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Abstract: This study calculated CO2 emissions related to the consumption of primary energy by
five sectors in the Yangtze River Delta region over 2000 to 2019. The Logarithmic Mean Divisia
Index (LMDI) decomposition method was used to establish the factor decomposition model of CO2

emissions change. The LMDI model was modified to assess the impact of five influencing factors,
namely energy structure, energy intensity, industrial structure, economic output, and population size,
on CO2 emissions in the Yangtze River Delta region over the study period. The empirical results
show that economic output has the largest positive effect on the growth in CO2 emissions. Population
size is the second most important factor promoting the growth in CO2 emissions. Energy intensity
is the most inhibitory factor to restrain CO2 emissions, with a significant negative effect. Energy
structure and industrial structure contribute insignificantly to CO2 emissions. Using data on CO2

emissions in the Yangtze River Delta region from 2000 to 2019, the GM (1, 1) model was applied for
future forecasts of primary energy consumption and CO2 emissions. Specific policy suggestions to
mitigate CO2 emissions in Yangtze River Delta region are provided.

Keywords: Yangtze River Delta region; CO2 emissions; LMDI method; grey prediction GM (1, 1)
model

1. Introduction

Climate change caused by greenhouse gas emissions poses an ever-increasing threat to
social development and human health; therefore, lowering carbon dioxide (CO2) emissions
has emerged as a critical international concern. The main source of CO2 emissions is energy
consumption, and many scholars have conducted related research on energy consump-
tion in human life and production activities [1–4]. In 2019, China’s yearly greenhouse
gas emissions amounted to 27% of global emissions, surpassing the total emissions of
Organization for Economic Cooperation and Development (OECD) countries for the first
time [5], and in 2021 it consumed 26.49% of world primary energy and created 31.06% of
global CO2 emissions [6]. The country’s latest Five-Year Plan includes a set of regional
emission reduction targets to control CO2 emissions. As is commonly known, the green-
house effect is directly caused by the large amounts of greenhouse gas emissions—mainly
comprising CO2. Effective control of CO2 emissions is therefore imperative to mitigating
global warming.

China, as the world’s largest developing country, continues to prioritize economic
development, particularly regional economic development. Its most developed region,
the Yangtze River Delta region, holds a crucial strategic position and is a driving force in
modernizing China’s economy and society. As seen in Figure 1, it comprises Jiangsu and
Zhejiang provinces, centered on Shanghai, is a region of rapid industrialization and has
China’s densest population, highest urbanization, and most developed economy.
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region’s industry sector increased from 59.91 million tons of standard coal in 2000 to 
130.63 million tons in 2019, accounting for the largest sectoral share. The Yangtze River 
Delta region’s CO2 emissions rose considerably as a result of its usage of coal, the primary 
energy utilized, which has led to a number of environmental issues. 

In recent years, global warming has become a major concern, and numerous studies 
have attempted, using various methodologies, to determine the factors that influence CO2 
emissions. The main methodologies used are the environmental Kuznets curve approach, 
STIRPAT, IPAT, and regression, and decomposition analysis. While each method has its 
advantages, that of decomposition analysis is its ability to quantitatively depict how driv-
ing forces influence changes based on an aggregation. As decomposition analysis meth-
ods, both structural decomposition analysis (SDA) and index decomposition analysis 
(IDA) are frequently employed; however, the IDA method is more widely used due to the 
availability of data [8]. In-depth investigations are not appropriate for SDA since it re-
quires input-output data, which are typically released every five years in China—IDA 
simply utilizes departmental aggregate data, making it appropriate for time series mod-
eling. The LMDI approach was first proposed by Ang and Choi [9], and is highly regarded 
as an IDA technique due to its theoretical base, adaptability, ease of usage, and result 
interpretation [8,10]. Compared with other IDA approaches, the LMDI method has several 
practical advantages in terms of its applicability, including perfect decomposition, the ad-
ditive property of results and consistency in aggregation [10]. These advantages explain 
the wide use of LMDI in research over many fields, such as in energy supply and demand 
[11,12], and in energy-related gas emissions [13,14]. Decomposition studies have been 
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According to the China Statistical Yearbook [7], gross domestic product (GDP) of
the Yangtze River Delta region in 2021 was around 23.3 trillion yuan at the current price,
accounting for nearly 20% of China’s national economy. The region’s GDP increased at a
high average annual growth rate of 10% from 2000 to 2019, mainly accounted for by Jiangsu
province with a rate of 6 trillion yuan in 2019, followed by Zhejiang Province and Shanghai.
During the same period, the Yangtze River Delta region’s energy consumption increased
from 200.71 million tons to 666.15 million tons of standard coal, representing nearly 15%
of China’s total energy consumption. In particular, energy consumption in the region’s
industry sector increased from 59.91 million tons of standard coal in 2000 to 130.63 million
tons in 2019, accounting for the largest sectoral share. The Yangtze River Delta region’s
CO2 emissions rose considerably as a result of its usage of coal, the primary energy utilized,
which has led to a number of environmental issues.

In recent years, global warming has become a major concern, and numerous studies
have attempted, using various methodologies, to determine the factors that influence CO2
emissions. The main methodologies used are the environmental Kuznets curve approach,
STIRPAT, IPAT, and regression, and decomposition analysis. While each method has its
advantages, that of decomposition analysis is its ability to quantitatively depict how driving
forces influence changes based on an aggregation. As decomposition analysis methods,
both structural decomposition analysis (SDA) and index decomposition analysis (IDA)
are frequently employed; however, the IDA method is more widely used due to the avail-
ability of data [8]. In-depth investigations are not appropriate for SDA since it requires
input-output data, which are typically released every five years in China—IDA simply
utilizes departmental aggregate data, making it appropriate for time series modeling. The
LMDI approach was first proposed by Ang and Choi [9], and is highly regarded as an
IDA technique due to its theoretical base, adaptability, ease of usage, and result interpreta-
tion [8,10]. Compared with other IDA approaches, the LMDI method has several practical
advantages in terms of its applicability, including perfect decomposition, the additive
property of results and consistency in aggregation [10]. These advantages explain the wide
use of LMDI in research over many fields, such as in energy supply and demand [11,12],
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and in energy-related gas emissions [13,14]. Decomposition studies have been conducted
in numerous countries and regions around the world, and this study focuses on CO2
emissions research in China. In addition to studying CO2 emissions throughout whole
China [15,16], many studies adopt sectoral and regional perspectives to identify the driving
factors of CO2 emissions. Studies relative to China have assessed CO2 emissions at the
sectoral level, specific to industry [17], construction [18], cement industry [19], chemical
industry [20], petroleum refining and coking industry [21], transport [22,23], and manufac-
turing industry [24], identifying the driving factors for reducing CO2 emissions by sector.
In addition to sector-level studies, several scholars have investigated CO2 emissions from a
regional perspective [25–29].

Estimating and projecting CO2 emissions into the atmosphere is critical for analyzing
and planning mitigation activities, as well as establishing scenarios for future emissions.
Deng [30] was the first to propose utilizing the grey model (GM) to analyze uncertainty
and information deficiency. As a result of this concept, the grey model has been used in a
range of complex applications [31–35].

Thus, in this study, we examined the factors influencing CO2 emissions in the Yangtze
River Delta region from 2000 to 2019 using the LMDI method, and the GM (1,1) model was
applied to forecast primary energy consumption and CO2 emissions in the short term. The
goal of this study was to demonstrate the potential of each influencing factor in reducing
CO2 emissions by exploring the impact of each factor on CO2 emissions changes and
predict future trends in CO2 emissions changes to explore potential future pathways for
efficient CO2 emissions and execute low-carbon development strategies. This novel study
reveals the insight for investigating CO2 emissions on production activities in the past and
for future timepoints.

2. Materials and Methods
2.1. The LMDI Decomposition Method

The LMDI method is a popular decomposition technique in energy and environmental
research. In terms of theoretical background, zero residual, adaptability, result interpreta-
tion, and other qualities, Ang [8] argued that LMDI was the most preferable decomposition
method. Using the additive LMDI decomposition model, we incorporate qualitative and
quantitative analysis in the research process to investigate the effects of different factors on
CO2 emissions in the Yangtze River Delta region.

The analysis process involves categorizing by industry sectors and energy types
based on the extended Kaya decomposition method. Changes in CO2 emissions may be
broken down into emission coefficient effect, energy structure effect, energy intensity effect,
industrial structure effect, economic output effect, and population size effect.

We decomposed the carbon emissions of the Yangtze River Delta region by the LMDI
method from the following Kaya identity:

C =
C
E
· E
GDP

·GDP
P

·P (1)

where C denotes the total carbon emissions, E denotes the total energy consumption,
GDP denotes gross domestic product and P denotes population scale.

We then extended Kaya’s identity, as follows:

C = ∑
i,j

Ci,j = ∑
i,j

Ci,j

Ei,j
·
Ei,j

Ei
· Ei
Qi

·Qi
Y
·Y
P
·P = ∑

i,j
Fi,j · Si,j · Ii · Ri · G · P (2)

where i denotes sector, j denotes energy type, Ci,j denotes carbon emission from energy
j consumption by sector i (in units of 10,000 tons), Ei,j denotes energy j consumption by
sector i (in units of 10,000 tons of standard coal), Ei represents total energy consumption of
sector i (in units of 10,000 tons of standard coal), Qi represents value added of sector i (in
units of 100 million yuan), Y refers to GDP (in units of 100 million yuan), and P refers to
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resident population (in units of million people). Fi,j = Ci,j /Ei,j denotes the carbon emission
coefficient of energy j in sector i (the carbon emission coefficient factor); Si,j = Ei,j /Ei
denotes the proportion of energy j in sector i (the energy structure factor); Ii = Ei /Qi
denotes energy intensity of sector i (the energy intensity factor); Ri = Qi / Y denotes
sector i value added proportion in GDP (the industrial structure factor); G = Y /P denotes
economic output per capita in a period (the economic output factor); and P denotes resident
population (the population size factor).

Applying the LMDI additive method, the carbon emission factors can be decomposed
as below:

∆C = Ct − C0 = ∆Ct
F + ∆Ct

S + ∆Ct
I + ∆Ct

R + ∆Ct
G + ∆Ct

P (3)

The expressions for determining the decomposition factors’ contribution values are as
follows:

Emission coefficient effect:

∆Ct
F = ∑

i,j

Ct
i,j − C0

i,j

lnCt
i,j − lnC0

i,j
·ln

Ft
i,j

F0
i,j

(4)

Energy structure effect:

∆Ct
S = ∑

i,j

Ct
i,j − C0

i,j

lnCt
i,j − lnC0

i,j
·ln

St
i,j

S0
i,j

(5)

Energy intensity effect:

∆Ct
I = ∑

i,j

Ct
i,j − C0

i,j

lnCt
i,j − lnC0

i,j
·ln

It
i

I0
i

(6)

Industrial structure effect:

∆Ct
R = ∑

i,j

Ct
i,j − C0

i,j

lnCt
i,j − lnC0

i,j
·ln

Rt
i

R0
i

(7)

Economic output effect:

∆Ct
G = ∑

i,j

Ct
i,j − C0

i,j

lnCt
i,j − lnC0

i,j
·ln Gt

G0 (8)

Population size effect:

∆Ct
P = ∑

i,j

Ct
i,j − C0

i,j

lnCt
i,j − lnC0

i,j
·ln Pt

P0 (9)

where C0 and Ct denote total CO2 emissions of a region in period 0 and period t, respectively.
∆C denotes the change in CO2 emissions from period 0 to period t. Accordingly, ∆C can be
decomposed into the emission coefficient effect (∆CF), energy structure effect (∆CS), energy
intensity effect (∆CI), industrial structure effect (∆CR), economic output effect (∆CG) and
population size effect (∆CP).

As there is little change in the carbon emission coefficient of the same energy type
stated in IPCC 2006 [36], in Equation (3), ∆CF is therefore always equal to 0. Therefore,
only the latter five factors need to be considered. Equation (3) can be simplified as below.

Total effect:

∆C = Ct − C0 = ∆Ct
S + ∆Ct

I + ∆Ct
R + ∆Ct

G + ∆Ct
P (10)
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2.2. GM (1, 1) Model

Many scholars use different models to test the CO2 emissions of various regions.
Among the current numerous prediction methods, the grey prediction model has the
advantages of simple modeling, use with limited samples, simple data requirements,
convenient operation, and high practicability. Grey prediction is based on the grey dynamic
model, which is a method enabling effective control over a system with insufficient data
and incomplete information, thus is widely favored by many scholars. It is widely used
across broad-ranging fields including industry, agriculture, economy and society, and has
achieved good results. Moreover, much research on the theory of the model has been
conducted to improve its test accuracy. In terms of the complex issues surrounding energy,
these are usually accompanied by low information amount, few samples, and incomplete
data, which makes grey prediction unique as it only has low data requirements to make
accurate predictions. Therefore, it is reasonable to use the grey prediction GM (1, 1) model
to make short-term predictions for the Yangtze River Delta region.

The construction of GM (1, 1) grey prediction model is as follows:
Original series X(0) is defined as:

X(0) =
{

x(0)(1), x(0)(2), . . . , x(0)(n)
}

(11)

where n ≥ 3.
Get a new series X(1):

X(1) =
{

x(1)(1), x(1)(2), . . . , x(1)(n)
}

(12)

where x(1)(n) = ∑n
k=1 x(0)(k).

The basic form of GM (1, 1) is:

X(0)(t) + α·X(1)(t) = u (13)

where t is the independent variable, α is the developed coefficient, and u is the grey
controlled variable, which are estimated by the ordinary least-squares method. A grey
prediction model can be constructed from α and u. α represents the developed law and
trend of the sequence, and u reflects the change relationship of the sequence.

A response equation can be generated using the estimated coefficients α and u:

x̂(1)(t + 1) =
(

x(0)(1)− u
α

)
e−αt +

u
α

(14)

The prediction formula is expressed as:

x̂(0)(t + 1) = x̂(1)(t + 1)− x̂(1)(t) (15)

The fitting and prediction results are discussed using the posterior variance test to
show how reliable the GM (1, 1) model is. Posterior variance ratio C and small error
probability P are both criteria for the posterior variance test.

The following is the definition of the posterior variance ratio C and small error proba-
bility P:

C =
S2

S1
=

√
S22

S12 (16)

P =
{∣∣∣ε(0)(t)− ε(0)(t)

∣∣∣ < 0.6745S1

}
(17)

where C > 0, 0 ≤ P ≤ 1, S2
2 = 1

m−1 ∑m−1
t=1

(
ε(0)(t)− ε(0)(t)

)2
, and S1

2 = 1
m−1 ∑m

t=1

(
x(0)(t)

−x(0)(t)
)2

. ε(0)(t) is the residual between the predicted value x̂(0)(t) and the actual value
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x(0)(t) at time t. P > 0.95 and C < 0.35 indicates excellent prediction accuracy, P > 0.60
and C < 0.80 indicates qualified prediction accuracy, and P < 0.60 and C > 0.80 indicates
unqualified prediction accuracy.

2.3. Data

All available data are from the study period, 2000–2019. Data on GDP, value added
of each sub-sector and population were obtained from the China Statistical Yearbook
(2001–2020) [7], Jiangsu Statistical Yearbook (2001–2020) [37], Zhejiang Statistical Year-
book (2001–2020) [38] and Shanghai Statistical Yearbook (2001–2020) [39] for the period
2000−2019. Data on the resident population is used as population data, while GDP and
value-added of each sub-sector are converted into constant 2000 prices (base year is 2000)
to remove the effects of price volatility. Energy consumption is the total amount of energy
consumed based on eight energy sources: coal, coke, crude oil, gasoline, kerosene, diesel
oil, fuel oil, and natural gas. Five sectors contribute to economic output: (1) agriculture,
forestry, animal husbandry and fishery, (2) industry, (3) construction, (4) transport, storage
and post, (5) wholesale, retail trade, hotels and catering services. The energy consumption
data are total final consumption quantities, obtained from the Jiangsu Statistical Year-
book (2001−2020) [37], Zhejiang Statistical Yearbook (2001–2020) [38], Shanghai Statistical
Yearbook (2001−2020) [39], and China Energy Statistical Yearbook (2001−2020) [40] for
2000−2019. The eight energy types involve quantities in different units, which are con-
verted into standard coal consumption quantities in units of 10,000 tce (tce: tons of standard
coal equivalent) using conversion coefficients (see Table 1). There are no direct CO2 emis-
sions figures available, and none are included in any statistical yearbook or government
website. As a result, the majority of research on CO2 emissions has calculated emissions
using energy consumption. Therefore, we calculated amounts of provincial CO2 emissions
of the eight energy types in five sectors using Equation (18) as follows:

C = ∑
j

Cj = ∑
j

Ej·Fj (18)

where C refers to the total CO2 emissions related to energy consumption; j refers to eight
energy types; Cj is the CO2 emissions of energy j; Ej is the energy j consumption (standard
coal equivalent); and Fj represents the carbon emission coefficient of energy j. Table 1
shows the standard coal reference coefficient and carbon emission coefficient by energy
type.

Table 1. Standard coal reference coefficient and carbon emission coefficient.

Energy Types Standard Coal Reference
Coefficient (kgce/kg)

Carbon Emission Coefficient
(kg/kgce)

Coal 0.7143 0.7476
Coke 0.9714 0.8550

Crude oil 1.4286 0.5825
Gasoline 1.4714 0.5538
Kerosene 1.4714 0.5714
Diesel oil 1.4571 0.5921
Fuel oil 1.4286 0.6185

Natural gas a 1.3300 0.4435
Source: China Energy Statistical Yearbook [40] and IPCC 2006 [36].Notes: a: Standard coal reference coefficient of
nature gas is in the range of 1.1000−1.3300 kgce/kg. Here, we chose 1.3300 kgce/kg based on the commonly used
value for research.

2.4. Limitations

Firstly, this study was limited to a focus on the CO2 emissions research of the five
major sectors related to production activities, exploring the emission reduction pathways
in the Yangtze River Delta region from the perspective of the overall industry. Secondly,
a short-term forecast was chosen as it could be more appropriately adapted to regional
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low carbon development. For further study, decomposition analysis and prediction of CO2
emissions can be conducted and compared by sector.

3. Results and Discussion
3.1. Energy-Consumption CO2 Emissions of Yangtze River Delta Region

In parallel with the rapid social and economic development of the Yangtze River Delta
region, CO2 emissions from energy consumption have increased. Figure 2 depicts the
energy-consumption CO2 emissions by sector for Jiangsu Province, Zhejiang Province,
Shanghai, and the Yangtze River Delta region, during 2000–2019.
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Figure 2. Energy-consumption CO2 emissions by sector over 2000−2019. (a) Jiangsu Province;
(b) Zhejiang Province; (c) Shanghai; (d) Yangtze River Delta region.

Figure 2d shows that CO2 emissions in the Yangtze River Delta region increased
rapidly before 2011, and then increased steadily during 2011–2019. Industrial CO2 emis-
sions have the largest share for the region, followed by the transport sector. Figure 2a,b
show that industrial CO2 emissions account for the largest proportion for Jiangsu and
Zhejiang Provinces, tendencies of which varied over recent years. However, differing
from Jiangsu and Zhejiang Provinces, Figure 2c depicts that since 2016, the proportion of
CO2 emissions from transport has exceeded that of industry in Shanghai. Industrial CO2
emissions slowly declined from 2011, and the proportion of CO2 emissions from transport
has an upward trend.

As shown in Figure 3, energy-consumption CO2 emissions in the Yangtze River Delta
region show an increasing trend as a whole, from 56.51 million tons in 2000 to 139.05 million
tons in 2019. This represents an average annual growth rate of 4.85%. Jiangsu Province
contributed the largest amount of CO2 emissions in the region.
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Figure 3. Energy-consumption CO2 emissions in the Yangtze River delta region, Jiangsu Province,
Zhejiang Province and Shanghai, 2000−2019.

3.2. Decomposition Analysis of CO2 Emissions Factor

Using Equations (5)–(9), the driving factor effects on CO2 emissions can be calculated,
including the energy structure effect (∆CS), energy intensity effect (∆CI), industrial structure
effect (∆CR), economic output effect (∆CG) and population size effect (∆CP). The results
of annual change and cumulative change in CO2 emissions relative to 2000 are shown in
Table A1 in Appendix A.

The effects of economic output, population size, and energy intensity on CO2 emis-
sions are significant, as shown in Figures 4 and 5, while the effects of energy structure
and industrial structure are negligible. Economic output and population size have pre-
dominantly positive effects on the rise in CO2 emissions, implying that changes in these
factors caused the increase in CO2 emissions. Economic output is the greatest pull factor
on the increase in CO2 emissions, and population size is the second most important factor
promoting the growth in CO2 emissions. Energy intensity has a negative effect on CO2
emissions, and acts as an inhibitory factor, implying that the impact of changes in energy
intensity lowered the CO2 emissions decrease. Energy intensity is the most inhibitory factor
to restrain CO2 emissions, with a significant negative effect, other than for 2004 and 2005.
Although energy structure had both positive and negative effects during the study period,
the effect was negative overall. Industrial structure had a positive effect on CO2 emissions
except for 2007, although the pull effect was not significant.
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Figure 4. Time series of decomposition of CO2 emissions of the Yangtze River Delta region, based on
the five factors (compared to 2000 level).
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Figure 5. Contribution ratio of five factors to CO2 emissions change in Yangtze River Delta region.

As shown in Figure 6, owing to the Yangtze River Delta region’s large-scale economic
boom from 2000 to 2019, cumulative CO2 emissions increased by 18,562.57 × 104 tons, and
the economic output effect contributed the most to energy-consumption CO2 emissions (i.e.,
up to 224.90%); additionally, population growth resulted in an increase in CO2 emissions
of 1535.83 × 104 tons. Energy intensity led to a CO2 emissions drop of 11,577.14 × 104

tons. Energy structure adjustments resulted in a total decrease of 309.57 × 104 tons of CO2
emissions. Energy intensity, population size, and energy structure contributed −140.27%,
18.61%, and −3.75%, respectively. Industrial structure adjustments showed an insignificant
positive effect on CO2 emissions, with an increase of 42.04 × 104 tons and a cumulative
contribution ratio of 0.51%. It can be concluded, therefore, that the decisive factor leading to
increased CO2 emissions in the Yangtze River Delta region is economic output; population
size is the second-highest driving factor leading to the rapid growth in CO2 emissions,
while reduction in energy intensity is the decisive factor in slowing the growth in CO2
emissions, followed by energy structure. Industrial structure is not associated with the
release of significant emissions.
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Figure 6. Accumulative effect of the five factors in the Yangtze River Delta region.

3.2.1. Energy Structure Effect

Cumulative CO2 emissions increased during 2000−2019, but energy structure had
both positive and negative effects on CO2 emissions, with an overall trend of lowering CO2
emissions. In 2019, cumulative CO2 emissions in the region were 8253.73 × 104 tons, of
which the contribution value of energy structure was −309.57 × 104 tons, with a cumulative
contribution rate of only 4%. Regarding the eight energy types considered in this study,
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coal has a carbon emission coefficient of 0.7476, but coke has a coefficient of 0.8550, which
is higher. The increase in the coke proportion plays a significant role in CO2 emissions
change. Figure 7 shows that the proportion of coal consumption in the Yangtze River Delta
region decreased from 49.78% in 2000 to 18.98% in 2019. However, the proportion of coke
consumption increased from 13.15% in 2000 to 24.27% in 2019, and in 2018 it surpassed coal
for the first time, indicating that coke acts as an alternative high-carbon energy type for
coal. In addition, the proportion of low-carbon energy increased year by year. Although
the proportion of low-carbon energy consumption has increased, energy structure is still
dominated by coal and coke, which are high-carbon energy sources. While the annual
contribution value of the energy structure effect varied significantly due to changes in
the proportion of energy types, the contribution ratio of energy structure is relatively
small compared to the annual and cumulative CO2 emissions change. Therefore, it can be
considered that the negative effect of energy structure on CO2 emissions is not significant.
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Figure 7. Proportion of primary energy consumption in Yangtze River Delta region, 2000−2019.

It should be noted that though the coal proportion has declined, the proportion of
coke as a high-carbon energy increased each year. As a result, on the one hand, the energy
structure has been optimized, which has stifled a rise in CO2 emissions and had a negative
impact. As a high-carbon energy source, however, coke consumption grew yearly. In
general, therefore, the optimization of energy structure has not effectively curbed the rise
in CO2 emissions, reflecting a weak inhibition on CO2 emissions. Currently, coal is the
primary energy source in the region, while the proportion of solar, wind, and nuclear energy
consumed is relatively minor. Therefore, it is essential to optimize the energy structure.
This indicates that aggressive development of low-carbon energy sources such as solar,
wind, nuclear, and other clean energies with low carbon emission coefficients is required, as
well as the replacement of high-carbon energy sources with low-carbon energy sources and
an increase in the supply of clean energy. Only by these measures can the energy structure
procure a significantly inhibitive effect.

3.2.2. Energy Intensity Effect

Except for 2004 and 2005, the cumulative change in energy intensity in CO2 emissions
is shown to be −11,577.14104 tons (see Figure 4), indicating a negative effect on CO2
emissions change in the region. Therefore, energy intensity is the most inhibitory factor,
leading to a decrease in CO2 emissions. In addition, energy intensity also shows a positive
effect in some years, even though the value of its contribution to the reduction in CO2
emissions is small.

As shown in Figure 8, energy intensity in the Yangtze River Delta region has demon-
strated a general downward trend since 2000, achieving its lowest value in 2019; from 0.44 t
standard coal/104 yuan in 2000 to 0.19 t standard coal/104 yuan in 2019, signifying a 42%
drop. From 2000 to 2019, even though the energy intensity in the region generally showed
a downward trend, it rebounded slightly from 2003 to 2005, showing a growth trend and
leading to an increase in CO2 emissions change. This could be because technological
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progress, on the one hand, improved energy efficiency and reduced energy demand, while
on the other hand it fostered economic expansion and increased energy demand. These
processes connected with these two findings cancel each other out, resulting in an insignif-
icant positive effect on the change in CO2 emissions from 2003 to 2005. Due to energy
efficiency regulations and measures implemented between 2000 and 2002, energy intensity
decreased significantly, producing an inhibitory effect of reducing CO2 emissions. Due
to technological innovation, the region’s energy intensity continued to decline after 2005,
which explains why the reduction in CO2 emissions is significantly impacted by energy
intensity. In general, the change in energy intensity explains the considerable contribution
to CO2 emissions reduction, but also shows that there is still much room to improve CO2
emissions reductions.
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Figure 8. Changes in energy intensity in the Yangtze River Delta region, 2000−2019.

3.2.3. Industrial Structure Effect

Figure 4 reveals that excluding 2007, the industrial structure positively affected CO2
emissions, although this effect was negligible during 2000−2019. This demonstrates that
industrial structure is incapable of reducing CO2 emissions effectively. China focused
on industry structure reform and maintaining stable economic growth during the 13th
Five-Year Plan (2016–2020), but how to effectively mitigate CO2 emissions with economic
development represents a challenging task. As a developed region, it is more difficult for
industrial structure to exert an inhibitory effect on CO2 emissions. Table 2 demonstrates
that the industrial sector remains the region’s major pillar sector, followed by the service
sector, which includes retail commerce and hotels. However, the agriculture, transport,
and construction sectors have relatively small shares. Furthermore, the proportion of
value added of each sector remained nearly stable from 2000 to 2019, indicating that there
was little change to the industrial structure during the study period, which explains the
negligible impact of industrial structure on CO2 emissions.

Table 2. Proportion of value added of sub-sector in Yangtze River Delta region during 2000−2019
(unit: %).

Year

Agriculture,
Forestry, Animal
Husbandry, and

Fishery

Industry Construction
Transport,

Storage, and
Post

Wholesale, Retail
Trade, Hotels, and
Catering Services

2000 9.11 44.49 5.60 6.66 11.11
2005 9.19 44.53 5.62 6.66 11.13
2010 9.33 44.57 5.67 6.66 11.10
2015 9.46 44.61 5.71 6.66 11.07
2019 9.48 44.63 5.71 6.66 11.08
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3.2.4. Economic Output Effect

Figures 4 and 6 show that economic output in the Yangtze River Delta region is the
key driving factor behind the rise in CO2 emissions from 2000 to 2019—that is, it has
a significantly positive effect on the growth in CO2 emissions. The amount of energy
consumption can reflect the regional economic situation to some extent, in terms of the
amount needed to maintain steady economic activities, and as CO2 emissions are the direct
product of energy consumption, there is little doubt that CO2 emissions and economic
output are closely linked. China’s economy grew rapidly after the start, in 1978, of the
period of reform and opening up. The region’s GDP grew from 1.95 trillion yuan in 2000
to 12.65 trillion yuan in 2019 at constant 2000 prices. GDP per capita increased from
14,534.90 yuan in 2000 to 81,420.03 yuan in 2019, with an average annual growth rate of
9%. Furthermore, the region’s primary energy consumption increased from 86.46 million
tons of standard coal in 2000 to 227.87 million tons of standard coal in 2019—a 2.64-fold
increase, which led to CO2 emissions in 2019 reaching 139.05 million tons, 2.46 times
the figure in 2000. This clarifies why GDP growth was the key factor in the exponential
rise in CO2 emissions. Therefore, maintaining a stable economic development rate and
making adjustments to the economic transformation may reduce the dependence on energy
demand and relieve the pull effect on CO2 emissions.

3.2.5. Population Size Effect

According to Figure 4, population size has the second-highest positive impact on the
growth in CO2 emissions in the Yangtze River Delta region during the study period. The
population grew on a yearly basis, and urbanization growth is significant, as a result of
development of the economy and society. The residential population grew by 1% each
year from 134.37 million in 2000 to 155.37 million in 2019. From 2000 to 2010, population
size contributed increasingly to the change in CO2 emissions; however, in recent years,
the contribution value of population size has tended to remain stable, and the positive
effect on CO2 emissions has become limited. Figure 9 shows that the GDP per capita of
the Yangtze River Delta region is much higher than that of China overall. Although the
average annual growth rate of GDP per capita in Yangtze River Delta region is 9%, and that
of China as a whole is 8%, economic development in the Yangtze River Delta region has
far outpaced that of the nation as a whole. This, in consequence, led to a large population
inflow, further accelerating population growth and the related consumer market of the
region, which increased energy needs and the incentive to boost production, eventually
leading to an increase in CO2 emissions.
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Figure 9. Comparison of GDP per capita between whole China and Yangtze River Delta region,
2000−2019.

3.3. Forecasting Results

The grey prediction GM (1, 1) model was used to forecast future CO2 emissions
during 2020–2026 using the calculation results of CO2 emissions over 2000–2019 as the
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original sequence. The prediction results and trend are shown in Table 3 and Figure 10a,
respectively.

Table 3. Prediction results of energy-consumption CO2 emissions in 2020–2026 (million tons).

Year 2020 2021 2022 2023 2024 2025 2026

Predicted
value 160.528 165.669 170.897 176.214 181.621 187.121 192.715
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Figure 10. Prediction trend of (a) energy-consumption CO2 emissions, (b) GDP and (c) primary
energy consumption in Yangtze River Delta region over 2020–2026.

Based on the calculation results of the GM (1, 1) model, Table 4 shows that the average
relative error of the GM (1, 1) model was 11.97%, implying the model had a good fit.
The developed coefficient α is −0.017, grey controlled variable u is 213.516, small error
probability P is 0.850, and posterior variance ratio C is 0.197. As C < 0.35, P < 0.95, thus the
forecast is deemed to demonstrate qualified accuracy, which indicates that the consequences
were satisfactory for model construction. This model can therefore be utilized to predict
CO2 emissions in the region.

Based on Figure 10a, CO2 emissions in the Yangtze River Delta region will rise from
2020 to 2026. If the economic policy, energy policy, and population policy of the re-
gion remain unchanged, CO2 emissions from primary energy consumption will reach
192.715 million tons by 2026.

According to the energy conservation and emission reduction plan of the 14th Five-
Year Plan (2021–2025), China set a target of 13.5% reduction in energy consumption per
unit of GDP compared with the 2020 level. However, by 2025, the Yangtze River Delta
region’s energy consumption per unit of GDP is extremely likely to be 11.6% lower than
that in 2020, according to Figure 10b,c. This implies that relative to China’s general goal,
the Yangtze River Delta region may be unable to meet the expected target.
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Table 4. GM (1, 1) model error test results of energy-consumption CO2 emissions.

Year Actual Value Fitted Value Residual Relative Error (%)

2000 56.508 56.508 0 0
2001 56.886 77.698 −20.812 36.585
2002 59.69 81.426 −21.737 36.416
2003 64.179 85.218 −21.039 32.782
2004 83.504 89.075 −5.571 6.671
2005 99.344 92.997 6.347 6.389
2006 105.864 96.986 8.878 8.386
2007 114.144 101.043 13.101 11.478
2008 120.078 105.169 14.908 12.416
2009 122.264 109.366 12.898 10.549
2010 126.91 113.634 13.277 10.461
2011 136.622 117.975 18.647 13.649
2012 134.297 122.39 11.907 8.866
2013 132.558 126.88 5.679 4.284
2014 135.518 131.446 4.072 3.005
2015 140.167 136.091 4.077 2.908
2016 139.317 140.815 −1.498 1.075
2017 135.633 145.619 −9.986 7.363
2018 131.679 150.505 −18.826 14.297
2019 139.046 155.474 −16.429 11.815

At present, the Yangtze River Delta region is undergoing industrial development,
which means much energy is consumed for the purposes of production and living. From
Figure 10a, it can be clearly seen that the CO2 emissions of primary energy consumption in
the Yangtze River Delta region will increase yearly from 2020 to 2026. Although the local
government is actively exploring the path of low-carbon economic development, and the
measures taken to reduce emissions have also achieved certain results, based on the above
results it can be clearly seen that CO2 emissions will increase yearly in the future. Based
on this study’s results, achieving the goal of mitigating CO2 emissions in the short term
therefore represents a substantial challenge. With reference to economic development of the
Yangtze River Delta region, the region will only be able achieve CO2 emissions reduction
through the concerted efforts of the market, government, and individuals. From this it
can be concluded sustainable economic development of the region will take some time to
achieve.

4. Conclusions

For this study, CO2 emissions from energy consumption were calculated using data
from eight energy types and five sectors from the Yangtze River Delta region, which
included two provinces and one city, from 2000 to 2019. Annual changes and cumulative
changes in CO2 emissions are quantitatively calculated, as well as the contributions of those
changes to CO2 emissions. The Grey prediction GM (1, 1) model was applied to forecast
primary energy consumption and CO2 emissions during 2020–2026. The main findings in
this study are as follows.

(1) Primary energy consumption and CO2 emissions will continue to rise in the Yangtze
River Delta region from 2020 to 2026, with total CO2 emissions rising by 192.715 mil-
lion tons over the forecast period;

(2) Economic output and population size have mainly positive effects on the increase in
CO2 emissions, and the impacts of changes in these two factors led to growth in CO2
emissions. Economic output is the biggest force pulling up CO2 emissions, contribut-
ing 224.90% in the study period. Population size is the second-most important factor
promoting the growth in CO2 emissions, the cumulative contribution ratio of which is
18.61%;
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(3) Except for 2004 and 2005, energy intensity is the greatest inhibitory factor in reduc-
ing CO2 emissions, with a significant negative effect. The energy intensity effect
contributed −140.27% to the change in CO2 emissions;

(4) Energy structure and industrial structure have insignificant contributions to CO2
emissions, contributing −3.75% and 0.51%, respectively. Although energy structure
had a positive and negative effect during the study period, it showed a negative effect
in terms of the cumulative contribution. Industrial structure had a positive effect on
CO2 emissions except in 2007, although the pull effect was not significant;

(5) Changes in energy structure and energy intensity had a restraining effect, but they
were insufficient to counteract the rise in CO2 emissions, which led to an overall trend
of rising CO2 emissions.

Global warming has become a complex problem for human civilization. It has also re-
sulted in great challenges to the sustainable development of the Yangtze River Delta region.
An important measure to effectively deal with climate change is to reduce greenhouse gas
emissions, especially CO2 emissions due to energy consumption. Based on the results of
the above analysis, the following policy recommendations are made.

(1) Formulating appropriate economic development goals.

According to the results, CO2 emissions from energy consumption in the Yangtze River
Delta region exhibited a general upward trend in 2000–2019, as economic development and
energy consumption would tend to commonly inhibit CO2 emissions decreasing. Local
governments must consequently set acceptable economic development goals rather than
focusing exclusively on economic growth.

(2) Optimizing the energy consumption structure.

Despite the recent trend toward declining coal usage, the Yangtze River Delta region
still relies heavily on coal for its energy supply. The Yangtze River Delta region should
continually optimize the energy structure to reduce environmental pollution and ecological
risks. On the one hand, it is efficient to promote the development of clean coal technology
and improve coal utilization efficiency. On the other hand, the proportion of green energy
consumption needs to be promoted as well as the proportions of wind energy, solar energy,
hydropower, and other clean and renewable energy consumption.

(3) Promoting technological progress and innovation.

Technological progress and innovation are the main driving factors for improving
energy efficiency. From the mining of fossil energy to the final use, many processes are
involved, resulting in the loss and waste of fossil energy. On the one hand, the government
should increase investment in energy technology research and research institutions to carry
out technological development and innovation, and on the other, through international
cooperation, advanced energy technologies need to be introduced to change the energy use
patterns.

(4) Adjusting industrial structure and developing low-carbon industries.

Rapid economic growth in the Yangtze River Delta region is primarily attributable
to the expansion of secondary industry, the region’s main industry sector. This sector is
also the largest contributor to energy consumption and CO2 emissions. The government
therefore needs to comprehensively consider the economic and environmental conditions,
put forward a development plan to restrain high-polluting enterprises, and formulate
relevant regulations for those that are polluting and harmful to the environment. At the
same time, local governments should encourage and support enterprises that use clean
energy and produce low-carbon products.

(5) Optimizing the population structure and promoting low-carbon living.

The Yangtze River Delta region has one of the greatest population growth rates in
China, and the problems of urbanization and aging are becoming increasingly prominent.
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On the one hand, the population structure needs to be optimized, and on the other, the
government needs to encourage citizens to adopt a low-carbon mindset and help shape
their consumption habits. Although some behaviors may not directly lead to resource and
energy savings, they can help to create a positive social environment, and raise overall
understanding and awareness of energy conservation, towards ultimately living low-carbon
lifestyles.
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Appendix A

Table A1. Decomposition analysis of five factors on CO2 emissions in the Yangtze River Delta region
(104 t) (AC = annual change, CC = cumulative change).

Time
Energy Structure ∆Ct

S Energy Intensity ∆Ct
I Industrial Structure ∆Ct

R Economic Output ∆Ct
G Population Size ∆Ct

P Carbon Emissions ∆Ct

AC CC AC CC AC CC AC CC AC CC AC CC

2000 0 0 0 0 0 0 0 0 0 0 0 0
2001 −6.29 −6.29 −517.43 −517.43 0.02 0.02 515.49 515.49 45.98 45.98 37.77 37.77
2002 4.66 −1.63 −382.31 −899.74 1.40 1.42 610.48 1125.97 46.11 92.09 280.34 318.12
2003 −27.65 −29.28 −317.00 −1216.75 3.10 4.52 736.06 1862.04 54.43 146.52 448.94 767.05
2004 5.88 −23.40 992.71 −224.04 0.22 4.74 849.03 2711.07 84.67 231.19 1932.50 2699.55
2005 33.82 10.42 413.17 189.13 3.83 8.57 1038.69 3749.76 94.49 325.68 1583.99 4283.55
2006 20.46 30.88 −724.67 −535.54 3.22 11.79 1230.99 4980.75 121.98 447.65 651.99 4935.54
2007 −22.14 8.74 −669.59 −1205.13 −1.32 10.48 1370.27 6351.02 150.79 598.45 828.02 5763.56
2008 −19.22 −10.48 −629.10 −1834.23 2.81 13.28 1122.03 7473.05 116.84 715.29 593.35 6356.91
2009 22.47 11.99 −1005.80 −2840.04 3.92 17.20 1077.65 8550.70 120.38 835.67 218.62 6575.53
2010 3.75 15.75 −940.68 −3780.72 4.85 22.05 1243.00 9793.70 153.75 989.42 464.67 7040.19
2011 −3.21 12.54 −255.60 −4036.31 3.43 25.48 1131.92 10,925.62 94.57 1083.98 971.12 8011.31
2012 −66.29 −53.75 −1330.18 −5366.49 3.36 28.84 1095.75 12,021.37 64.87 1148.85 −232.49 7778.82
2013 −39.37 −93.12 −1270.88 −6637.37 2.14 30.98 1062.22 13,083.59 72.04 1220.89 −173.84 7604.97
2014 −22.60 −115.72 −714.37 −7351.74 2.24 33.22 974.90 14,058.49 55.81 1276.70 295.98 7900.95
2015 −55.41 −171.13 −552.31 −7904.05 3.14 36.36 1051.48 15,109.97 18.05 1294.75 464.95 8365.90
2016 14.40 −156.74 −1113.74 −9017.79 1.85 38.21 953.78 16,063.75 58.66 1353.42 −85.05 8280.85
2017 −53.51 −210.24 −1289.07 −10,306.85 1.71 39.91 904.44 16,968.19 68.00 1421.41 −368.43 7912.42
2018 −157.47 −367.72 −1121.95 −11,428.80 0.51 40.42 823.82 17,792.01 59.70 1481.12 −395.39 7517.04
2019 58.15 −309.57 −148.33 −11,577.14 1.62 42.04 770.56 18,562.57 54.71 1535.83 736.69 8253.73
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