimentary limestone in the lacustrine basin is also evidence of
hydrothermal activity. When hydrochloric acid was dropped on the nodules, foam was
formed, and the concretions were suspected to have carbonate components. Because the
concretions are composed of shale formations, we studied the petrological and geochemical
characteristics of the carbonate concretions. By analyzing the formation mechanism of the
concretions, we can speculate on how the high-quality source rocks in this area developed,
which could provide a reference for oil and gas exploration in this area.
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2. Geological Setting
2.1. The Ordos Basin

The Ordos basin is in North–Central China; it covers an area of 250,000 km2 and
contains various energy resources such as oil, gas, coal, and uranium. The oil-bearing
formations are mainly the Upper Triassic Yanchang and Middle Jurassic formations, and the
coal resources are distributed in the Late Paleozoic Carboniferous–Permian and Mesozoic,
Jurassic, and Triassic strata, whereby the oil is in the upper northern part of the strata and
the gas is in the lower southern part of the strata [19]. Tectonic activities around the basin
are relatively frequent, and earthquakes and volcanic eruptions occur in some areas. The
internal structure of the basin is relatively simple: it has a gentle slope with a dip angle of
less than 1◦. According to the current structural form of the basin, it can be divided into six
tectonic units: the Yimeng Uplift, the Western Thrust Belt, the Tianhuan Depression, the
Weibei Uplift, the Jinxi Flexure Belt, and the Yishan Slope (Figure 1).

Figure 1. (a) Regional location and (b) simplified structure of the Ordos basin and data used in this
study; the red star is the sampling location [20].

2.2. Deposit Geology

The Ordos basin is a large inland sedimentary basin that formed during the middle–
late Triassic period, during which a set of river–delta–lake facies appeared. Its sedimentary
filling includes five stages, which are the initial depression, strong depression, progressive
filling, uplift and shrinkage, and erosion and extinction [21,22]. According to the evolution
characteristics of the lake basin, the Yanchang Formation can be divided into ten subunits
(five sections) named Chang 10 to 1 from bottom to top [23–25]: the first section (T3y1)
includes Chang 10; the second section (T3y2) includes Chang 9 and 8; the third section
(T3y3) includes Chang 7, 6, 5, and 4; the fourth section (T3y4) includes Chang 3 and 2;
and the fifth section (T3y5) includes Chang 1, which is generally continuously deposited
between each section. The formation in the sampled outcrop profile includes Chang 7,
which consists of a set of shales. The formation consists of dark gray mudstone and shale
and gray siltstone and tuff, and the corresponding seismic horizon is Tt7. Its characteristics
include a high resistance, gamma, and sound velocity and low potential. This shale
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formation set is relatively stable in the whole area, and it is also the main source rock in the
Yanchang Formation (Figure 2).
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3. Material and Methods

A total of 17 concretion samples and their surrounding rocks were analyzed and
tested. Thin sections of the sedimentary rock samples were prepared at the State Key
Laboratory of Continental Dynamics, Northwest University, and were studied in detail
using an optical and scanning electron microscope. The major and trace elements were
measured at the State Key Laboratory of Continental Dynamics, Northwest University. The
element concentrations were analyzed using inductively coupled plasma optical emission
(ICP-OES; Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, TiO2, Ba, and Sr) and mass
spectrometry (ICP-MS; V, Zn, Zr, Sc, Cr, Co, Ni, and Cu). Several samples were repeatedly
analyzed to determine the precision of the measurements, which was higher than 2% for
most of the elements (bwz-30). Carbon–oxygen isotopes were measured using a Thermo
Fisher Scientific MAT253 isotope mass spectrometer at the Stable Isotope Laboratory of
the Institute of Geology and Geophysics, Chinese Academy of Sciences; Vienna Pee Dee
Belemnite (VPDB) was used as the standard sample, and the test error was ±0.02‰. We
used a 2D seismic line, which is a zero-phase migration stack profile with a sampling
interval of 2 milliseconds, and the main frequency was 35 Hertz.

4. Results

Concretion 1 (six samples), which was located at the Bawangzhuang Quarry, was
spherical and hard and ranged from 0.5 to 1 m (Figure 3a). Concretion 2 (five samples),
which was located at the back hill of the Bazwangzhuang Quarry, was detached from the
undisturbed stratum, hard, and characterized by its disc shape with a diameter of 0.7 m.
Concretion 3 (six samples), which was located at Niejiahe, was mainly lens-shaped with
an earthen yellow core (Figure 3e). The shale near concretion 3 was bent, and the shale far
from concretion 3 was not deformed (Figure 3f).

4.1. Petrography

Concretion 1 (bwz-30) was a limestone concretion mainly composed of calcite. The
concretion contained larger calcites. The calcite was round with a diameter of up to
700 µm (Figure 4a,b); part of the calcite had a radial structure under a single polarized light
(Figure 4c) and a cross extinction under orthogonal polarized light (Figure 4d). Only a
small part of the outer layer of the spherulites remained fibrous (Figure 4e) with a radial
structure. A large amount of oil that was grid-like was seen between the calcite crystals
and in the cleavage cracks (Figure 4f).

Concretion 2 was also a limestone concretion (Figure 5a,b). Much organic matter
remained among the calcite grains of the secondary limestone under high magnification. A
large amount of organic matter fillings was seen in the intergranular and cleavage fractures;
when observing the surrounding rock slices of concretion 2, we found that in addition to
ordinary shale, the bwz-33 (Figure 5c) and bwz-35 samples of concretion 2 were dolomites
(Figure 5d).

Concretion 3 (yq-36, 37, 41) was a dolomite concretion with silty crystalline dolomite
(Figure 6a,b), dolomitized altered tuff (Figure 6c), and argillaceous silty dolomite in single
polarized light (Figure 6d). The particles were filled with organic matter, and no calcite
pellets were seen (such as in the section from Bawangzhuang, Tongchuan). Dolomite
is mainly oolitic, and it was the main component of the rock. Most of the spherulites
were relatively intact when preserved, and the surface was smooth; additionally, a small
part showed spherical irregularity, and the concretion surrounding the rocks consisted of
ordinary shale.
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Yellow circles indicate carbonate concretions on outcrops profile.

After observing the three concretions from the Bawangzhuang quarry and the Niejiahe
outcrop section of Yaoqu under a microscope, combined with the coupling relationship
between them and the surrounding rock bedding, we preliminarily considered that the
concretions in the shale of the Chang 7 oil layer group consisted of carbonate rocks.

4.2. Major and Trace Element Geochemistry

According to the results of our analysis of the major elements (Table 1), the ma-
jor elemental relationships between the concretion cores were as follows (Table 2): the
SiO2/(Na2O + K2O) of the concretion ranged from 9.53 to 26.13 (average = 15.46), the
Al2O3/(Na2O + K2O) ranged from 2.78 to 4.68 (average = 3.74), the Al2O3/Na2O ranged
from 7 to 15.6 (average = 10.11), the K2O/Na2O ranged from 1.13 to 2.33 (average = 1.68),
and the SiO2/Na2O ranged from 25.97 to 57.5 (average = 39.9). The MnO value of the
concretion 1 core was 1.25, and the average MnO value of the surrounding rock was 0.04.
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The MnO value of the concretion 2 core was 0.06, and the average MnO value of the sur-
rounding rock was 7.95. The MnO value of the concretion 3 core ranged from 9.53 to 16.69
(average = 14), and the average value of the surrounding rock was 0.35.
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Large-grain calcite under cross-polarized light (b). Radial felsic under single polarized light (c). Small
proportion of radial felsic under cross-polarized light (d). Large-scale fibrous structure under single
polarized light (e). Multiple large calcite particles (f). The blue circles indicate calcite block under
the microscope.
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Table 1. Major elements of the Chang 7 carbonate concretion samples.

Major
Element

Concretion 1 Concretion 2 Concretion 3

Core Surrounding Rock Core Surrounding Rock Core Surrounding Rock

bwz-
30

bwz-
24

bwz-
25

bwz-
26

bwz-
27

bwz-
28

bwz-
31

bwz-
32

bwz-
33

bwz-
34

bwz-
35

yq-
36

yq-
37

yq-
41

yq-
38

yq-
39

yq-
40

SiO2 5.75 40.15 73.19 38.00 37.08 71.51 2.79 28.08 12.13 38.46 9.78 31.21 12.65 7.53 46.35 74.74 34.62
TiO2 0.01 0.48 0.26 0.01 0.52 0.33 <0.01 0.31 0.12 0.30 0.12 0.34 0.18 0.10 0.37 0.04 0.55
Al2o3 0.70 6.57 11.28 5.19 11.22 13.05 0.50 7.35 4.00 10.17 3.94 8.51 5.15 3.22 12.13 9.67 12.39

TFe2O3 1.10 11.50 2.12 1.57 5.07 2.32 1.73 6.29 4.15 8.02 2.52 4.33 3.88 2.27 5.71 1.12 9.02
MnO 1.25 0.01 <0.01 0.09 0.02 <0.01 0.06 0.14 1.00 0.02 1.15 0.29 0.57 0.48 0.01 0.01 0.02
MgO 0.13 0.34 0.47 0.21 0.58 0.48 0.01 1.34 13.88 0.56 16.00 9.53 15.77 16.69 0.40 0.08 0.58
CaO 49.18 0.10 0.62 32.70 0.46 0.26 50.50 2.90 26.01 0.66 25.63 15.82 22.45 27.23 0.38 0.17 0.68

Na2O 0.10 0.51 1.48 0.07 0.75 0.35 0.06 0.30 0.39 0.58 0.26 1.00 0.33 0.29 0.83 0.33 1.04
K2O 0.12 2.17 1.79 0.04 2.37 0.85 0.12 1.35 0.71 1.72 0.56 1.13 0.77 0.50 2.15 1.88 2.96
P2O5 0.29 0.31 0.08 0.14 0.26 0.16 0.16 0.61 0.16 0.26 0.15 0.14 0.09 0.10 0.16 0.04 0.22
LOI 40.42 37.86 8.58 21.73 41.29 10.80 41.80 51.45 36.81 39.24 39.50 27.32 37.74 41.38 31.48 11.82 37.33

TOTAL 99.05 99.99 99.87 99.75 99.62 100.11 97.73 100.12 99.36 99.99 99.61 99.62 99.58 99.79 99.97 99.90 99.41

Table 2. Inter-relationships between carbonate rocks and secondary rock-forming elements of carbon-
ate rocks [27].

Item
Carbonatite Carbonate Rock Salt Samples

Range Statistic Value Range Statistic Value Statistic Value

SiO2/(Na2O + K2O) 0.00–54 <8 0.00–400 >8 26.14

SiO2/Na2O 0.00–160 <30 1–5000 >30 46.5

Al2O3/(Na2O + K2O) 0.00–37 <2.5 0.2–76 >2.5 3.18

Al2O3/Na2O 0.00–28 <7 0.2–570 >7 7

K2O/Na2O 0.00–24 <1 0.3–162 >1 1.2

According to the results of the trace element analysis (Table 3), the average Yb, Eu, and
La values were 1.22, 0.466, and 17.51 ppm, respectively. The U/Th values of concretions 1
and 2 were greater than one (averages = 4.28 and 4.56, respectively), whereas the U/Th
value of concretion 3 was less than one, but that of the surrounding rock was greater than
one. The ∑REE value of the concretion 1 core was 8.99 × 10−6, and the ∑REE value of the
surrounding rocks ranged from 9.63 × 10−6 to 160.78 × 10−6 (average = 91.12 × 10−6); the
∑REE value of the concretion 2 core was 7.92 × 10−6, and that of the surrounding rock
ranged from 47.24 × 10−6 to 95.67 × 10−6 (average = 69.41 × 10−6); the average ∑REE
value of the concretion 3 core was 67.64 × 10−6, and that of the surrounding rock was
127.75 × 10−6. The total rare earth element content of the three concretions cores was much
smaller than the rare earth element content of the surrounding rock, and much lower than
that of North American shale (193.18 µg/g), which indicates that the total content of rare
earth elements (∑REE) was relatively deficient.

Table 3. Trace elements of the Chang 7 carbonate concretion samples.

Trace
Element

Concretion 1 Concretion 2 Concretion 3

Core Surrounding Rock Core Surrounding Rock Core Surrounding Rock

bwz-
30

bwz-
24

bwz-
25

bwz-
26

bwz-
27

bwz-
28

bwz-
31

bwz-
32

bwz-
33

bwz-
34

bwz-
35

yq-
36

yq-
37

yq-
41

yq-
38

yq-
39

yq-
40

Hf 0.40 2.69 3.09 0.16 2.93 9.29 0.16 1.67 0.92 2.89 0.93 3.13 1.30 0.82 4.38 3.82 3.07
Ta 0.04 0.53 0.97 0.019 0.60 1.22 0.030 0.35 0.18 0.65 0.20 0.64 0.27 0.17 0.78 0.78 0.62
Pb 1.76 23.0 26.5 0.92 23.2 35.5 1.20 16.3 7.98 26.9 5.18 9.29 5.52 5.24 32.5 12.4 30.1
Th 0.60 9.23 9.42 0.33 5.91 18.6 0.49 6.70 3.54 7.34 3.47 9.43 4.33 2.56 11.5 11.9 6.22
U 3.12 39.7 8.67 2.76 36.3 15.9 3.69 29.1 12.4 39.8 7.04 5.43 3.39 0.91 43.0 6.56 33.3
Li 2.44 17.0 33.0 7.12 22.3 21.5 1.14 19.8 15.0 25.0 22.2 44.3 26.1 19.7 18.6 30.2 31.5
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Table 3. Cont.

Trace
Element

Concretion 1 Concretion 2 Concretion 3

Core Surrounding Rock Core Surrounding Rock Core Surrounding Rock

bwz-
30

bwz-
24

bwz-
25

bwz-
26

bwz-
27

bwz-
28

bwz-
31

bwz-
32

bwz-
33

bwz-
34

bwz-
35

yq-
36

yq-
37

yq-
41

yq-
38

yq-
39

yq-
40

Be 0.35 1.06 2.18 0.35 2.08 1.29 0.14 1.75 0.76 1.91 0.95 2.09 1.50 0.71 1.97 1.57 2.22
Sc 1.78 10.4 3.97 1.20 6.77 9.83 1.04 7.49 3.88 5.53 4.33 8.64 6.78 3.38 7.56 3.06 9.49
V 19.2 166 37.7 7.89 224 22.5 14.6 187 73.5 223 65.5 192 101 40.2 156 6.56 214
Cr 9.85 36.8 19.4 2.82 51.4 10.6 3.09 37.5 17.3 36.2 16.9 27.9 25.0 16.1 28.2 5.60 69.7
Co 6.60 14.9 13.0 10.2 6.83 5.80 4.77 23.8 8.53 20.6 9.04 8.65 9.76 8.05 11.5 11.5 12.8
Ni 10.4 6.97 6.99 18.8 18.7 2.60 7.20 30.3 14.6 27.2 12.6 8.24 13.4 9.42 9.43 9.83 18.0
Cu 10.3 103 15.6 5.28 133 52.3 13.1 98.9 38.5 122 16.2 14.8 12.0 6.55 70.2 5.84 124
Zn 5.55 8.38 21.7 54.1 12.4 7.45 4.54 66.5 28.0 48.8 39.3 46.7 57.4 21.3 20.4 45.2 23.7
Ga 1.46 14.3 14.3 0.58 17.2 19.1 0.73 11.2 5.50 13.7 5.28 11.3 6.89 4.25 21.3 9.01 17.5
Ge 0.11 1.46 0.71 0.093 1.63 0.73 0.089 1.20 0.37 1.18 0.39 1.02 0.54 0.30 1.21 0.68 1.47
Rb 7.42 116 67.8 3.94 76.3 36.2 6.71 86.4 44.8 76.1 40.4 70.2 57.0 35.3 96.5 74.8 104
Sr 2021 108 83.3 287 62.7 164 1402 153 290 90.1 131 234 108 292 109 28.9 105
Y 2.61 8.63 9.47 5.14 7.81 30.9 1.79 15.9 7.47 13.6 8.74 20.3 14.1 5.29 15.2 22.3 9.03
Zr 19.5 100 95.3 8.44 102 298 7.10 60.9 34.7 96.6 36.6 112 51.4 32.2 133 105 103
Nb 0.66 7.35 10.4 0.42 8.52 13.1 0.49 4.70 2.41 7.84 2.57 7.77 3.67 2.09 9.37 7.35 8.28
Cs 0.35 6.10 4.45 0.28 9.50 7.26 0.23 4.06 2.25 7.56 3.07 3.89 4.09 2.22 5.90 1.89 8.74
Ba 408 601 704 57.4 428 1235 441 264 237 432 199 273 160 288 859 1299 339
La 1.91 31.7 24.0 1.65 16.4 33.5 1.66 21.2 11.0 20.1 9.65 22.4 13.1 7.22 26.4 37.8 18.0
Ce 3.42 50.0 41.9 2.53 27.5 65.1 3.01 38.0 20.5 30.8 19.3 43.4 25.6 14.6 51.2 79.5 37.5
Pr 0.40 5.20 5.04 0.35 3.02 7.75 0.36 4.41 2.30 4.33 2.17 4.75 2.85 1.56 5.75 8.82 3.47
Nd 1.55 18.0 18.4 1.80 11.9 28.4 1.46 17.3 8.87 16.6 8.55 18.0 11.0 5.90 20.8 32.5 12.7
Sm 0.31 2.89 3.34 0.57 2.73 5.24 0.30 3.50 1.70 3.19 1.72 3.60 2.26 1.13 3.72 6.40 2.37
Eu 0.090 0.52 0.46 0.14 0.55 0.88 0.091 0.71 0.36 0.61 0.34 0.72 0.48 0.23 0.61 0.68 0.46
Gd 0.32 2.16 2.59 0.71 2.20 4.55 0.33 3.29 1.57 2.83 1.67 3.54 2.29 1.05 3.01 5.33 2.03
Tb 0.048 0.28 0.35 0.12 0.32 0.77 0.045 0.48 0.23 0.42 0.25 0.54 0.35 0.15 0.46 0.82 0.29
Dy 0.30 1.62 1.88 0.75 1.82 5.12 0.26 2.78 1.29 2.45 1.45 3.17 2.13 0.86 2.81 4.75 1.74
Ho 0.070 0.32 0.35 0.15 0.36 1.12 0.053 0.54 0.26 0.49 0.29 0.66 0.44 0.17 0.55 0.89 0.35
Er 0.23 1.02 1.03 0.42 1.07 3.51 0.15 1.54 0.74 1.44 0.83 1.93 1.30 0.50 1.58 2.50 1.06
Tm 0.038 0.16 0.16 0.057 0.17 0.55 0.022 0.22 0.11 0.22 0.12 0.30 0.20 0.073 0.23 0.36 0.17
Yb 0.26 1.12 1.05 0.34 1.15 3.73 0.15 1.43 0.69 1.43 0.77 1.99 1.27 0.48 1.47 2.27 1.15
Lu 0.044 0.17 0.15 0.050 0.18 0.56 0.023 0.21 0.11 0.21 0.11 0.31 0.19 0.072 0.22 0.31 0.17

∑REE 8.99 115.13 100.67 9.63 69.36 160.8 7.92 95.67 49.72 85.01 47.24 105.38 63.56 33.98 118.83 182.99 81.44
∑LREE 7.68 108.29 93.11 7.04 62.10 140.8 6.88 85.17 44.73 75.53 41.76 92.95 55.38 30.62 108.50 165.73 74.47
∑HREE 1.32 6.84 7.56 2.59 7.26 19.90 1.04 10.51 4.99 9.49 5.47 12.43 8.19 3.35 10.33 17.25 6.97
L/HREE 5.83 15.82 12.32 2.72 8.55 7.08 6.63 8.11 8.96 7.96 7.63 7.48 6.76 9.13 10.50 9.61 10.68

4.3. Carbon–Oxygen Isotope Geochemistry

δ18O is commonly used to determine the temperature of ancient seawater [28]. Al-
though the oxygen isotope present in a carbonate rock is a function of temperature, the
amount of water is much larger than the amount of carbonate rock that balances it, so the
isotopic composition of the seawater is unaffected. Epstein [29] used δ18O to calculate the
temperature of ancient seawater:

t = 16.9 − 4.2 (δ18O + 0.22) +0.13 (δ18O + 0.22)2 (1)

The temperature calculated using formula (1) is shown in Table 4. The δ13CV-PDB
in the Upper Triassic formation ranged from 0.5 to 3.5‰, δ18OV-PDB ranged from −4 to
−0.6‰ [30], δ13CV-PDB ranged from 1.2 to 12.3‰ (average = 5.45‰), δ18OV-PDB ranged from
−16.9 to −10.4‰ (average = −14.35‰), and most of the carbon isotopes of the samples
were higher than 3.5‰.
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Table 4. Carbon–oxygen isotope of the Yanchang Formation concretion sample.

Samples δ13C‰ (PDB) δ18O‰
(PDB)

δ18O‰
(SMOW)

Ancient Salinity (Z) Paleotemperatures

bwz-30 1.8 −16.9 12.59 122.57 123.12
bwz-31 1.2 −16 13.52 121.79 115.55
bwz-32 4.1 −15.3 14.24 128.08 109.80
yq-36 3.8 −14.5 15.06 127.86 103.39
yq-37 9.5 −13 16.61 140.28 91.81
yq-41 12.3 −10.4 19.29 147.31 73.13

5. Discussion
5.1. Evidence of Hydrothermal Activity

By analyzing the content of the major elements, we know that the concretions were
sedimentary carbonate rocks [27]. The Chang 7 formation was mainly composed of shale,
whereas the concretions were carbonate rocks. We preliminarily speculated that the sed-
imentary environment of the nodules and shale was different. The abundance of trace
elements in the sediments was controlled by three factors: provenance, the sedimentary
environment, and diagenesis [31–33].

(1) Positive Eu anomaly

Two situations usually cause an Eu abnormality when North American shale forma-
tions are standardized in minerals and rocks: one is that the aqueous solution of the mineral
precipitation has abnormal Eu enrichment, and the other is that the Eu in the aqueous
solution is present in a divalent form. When minerals undergo chemical precipitation, the
trivalent Eu enters the mineral lattice later than the divalent Eu; that is, the divalent Eu
enters the mineral lattice first. Therefore, the main controlling factor for an Eu anomaly is
whether Eu-rich water is present or whether Eu exists in its divalent form. Standardizing
the Eu element in the mineral is usually necessary before judging whether an Eu anomaly
is present. If the u value is greater than one, the Eu has a positive anomaly, and if the Eu
value is less than one, the Eu has a negative anomaly. A positive anomaly of Eu usually
reflects the influence of hydrothermal fluid or is related to a reducing environment [34–37].

We standardized the Eu element content of the three concretions and their surrounding
rocks. The calculation formula is as follows:

δEu =
EuN√

SmN ∗GdN
(2)

EuN, SmN, and GdN are standardized values in Formula (2). The calculation results
are shown in Figure 7; concretions 1 (bwz-30) and 2 (bwz-31) had an obvious positive
Europium anomaly, and concretion 3 (yq-37, 41) had positive Eu abnormalities. The Eu
value of sample 40 was close to one. A few positive Eu abnormalities were present in
the nonhydrothermal sedimentary dolomite. Therefore, we inferred that the formation of
concretions 1, 2, and 3 may have been related to hydrothermal activity [38].

(2) Yb/Ca–Yb/La relationship

The Yb/Ca–Yb/La relationship diagram is an effective tool to judge the formation and
evolution of calcite [39–41]. The results of the Yb/Ca–Yb/La diagram (Figure 8) analysis
showed that the core samples of concretions 1, 2, and 3 were all in the hydrothermal calcite
area, which indicated that the carbonate rocks in the area were subject to a certain degree
of hydrothermal action. Some of the surrounding samples were not in this area, which
indicated that they were less affected by it. All the samples showed that the core was greatly
affected by the hydrothermal fluid, whereas the surrounding rocks were less affected.
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(3) U/Th ratio

The U and Th elements in sedimentary rocks can be used to judge the sedimentary
environment. In an oxidizing environment, the Th content is higher than the U content.
Under strong reduction conditions, the U content is generally higher than the Th content,
and hot water is also an important factor that leads to a strong reduction. Scholars generally
think that the U/Th value in a hot water environment is greater than one, and the U/Th
value in a non-hot water environment is less than one [35].

According to the results of the tests run on the samples, the U/Th values of the
concretion 1, 2, and 3 samples were mostly greater than one. This may have been caused
by weathering and corrosion or hot water deposition (Figure 9).
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(4) REE content

After standardizing the North American shale [42] samples from the study area, we
found that the REE distribution pattern curves of concretions 1, 2, and 3 were obviously
different from those of the surrounding rocks, and the REE distribution pattern of the
surrounding rocks was not considerably different from that of North American shale. The
difference between LREE and HREE was not obvious, and obvious positive Eu anomalies
were present in concretions 1 and 2 (Figure 10a,b). The LREE in the surrounding rock of
concretion 3 was slightly more enriched than the HREE, which appeared slightly more on
the left, and no obvious Ce and Eu anomalies were present (Figure 10c). We speculate that
the provenance of the three concretions differed from that of the surrounding rock, and
they were affected by thermal fluid to varying degrees.

(5) Palaeotemperature

The oxygen isotope composition of the concretions was much smaller than that of the
ocean during this period, so we concluded that the concretions did not develop during the
Chang 7 deposition, which is consistent with the previous assumption that their provenance
is inconsistent with that of Chang 7 shale [43,44]. According to the temperature calculated
using Formula 2, the samples experienced high temperatures such as 115 and 123 ◦C, which
are far beyond the temperature rises that occurred due to burial depth. Therefore, we
speculate that the concretions experienced hydrothermal erosion.
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5.2. Tectonic Conditions of Hydrothermal Activity

Tectonic activity is generally considered to be conducive to hydrothermal activity [19],
but for a long time, scholars thought that the Ordos basin was a stable craton basin, the
internal tectonic activity in the basin was relatively weak, and the sedimentation was
stable. Thus, it is unclear whether tectonic activity occurred during the extended period
and formed faults, and thus, provided the conditions for hydrothermal upwelling. We
used seismic data to study the tectonic activity in the Ordos basin during the extended
period and found that a certain scale of synsedimentary faults was present in the extended
period (Figures 11 and 12). By interpreting the seismic section, we found that these
synsedimentary faults were small in scale and active at all times during the extension
period, which means they could have been used as channels for hydrothermal upwelling.
These synsedimentary faults have a strong relationship with the basement faults in a plane
distribution. Of relevance, some synsedimentary faults directly inherit basement faults, and
some synsedimentary faults are new faults developed near these inherited faults [19]. We
infer that tectonic activity was relatively frequent in the extended period of the hydrocarbon-
rich sag, which provided the necessary conditions for hydrothermal activity and created
the conditions needed for the development of high-quality source rocks.
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5.3. Effects of Hydrothermal Activity on Source Rocks

Thermal events mainly had beneficial effects on source rocks in terms of nutrition
and catalysis, which increase organic matter generation. In the upwelling process, a hy-
drothermal event brings many nutrients, which can promote the reproduction of many
microorganisms and can also become organic matter catalysts, which promote the genera-
tion of organic matter with hydrocarbons. Considering the results of the rock mineralogy
analysis, major and trace elements, and carbon–oxygen isotopes of these concretions, we
conclude that they were syngenetic with the Chang 7 formation. Due to the strong impact of
the Qinling orogenic belt, syndepositional faults and fractures developed in the Yanchang
period. Hydrothermal events carried deep carbonate rocks that upwelled into the lake basin
along the faults, and the carbonate rocks were rapidly deposited to form the concretions.
The minerals from the hydrothermal events not only increased the nutrient content in the
water, but they also promoted the growth of organisms in the lake basin and increased
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the heat required for the thermal evolution of organic matter. As catalysts, these minerals
can greatly increase the efficiency of hydrocarbon generation and transformation, and can
promote the efficiency by which hydrocarbons are expelled from high-quality source rocks
(Figure 12).
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6. Conclusions

By analyzing the concretions of Chang 7 shale formations, we elucidated the com-
position of the concretions and surrounding rock and explored the responses of these
concretions to hydrothermal activity. Our results indicated that hydrothermal activity had
a remarkable effect on the concretions, whereby a positive Eu anomaly, Yb, and U enriched
the concretions and were influenced by hydrothermal activity. The Chang 7 formation is a
shale formation, and the sedimentary environment at that time was a lacustrine deposition;
we speculate that the formation process of the carbonate concretion was as follows: In the
middle and late Triassic periods, tectonic movement of the basin occurred, and synsedi-
mentary faults were developed in the Yanchang Formation. As deep hydrothermal gushers
moved upward through faults and cracks, some particles were carried upward through
the deep limestone strata, and when the hydrothermal gushers moved down towards
the lake bottom, the particles were precipitated, and the present concretions were formed
through diagenesis.
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