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Abstract: Thermoelectric materials have gained wide attention to realize multilevel efficient energy
management to alleviate the increasingly severe energy crisis. Oxide ceramics were well-explored
as potential thermoelectric candidates because of their outstanding merits, including abundance,
eco-friendliness, high-temperature stability, and chemical stability. In this work, we aim to provide
a comprehensive summary of the diversified state-of-the-art oxide ceramics and establish the links
between composition designing, preparation process, structural characteristics, and properties to
summarize the underlying chemistry and physics mechanism of band engineering, doping, compos-
ited with the second phase, defects engineering, and entropy engineering. Furthermore, advanced
device design and applications such as thermoelectric modules, miniature generators, sensors, and
coolers were reviewed. Ultimately, the challenges and future perspective of oxides ceramics for the
device design and thermoelectric applications in the development of energy harvesting technology
have been prospected.

Keywords: thermoelectrics; oxides ceramics; ZT; electrical conductivity; phonon scattering

1. Introduction

The escalating energy demand and the decreasing fossil energy make countries all
over the world devoted to exploring new types of energy. At the same time, researchers are
working on ways to maximize the utilization efficiency of traditional non-renewable energy.
Thermoelectric materials (TEs) have been used as a potential energy harvesting technology
because they can convert heat into electricity and have no requirements for waste heat
temperature [1–3]. Thermoelectric devices generally consist of n-type and p-type TEs wired
electrically in series (or partly parallel) and thermally in parallel. Furthermore, there are
also thermoelectric devices with single n-type and p-type TEs. They have the advantages
of no moving parts, no noise, small size, etc., and have significant application merits in the
military, aerospace, and high-tech energy fields [4,5].

It has been more than 200 years since the thermoelectric effect was discovered, and
people have been constantly exploring and developing its industrial applications. In the
early 1920s, Altenkirch, a German physicist, developed the fundamentals of thermoelectric
power generation and refrigeration and summarized the performance evaluation parame-
ters of TEs [6]: electrical conductivity (σ), Seebeck coefficient (S), and thermal conductivity
(κ). Dimensionless thermoelectric merit (ZT = S2σT/κ, S is Seebeck coefficient, σ is elec-
trical conductivity, T is absolute temperature, κ is thermal conductivity) is usually used
as an indicator to measure the thermoelectric performance [7]. TEs with large ZT val-
ues must meet the requirements of a high Seebeck coefficient to ensure the generation
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of the obvious thermoelectric effect—high electrical conductivity leading to small Joule
heat, large output power, as well as low thermal conductivity, are required to generate
a substantial temperature difference. The above three thermoelectric parameters have a
strong coupled relationship because they are dependent on the carrier concentration in
a conflicting manner that restricts and influences each other, making how to optimize
thermoelectric performance a huge challenge. Therefore, the coordinated regulation of S,
σ, and κ to improve ZT has become the key point to realize the industrial application of
thermoelectric materials.

At present, research on Bi2Te3, PbTe, and Si-Ge alloy semiconductor TEs is relatively
extensive, and the manufactured thermoelectric devices by the theses Bi2Te3 or PbTe TEs
exhibit high conversion efficiency. Oxide TEs have attracted increasing attention for their
merits of stable crystal structure, good oxidation resistance, chemical stability, and being
environmentally friendly [8,9]. They can effectively use high-temperature exhaust heat to
generate electricity to improve the comprehensive efficiency of energy utilization and are,
therefore, considered to be a class of functional materials with great application prospects.
Due to the small carrier concentration in oxide TEs, their ZT values are lower than those
of metal or alloy TEs, which has attracted much interest from researchers to regulate and
improve the thermoelectric performance of oxide materials through various strategies.

Environmentally friendly oxides TEs that can be used in high temperatures have emerged
as the times require. The p-type TEs include Ca3Co4O9 [10–15], NaxCoO2 [16–19], and
BiCuSeO [20–22]. The n-type TEs contain SrTiO3 [23–27], CaMnO3 [28,29], CaTiO3 [30,31],
In2O3 [32,33], and ZnO [34,35], etc. As presented in Figure 1, most ZT values of the oxide
TEs are smaller than 1.0 and have an urgent demand for optimizing their performance to
meet the broad and efficient recycling of energy.
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Figure 1. The figure of merit ZT for state-of-the-art p-type [12,18,20] (a) and n-type [30,33,36] (b)
oxide materials used in high-temperature.

2. Thermoelectric Fundamentals and Thermoelectric Parameters

Thermoelectric materials utilize the thermoelectric effect to achieve direct heat-to-
electricity conversion. As shown in the schematic diagrams in Figure 2, the thermoelectric
effect includes three effects: (i) the Seebeck effect, which transforms heat into electricity;
(ii) the Peltier effect, absorption or release of heat at a junction in which there is an electric
current; and (iii) the Thomson effect [1], the evolution or absorption of heat when an electric
current passes through a circuit composed of a single material that has a temperature
difference along its length. The most common application of the Seebeck effect is the
widely existing thermocouple, which can be used in thermometers, thermoelectric power
generation, and other thermal cycle fields. Static cooling is the major application of the
Peltier effect. The Thomson effect establishes a connection between the previous two and
reflects their differential influence.
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The application of TEs is dependent on the assembled thermoelectric devices, with
thermoelectric conversion efficiency serving as the most essential assessment metric. The
thermoelectric power generation efficiency φmax for the thermoelectric power system is [3]

φmax =
TC

TH − TC

√
1 + (ZT)ave − TH/TC√

1 + (ZT)ave+1
(1)

For a thermoelectric refrigeration system, its maximum refrigeration efficiency ηmax is [3]

ηmax =
TH − TC

TH

√
1 + (ZT)ave−1√

1 + (ZT)ave + TC/TH
(2)

where TH and TC represent the temperature of the hot and cold ends. It can be seen from
formulas (1) and (2) that the first term is the efficiency of Carnot cycle power generation
and refrigeration, respectively, while the second term is connected to the performance of
TEs, and its value is smaller than 1. Therefore, the thermoelectric conversion efficiency is
lower than the ideal Carnot cycle efficiency.

It can be found that the maximum thermoelectric conversion efficiency is a positive
correlation to the average ZT value. To get a high ZT value, the material should have a
large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. First,
briefly introduce the physical connotation of each parameter:

Seebeck coefficient (S): is often known as the thermopower defined by the Mott equation:

S =
π2

3
kB
q

κBT
(

1
n

dn(E)
dE

+
1
µ

dµ(E)
dE

)
E=EF

(3)

where kB is the Boltzmann constant, q is the electronic charge, T is the temperature, EF is
the Fermi energy, n(E) is the carrier density at energy E, and µ(E) is the mobility at energy
E [36]. It is evident that the S is inversely proportional to the carrier concentration, and the
carrier concentration is also proportional to the effective mass of the carrier.

Electrical conductivity (σ) is a function of carrier concentration (n), carrier charge (e),
and mobility (µ).

σ = neµ (4)

Thermal conductivity (κ) refers to the inherent ability of materials to transmit or
conduct heat, as electrons and phonons can carry heat energy, resulting in heat transfer
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in solids. The total thermal conductivity consists of lattice thermal conductivity (κl) and
electron thermal conductivity (κe), and it can be written as

κ = κe + κl (5)

The Wiedemann-Franz formula can be used to calculate the electron thermal conduc-
tivity [36]:

κe = σLT (6)

where L is the Lorenz number in 10−8 W/(Ω K2), which can be calculated using S by
the equation of L = 1.5 + Exp

[
− |S|116

]
[37]. Therefore, the κl is dominated in the thermal

transport process in oxides TEs. The κl is closely related to phonon scattering, which is
determined by the phonon mean free path (CV), the average phonon group velocity (υm),
and specific heat at constant volume (CV = ρCp, ρ is the bulk density of the sample, and Cp
is the specific heat capacity at constant pressure) [38].

κlat =
1
3

CVυmlp (7)

Point defects, dislocations, grain boundaries, interfaces, and nano-sized second phases
or inclusions are examples of scattering mechanisms that can be introduced into a mi-
crostructure to increase phonon scattering and thus decrease its κ over a wide temperature
range. Thermoelectric materials with the ideal structure of “phonon-glass electronic-
crystal” [39], such as the caged structure compounds and layered crystal structure compo-
nents with “block modules”, usually have low lattice thermal conductivity.

The ideal TE candidate would combine a large S, high σ, and low κ, yielding a high ZT
value. However, the three parameters are closely coupled with each other, mutual restraint
and mutual elimination; the improvement of thermoelectric performance needs to consider
their complex relationship and make efforts to decouple them.

3. Fabrication of Thermoelectric Oxide Ceramics
3.1. Lattice Structures of Thermoelectric Oxide Ceramics
3.1.1. n-Type Thermoelectric Oxides

As an n-type thermoelectric oxide, strontium titanate (SrTiO3) has attracted widespread
interest due to its high effective mass of carriers, chemical and thermal stability at high
temperatures, and high structural tolerance. SrTiO3 has a cubic perovskite structure and
Pm3m space group at room temperature, and its lattice constant is a = b =c = 3.905 Å [40].
Its crystal structure is shown in Figure 3a. In a unit cell unit connected by solid lines in
the figure, Ti4+ ions occupy the central position in the unit cell, Sr2+ ions occupy the eight
vertex positions, O2- ions form an oxygen octahedron at the center of six faces of the cubic
unit cell, and Ti4+ ions occupied the octahedral gaps. Therefore, the coordination number
of Sr2+ ions is 12, and the coordination number of Ti4+ ions is 6. From another perspective,
there is a cubic unit cell structure composed of eight Ti-O octahedrons in strontium titanate.
Eight Ti-O octahedrons are located at the eight top corners of the cubic structure, while Sr2+

ions occupy the center of the cubic structure. The direct band gap of SrTiO3 is 3.2 eV, and
its σ is very low. Its phase transitions from cubic to tetragonal will occur at temperatures
below 105 K [41].

As one of the n-type TEs, single crystal ZnO has a hexagonal wurtzite structure
(a = 3.25 Å, c = 5.21 Å) [42,43]. Its crystal is shown in Figure 3b. ZnO has a broad band
gap of 3.44 eV at 2 K. Zn 4s and O 2p states dominate its conduction and valence bands,
respectively [43]. As the constituent elements (Zn and O) of zinc oxide have strong ionic
bonds and light atomic mass, it has high lattice thermal conductivity κl > 50 Wm−1K−1,
resulting in its poor ZT value < 0.01 [44,45].
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CaMnO3 is an orthorhombic perovskite structure, and Mn4+(t3
2ge0

g) occupies the center
of the oxygen octahedron, as shown in Figure 3c [29,46]. The e0

g configuration enables
pure CaMnO3 to have insulating properties [28,47]. The theoretical indirect band gap of
CaMnO3 is ~0.7 eV. The Mn3d and Op states determine its electrical properties. According
to the degree of hybridization, two kinds of oxygen, O1 and O2, exist. Because the degree
of hybridization of Mn-O1 is higher than that of Mn-O2, carrier transport mainly occurs
in the direction of Mn-O1. The formation of the O1 vacancy will hinder the conduction
of carriers and reduce carrier mobility [29]. The existence of an O vacancy can cause
partial Mn to transform from Mn4+ to Mn3+, thus making the eg state of Mn partially
occupied [47]. Mn3+ ions can exist stably in the system, and the material can be sintered in
an air atmosphere at high temperatures. Therefore, its application environment does not
need special atmosphere protection.

3.1.2. p-Type Thermoelectric Oxides

Ca3Co4O9 is a typical representative material in p-type thermoelectric oxides. A rock
salt type Ca2CoO3 layer sublattice and CdI 2 type CoO2 slabs alternated arrangement into
the layered structure of Ca3Co4O9 [48,49]. Along the c-axis, it can be seen as a sandwich
construction (rock salt plate sandwiched between two plates). Ca3Co4O9 belongs to the
monoclinic system structure, which is a C2/m superspace group. The incommensurate
structure consists of two layers with distinct lattice parameters, a = 4.8323 Å, b1 = 2.82 Å,
b2 = 4.55 Å, c = 10.8428 Å, β = 98.13◦, allocated to 2.82 Å cells of CoO2 subsystem (b1)
and 4.55 Å cells of Ca2CoO3 subsystem (b2), as shown in Figure 3d [9]. Because the two
sub-lattices have different b parameters, phonon scattering at the mismatched interfaces
can contribute to hindering the heat transport properties [50].

NaxCoO2 is another potential layered cobalt-based thermoelectric material. As shown
in Figure 3e [16], Na layers and CoO6 octahedral layers with shared edges form the
NaxCoO2 lattice. In the sodium deficient system (x < 1), the Na ions show multiple
configurations in its plane, reducing the crystal symmetry [17]. In addition, the high
diffusivity of Na creates randomly distributed vacancies (as shown by the gray arrow in
Figure 3e) at temperatures above the ambient temperature, so the highly disordered Na
layer acts as a medium to interfere with phonon excitation propagation [18,19]. Therefore,
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NaxCoO2 has a rather low thermal conductivity (0.01 Wcm−1K−1 at T = 1000 K) due to its
dynamic and uncertain Na ion positioning.

BiCuSeO is a p-type oxide TE with excellent thermoelectric properties. It has a tetrag-
onal crystal structure (a = b =3.9273 Å, c = 8.9293 Å, Z = 2) with symmetry of P4/nmm
(No. 129) space group [20]. As depicted in Figure 3f, BiCuSeO possesses a layered “hybrid”
crystal structure in which the conductive layer (Cu2Se2)2− alternates with the insulating
layer (Bi2O2)2+ [21,22]. The bond length of Bi-Se is 3.2 Å, which is larger than that of
Bi-O of 2.33 Å, indicating that it has layer characteristics [20]. The (Cu2Se2)2− sublayer is
the main conductive channel, called the conductive layer, which can be used to regulate
electrical properties; the (Bi2O2)2+ sublayer is a non-conductive layer (insulating layer),
which can be effectively used for thermal conductivity suppression. Therefore, the layered
structure of BiCuSeO-based compounds can achieve collaborative optimization of thermal
and electrical conductivities.

There are still some thermoelectric oxides, such as (SrxBa1−x)Nb2O6 and KSr2Nb5O15
with tungsten bronze crystal structure [51], In2−2xZnxCexO3 with body-centered cubic
Bixbyite-type lattice structure and Ia3 (206) space group [33], and Magnèli phase of
TiO2-x [52], which showed relatively low ZT value and needed much more effort to improve
their TE properties.

3.2. Preparation Method
3.2.1. Bulk Crystal Growth

It is reported that for p-type layered oxide TEs, the thermoelectric properties of single
crystals are much higher than those of polycrystalline samples for a given component. For
example, the figure merit ZT of single crystal NaxCoO2 and Ca3Co4O9 samples reach 1.2
and 0.87, respectively, and the performance of polycrystalline samples is generally only
about half of that of single crystal samples. The simple process of single-crystal preparation
is shown in Figure 4a. Fujita et al. used the flux technique to prepare NaxCoO2−δ single
crystals and measured their high-temperature thermoelectric properties for the first time.
At 800 K, the PF reaches 7.7 mWm−1K−2, and the ZT value reaches 1.2 [53]. In 2003, Shikano
et al. prepared a single crystal of (Ca2CoO3)0.7CoO2 using an enhanced strontium chloride
flux method and measured its performance. At 973 K, the ZT value of (Ca2CoO3)0.7CoO2
single crystal reached 0.87 [54]. Although single-crystal oxide TEs have high thermoelectric
properties, the costly preparation process of single crystal hinders its large-scale applica-
tion. Thus, it is still important to develop and produce polycrystalline oxide TEs with
superior performance.
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3.2.2. Solid-State Method

The solid-state reaction method is the most widely employed method for preparing
different oxide TEs [34,55–59]. Generally, two solid-state steps are required for the synthesis
of polycrystalline oxide TEs, which mainly includes the preparation of pre-sintered powder,
and then sintered compact bulk ceramic samples suitable for testing various properties, as
depicted in Figure 4b. The high-purity solid precursor powders were mixed and calcined
at high temperatures, such as TiO2 and SrCO3, required for the synthesis of strontium
titanate [60]. This approach possesses the advantage of simplicity and low cost, but
generally, the synthetic product after a high-temperature calcination process is blocky and
requires a secondary ball milling to obtain fine powders to maintain high reactivity to
sinter ceramics. For example, Qin et al. prepared different nano metal Ti additions of
Sr0.9La0.1TiO3 composite ceramics using the solid phase reaction technique. The nanoscale
microstructure was controlled by adding nano metal powder and sintering aid of Bi2O3,
and the high ZT = 0.5 of SrTiO3-based components was obtained at 1073 K [23].

Adopting sintering aids is a commonly used method to improve the bulk density
of ceramics in the traditional solid-state sintering process. The sintering aids have the
following functions: (1) Forming a liquid phase environment and increasing the diffu-
sion driving force of particles; (2) increasing ceramic density and controlling grain size;
(3) preventing the polycrystalline transformation of the matrix material; and (4) entering
into the lattice of the matrix material to form solid solutions during the later stage of
sintering. At present, the common sintering aids include Bi2O3, CuO, V2O5, and B2O3,
etc. [61–65].

Shi et al. prepared (Ca0.85Ag0.1La0.05)3Co4O9 (CCO) ceramics by compositing the
secondary phase Bi2O3 that can promote the densification to improve the bulk density,
hence effectively improving the thermoelectric properties of CCO ceramics. According to
the theory of liquid-phase sintering, when the sintering temperature exceeds 1097 K, Bi2O3
melts to form a liquid phase, and a dissolution–precipitation transport process occurs. The
dissolved Bi2O3 promotes particle diffusion and sample densification and inhibits grain
growth coarsening [66]. The difference in high-temperature solid-state reaction methods
between BiCuSeO compounds and SrTiO3/Ca3Co4O9 is that since the raw powder contains
metals Bi, Cu, and Se, it is necessary to vacuum the tank during ball milling to avoid
oxidation. Additionally, the sintering also needs to be carried out in a vacuum quartz tube.

3.2.3. Spark Plasma Sintering

Spark plasma sintering (SPS) technology is also commonly utilized to prepare bulk
oxide TEs [14,67–71]. SPS is also known as Pulse Electric Current Sintering (PECS). During
the sintering process, the discharge plasma generated at the moment when the electrode is
connected to the DC pulse current makes each particle inside the powder produce Joule
heat uniformly and activate the particle surface, which makes it easy to prepare uniform,
dense, and high-quality ceramic samples, as presented in Figure 4c. Furthermore, the
sputtering and discharge impact of high-temperature plasma can remove impurities and
adsorbed gas on the surface of powders, and the electric field can accelerate the diffusion
process. Therefore, SPS has characteristics different from the traditional sintering method
(the solid-state pressureless sintering process), that is, low sintering temperature and short
sintering time, which can obtain fine and uniform grains and high-density materials [72].
The fine and uniform grains in the sample will suppress the thermal conductivity. Therefore,
SPS is more suitable and efficient for preparing TEs than the traditional solid-state sintering
method [73].

Ito et al. [74] prepared Sr1−xYxTiO3/TiB2 composite ceramics by polymerization com-
plexation process combined with SPS. The relative density of samples sintered at 1573 K
for 5 min through the SPS method can reach about 99%, which is higher than that of
samples sintered at 1673 K for 2 h by traditional hot-pressing sintering (97.2%). Reported
experimental results confirmed that ceramics prepared by SPS technology could obtain
fine-grain microstructure, and the thermal conductivity of the composite sample containing
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TiB2 remained lower than that of the hot-pressed ceramics [74]. In addition, to develop
BiCuSeO oxyselenides TEs for industrial production on a large scale, Novitskii et al. [75]
reported the process of batch synthesis of BiCuSeO by two-step reactive SPS method, which
overcame the disadvantages of time-consuming, cumbersome, and energy consumption of
solid-phase sintering technology.

3.2.4. Mechanical Alloying

Mechanical alloying is a method to obtain solid alloy or solid solution by high-speed
ball milling or grinding, as shown in Figure 4d. Mechanical alloying has gained widespread
attention for its advantages of a short cycle, low energy consumption, and simple process.
Liu et al. studied the synthesis of La-doped SrTiO3 nanopowders using mechanical alloying
in an air atmosphere. In comparison to the solid-phase reaction method, the mechanical
alloying technique can eliminate the calcination stage and is more cost-effective and eco-
friendly [76]. Feng et al. prepared Bi1−2xCaxCuxSeO samples by mechanical alloying [77],
and the results show that these samples have high carrier concentrations. The maximum
ZT = 1.15 was found for Bi0.84Ca0.08Pb0.08CuSeO at 873 K as a result of the high concentra-
tion of Cu vacancies contributing to improving carrier concentration, refining grains, and
decreased thermal conductivity.

3.2.5. Liquid-Phase Synthesis

(1) Colloidal Synthesis

Solid-phase reaction method has the disadvantages of low purity and high energy
consumption. To overcome the shortcoming of the high-temperature solid-phase method,
the hydrothermal synthesis and sol-gel method became aroused researchers’ attention.

The materials synthesized by the sol-gel method generally use inorganic salt or organic
alkoxide as the precursor and, through a chemical reaction such as hydrolysis polymer-
ization, nucleation, and growth transform from liquid precursors to sol and then to a
network structure known as a ‘gel’, and then after dried and heating treatment to obtain
the target material, as illustrated in Figure 4e. For example, Michael et al. adopted the
sol-gel technique to synthesize high-porosity Ca3Co4O9 thermoelectric ceramics with a
high ZT value of 0.4 [10]. In addition, the sol-gel approach also allows for the possibility of
dispersing the cations used at the molecular level and the incorporation of dopants into the
composition [11], which can be used as a dynamic, reliable, and environmentally friendly
technique to develop novelty materials for potential TE applications.

(2) Hydrothermal Synthesis

The hydrothermal method is a solution reaction-based approach and can synthesize
nanomaterials, which have been successfully applied for the preparation of TEs [78]. Usu-
ally, hydrothermal synthesis may occur over a wide temperature range from ambient
temperature to extremely high temperatures and requires high-pressure conditions to
generate high vapor pressures to trigger the chemical reaction or to control the morphology,
as illustrated in Figure 4f. Compared to other preparation techniques, the products syn-
thesized by the hydrothermal method present the advantages of controllable crystal size,
homogeneous distribution, high efficiency, simple-to-manipulate stoichiometry, and ideal
crystal morphology at lower temperatures. However, the products obtained by hydrother-
mal synthesis need to be separated, washed, and dried [79,80]. Wang et al. successfully
synthesized Nb-La co-doped SrTiO3 nanopowders using the hydrothermal technique and
bulk ceramics with a complex micro and electron structure arising from the nano-inclusions
and the second phases precipitated from the matrix were obtained with high-level ZTs >0.6
at 1000–1100 K [36].

(3) Solvothermal Synthesis

As illustrated in Figure 4f, the solvothermal synthesis is analogous to the hydrothermal
method and is based on heating the precursors and a solvent in a closed system at a tem-
perature above the boiling point of the solvent used [60]. The synthetic procedure usually
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requires high temperature and high pressure to create the supercritical circumstances to
develop the peculiar behavior of the solvent, exerting different influences on the precursors
resulting in the desired product. Park et al. synthesized Ag-SrTiO3 nanocomposites by
one-pot solvothermal method [81] using strontium nitrate (Sr(NO3)2), silver (I) nitrate
(AgNO3), and titanium tetraisopropoxide [(CH3)2CHO]4Ti (TTIP) as starting ingredients.
Furthermore, the loading quantity of Ag could be easily manipulated by adjusting the
concentration of the AgNO3 precursor. In addition, the thermoelectric properties of layered
TEs can be effectively controlled by bottom-up wet chemical synthesis of two-dimensional
nanosheets/nanoplates [82–84]. Samanta et al. used Cu(NO3)2·3H2O, Bi(NO3)2·5H2O, and
selenourea as raw materials, and in the presence of KOH/NaOH, prepared multilayer
ultra-thin BiCuSeO nanosheets by low-temperature solvothermal method [85] and the
obtained nanosheet samples showed lower lattice thermal conductivity and better electron
transport properties than that of the bulk samples.

In addition to the preparation methods listed above, there are also some other tech-
niques, such as hot-pressing sintering, 3D printing technologies, direct ink writing, etc.,
that can also be used in the TE fields for material research and development.

4. Development and Strategies to Improve the Thermoelectric Performance of Oxide Ceramics

Several of the selection rules are somewhat paradoxical as a result of the inherent trade-
off effect between σ and S. Many optimized strategies may have a complicated correlated
impact on S, σ, and κ. As an illustration, the increase of doping concentration will improve
σ while decreasing S. Then, Ioffe’s finding in doped semiconductors was the first effort to
empirically determine the carrier concentration “sweet spot” of excellent thermoelectrics is
n = 1018–1020 cm−3 [86]. Consequently, an optimal power factor (PF = S2σ) versus doping
concentration exists at a relatively high doping level. Furthermore, a further decrease of κ
is necessary to produce a high ZT.

The content of this section is convenient for sorting out and summarizing the develop-
ment and optimization strategies of band engineering, doping, entropy engineering, defect
engineering, grain boundaries, texture, composites, etc. Development is still in progress,
and researchers are devoted to searching for new TEs and novel optimization strategies to
enhance their performance and accelerate their applications.

4.1. Band Engineering

Since S, σ, and κ of TEs are determined by the transport and interaction of carriers and
phonons, adjusting one parameter often may sacrifice other physical parameters, making
achieving collaborative optimization of thermoelectric performance a huge challenge. In
bulk TEs, the band gap, the degeneracy of the conduction band, the extreme value of the
valence band, and the effective mass in the band structure are fundamental parameters
that determine the thermoelectric performance. According to the Mott formula [36], the
parameter of S is in direct proportion to the slope of the energy band near the Fermi level.
A greater slope means a greater S. Furthermore, the S is a function of the variation of σ near
the Fermi surface, and increasing the complexity of the crystal structure can increase the
complexity and the degeneracy of the band structure, leading to more extreme values in the
conduction band and valence band, thus increasing S. In a word, factors of the band gap,
energy band shape, effective mass of carriers, mobility, etc., determined by band structure
are closely related and produce a trade-off effect on thermoelectric performance. At present,
the energy band engineering strategy mainly includes multi-valley degeneracy, energy
band converges, resonance energy level, energy filtering, and modulating doping.

Moreover, complex band structures with high degeneracy numbers can exist because
of the relatively high symmetry in perovskite structures such as SrTiO3. Due to the cor-
relation between energy band characteristics (such as DOS and band convergence) and
carrier transport properties, the electrical properties can be optimized through energy band
engineering. As widely observed in BiCuSeO [87], effective mass m* gradually decreases as
the carrier concentration decreases, indicating band nonparabolicity. Results of calculations
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suggest that a bigger m* in SrTiO3 can lead to a greater DOS of the triply degenerate
3d-t2g orbitals near the conduction band bottom, which contributes to a larger |S| and
a higher S2σ [88]. Figure 5 shows the calculated band structures and DOS of pristine
SrTiO3, Sr0.9La0.1TiO3, and Sr0.9La0.1Ag0.1Bi0.1TiO3 samples [88], respectively. In addition,
the ab initio Molecular Dynamics and DFT simulations results [89,90] demonstrated the
softening of the c-axis polar mode, and the shift in the dispersion of the acoustic bands
could decrease the thermal conductivity. It was notable that another crucial feature of the
band structure is the density-of-states effective mass (m*), which is closely related to carrier

mobility (µ). Usually, the PF is positively proportional to the weighted mobility of µ
(

m∗
me

) 3
2 ,

where me is the free-electron mass. Hence, it is preferable to maximize both m* and µ;
large m* corresponds to large S, and big µ promotes the electrical conductivity. Neverthe-
less, this is difficult in practice, and heavy carriers are less mobile (µ = eτ/m*); hence the
trade-off arises.
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In addition, alloying with suitable elements can introduce some resonant states re-
sulting in highly anisotropic and multiple valence bands for achieving the desired band
structure. It should be emphasized that the aforementioned basic rules for optimum band
structure and thermoelectric properties are only applicable to homogeneous single-phase
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semiconductors. In the case of composite TEs (such as those incorporated with nanoscale
inclusions), which will be discussed later, many of the trade-offs discussed above can be
suppressed or even overcome.

4.2. Doping

Element doping is one of the widely used basic strategies to regulate carrier concentra-
tion for enhancing the thermoelectric performance of TEs. By properly doping elements
with different valence states into different cationic lattice sites, a well-regulated n can be
obtained, which leads to an optimized S2σ. Doping will cause a change in cell parameters,
induce point defects, and bring lattice distortion because of the position of atoms and
the length of valence bonds changed, resulting in variations of S, κ, and σ. Furthermore,
the length and strength of the valence bond is an important parameter that determines
thermal conductivity.

In n-type SrTiO3-based TEs, trivalent states of La [23,25,36,65,67,76,78,91], Ce [91],
Nd [91], Sm [91,92], Gd [91], Dy [91], Pr [93], and Y [74] can be used to dope in Sr2+

site. The valence states of ≥5+, such as Ta [94], Nb [24], and W [95], can be used to
dope in the Ti4+ site. K. Singsoog et al. [96] investigated the influence of La doping
amount on Sr1-xLaxTiO3 (x = 0, 0.06, 0.13, 0.25) through theoretical calculation; the re-
sults show that the parameters (S, σ, κ, PF, and ZT) increase first and then decrease.
When the doping concentration of La = 0.13, it has the best thermoelectric performance of
S900K = −450 µ V/K, PF1200K = 2.55 mW/m/K2. Figure 6a shows the reported results of
substituting Sr with rare earth elements of La, Nb, Sm, Gd, and Dy in SrTiO3. Results
demonstrate that the large ion radius of the doped element (such as La, Nb, Sm) is advanta-
geous to raise the power factor, and the small ion radius of doped elements (such as Gd, Dy,
Er, Y) can effectively reduce the thermal conductivity [91]. Besides the above single-doping
on the A/B site of ABO3, co-doping on both Sr and Ti-site is also widely employed, such
as Sr0.8La0.18Yb0.02TiO3 with a ZT = 0.31 at 1023 K [97], and Sr0.87Dy0.07Nd0.06TiO3 with a
ZT = 0.19 at 673 K [98]. Figure 6b shows high ZTs > 0.6 were obtained at 1000–1100 K in
La-Nb co-doped SrTiO3 [36] through nano-scale modification and microstructure regulation
strategies which are at a high-performance level.

In the n-type CaMnO3 system, three types of elements doped at the Ca position are
rare earth elements (La, Y, Ce, Sm, Pu, Nd, Lu, etc.) [99,100], main group elements such
as Bi [101] and alkaline earth elements (Ba, Sr, Mg, etc.) [102]. Additionally, the doped
elements in the Mn site mainly include Ta, V, Nb, Ru, etc. [103]. The doping cases such as
Ca1-xBixMnO3 (0 ≤ x ≤ 0.10) [101], CaMn1-xNbxO3 (x = 0.02, 0.05, 0.08) [104], Dy and Yb
co-doping on Ca1-2xDyxYbxMnO3 (0 ≤ x ≤ 0.10) [105], and Ca0.92-xPr0.08SrxMnO3 (x = 0.01,
0.02, 0.03, 0.04) [106] demonstrated that Bi, Nb, Dy, Yb, Pr doping at CaMnO3 obtained the
ZT values range of 0.18–0.27 which were much improved compared with the pure phase of
CaMnO3 (ZT = 0.04).

To improve the thermoelectric properties of ZnO, commonly used doping elements are
C, Si, Fe, In, Ga, Al, Ni, and Sb [34,107–109]. Among them, Al-doped ZnO is the one widely
studied and has the best TE performance at present. In the case of Zn0.96Al0.02Ga0.02O [107],
ZT = 0.65 at 1247 K was obtained, which is one of the high levels of ZT values in n-type oxide
thermoelectric materials. Additionally, this outstanding achievement can be attributed to
the Al and Ga co-doping can significantly reduce the thermal conductivity from 40 W/m/K
of Zn0.98Al0.02O to 5 W/m/K of Zn0.93Al0.02Ga0.05O.

In the p-type Ca3Co4O9-based TEs, much research focused on the partial substitution
of cations on the Ca-site such as Na [110], Sr [111], Ba [112], La [12], Ag [12], Fe [113],
Pb [114], Ag [115], Ga [116], Tb [117], and Yb [118], while Ni [119], Mn [120], Cu [120], and
Ir [121] were introduced into the Co-site to optimize the thermoelectric properties in the
Ca3Co4O9 system. Specifically, as R3+ has a higher oxidation state than the Ca-site, it may
decrease the carrier concentration to improve the Seebeck coefficient.
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Figure 6c summarizes ZT values of typical element doping in the Ca3Co4O9 system. Specif-
ically, Tb-doped Ca3Co4O9 [117], La and Co co-doped ceramic of Ca2.8La0.2Co3.8Cu0.2O9 [122],
Ag and Fe co-doped system of Ca2.95Ag0.05Co3.8Fe0.2O9 [123] obtained ZT values of
0.16–0.74 attaining the collaborative optimization of electron and phonon transport. In
addition, these results demonstrate that a suitable quantity of Ag and Fe co-doping can
significantly boost σ arising from higher n and µ while decreasing κ due to the enhanced
phonon scattering.

For NaxCoO2-based TEs, the adjustable space of their thermoelectric properties is
greater than that of the Ca3Co4O9 system, mainly because the content of Na+ ions has a
great influence on the conductivity. Substitution at either the Na site (with K, Sr, Nd, Sm, Yb,
Mg, etc.) [51,124] or the Co site (with Ag, Pb, Mn, Ru, Pd, etc.) [125–128] of NaCoO2 allows
for fine-tuning of its carrier concentration, magnetic ordering, and phonon frequency. Since
NaCoO2 is a tightly correlated electron system, Co-site substitution can alter the magnetic
and TE characteristics. In the Cu, Y, Sn, W, Au, and Bi-doped NaxCoO2 system [16], when
the dopant is situated in the Na layer of the NaxCoO2 lattice structure, the maximum
thermoelectric performance is reached and confirmed by the DFT simulation results. The
improved ZT values can be ascribed to the beneficial effect of boosting carrier mobility
being greater than the negative impact of decreasing the carrier concentration of holes
on the electrical conductivity of these dopants. A record-high ZT = 1.24 was achieved at
1010 K in single-phase Na-doped NaxCoO2 (x = 1, 0.98, 0.96, and 0.94) ceramics [129].

Compared with other p-type oxide TEs, κ of BiCuSeO is very low (0.4~0.7 W/m/K) [21,22],
originating from its strong crystal anharmonicity [130]. At present, an extremely low
κ = 0.33 Wm−1K−1 at 300 K was achieved in heavily doped Bi0.875Ba0.125CuSeO alloys [130].
After doping, the electrical conductivity of BiCuSeO can be further increased and thus
improve ZT values. For example, the maximum ZT = 1.5 of Bi0.88Ca0.06Pb0.06CuSeO was
obtained [21], which is three times of pure BiCuSeO.
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In the In2O3 system, the ZT = 0.47 at 1223 K was reached for the In1.92Ce0.08O3
sample [131] through a synergistic effect of secondary CeO2 nanoclusters and fine grain
size, which can contribute to greatly lowering the thermal conductivity. Furthermore,
in the heavily doped nanostructured In2O3-based ceramics [33,132], the increased σ and
decreased κ can be achieved simultaneously. The remarkable result is κl decreased by 60%,
and the minimum value is 1.2 W m−1 K−1 at 973 K, which is close to the amorphous limit,
and finally, the highest ZT = 0.44 at 973 K.

It is worth mentioning that in the porous Gallium-doped In2O3 [133], an extremely low
κ= 0.21 W m−1K−1 at ambient temperature and a high ZT = 0.38 at 800 ◦C was achieved
through the pore structure regulation combined with doping strategy.

4.3. Entropy Engineering

Due to its superior characteristics, such as low thermal conductivity [59,61,134–136],
high-entropy ceramics (HECs) containing five or more cations have lately gained con-
siderable interest in the TE field. High-entropy engineering has been confirmed to in-
crease the S and reduce the κl in TE oxide ceramics, making it a promising strategy for
optimizing thermoelectric performance by broadening the composition design. High-
throughput screening has been used to construct multi-component TEs with high en-
tropy, as reported by Zhang et al. [137] and Liu et al. [138]. By decreasing the κl and/or
increasing S, high-entropy engineering can become an efficient technique to consider-
ably improve thermoelectric performance. Figure 7a–c shows Zhang et al.’s work of
high-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 ceramics with perovskite structure, which pre-
sented a relatively high |S| = 272 µV/K and ultra-low κ = 1.75 W/m·K at 1073 K [59]
because of the short-range disordered distribution characteristic of the A-site cations.
In Zheng et al.’s work of (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 ceramics [139], the minimum
κ = 1.17 W/(m·K) at 923 K and the maximum ZT = 0.2 at 873 K was obtained. Lou et al.’s
work reported that the B-site multi-components of Sr0.9La0.1(Zr0.25Sn0.25Ti0.25Hf0.25)O3
exhibit low κ = 1.89 W/(m·K) and a high S = 393 µV/K) [61] at the same time. Re-
searchers focus on not only the five-component high-entropy TE oxide ceramics but also
the four-component system of (Sr0.25Ca0.25Ba0.25RE0.25)TiO3 (RE = La, Ce, Nd, Sm, Eu) that
were designed and synthesized by solid-state reaction route [134,135]. Significantly, the
(Sr0.25Ca0.25Ba0.25RE0.25)TiO3 sample exhibited the temperature-independent variation char-
acteristics of κl ranging from 2.31 to 2.27 W/(m·K) over 373 K-1073 K testing temperature
range which is analogous to the characteristic of glass with a constant phonon mean free
path (lph). As predicted by the Debye-Callaway model, an ultralow κ = 0.7 W/mK at 1100 K
was obtained in the n-type high-entropy perovskites Sr(Ti0.2Fe0.2Mo0.2Nb0.2Cr0.2)O3 [140]
through the increased electron-phonon and Umklapp scattering. A series of high-entropy
(RE0.2Ca0.2Sr0.2Ba0.2Y0.2)MnO3(RE = La3+, Nd3+, Ho3+, Lu3+) ceramics were prepared and
the low κ = 0.94 W/(m·K) at 800 ◦C was found for the (Lu0.2Ca0.2Sr0.2Ba0.2Y0.2)MnO3
sample [141].

In contrast to the usual observed in non-high-entropy SrTiO3-based TEs, κ sharply
dropped from ~7.16 W/(m·K) to ~2.89 W/(m·K) over 300 K–1073 K. Figure 7d–i shows the
temperature-independence κ over the testing temperature range of 323 K-1073 K [134,135]
realizing ‘phonon-glass electron crystal’ (PGEC) and with the minimum κ = 2.27 W/(m·K)
for the 4Ho sample.

However, carrier mobility can be deteriorated to hinder electron transport due to high
configuration entropy, which also leads to poor electrical conductivity. Consequently, future
work devoted to pursuing high ZT values should concentrate on multiple types of strategies
that cooperate in optimizing σ, particularly in improving the carrier mobility meanwhile
maintaining the obtained ultra-low intrinsic κl for advancing the industrialization of TE
oxides at high temperatures.
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4.4. Defect Engineering

In ionic compounds, the heat transport mechanism is dominated by κl. Additionally,
κl can be lowered due to phonon scattering. Based on Debye–Callaway’s model and the
relaxation-time approximation, the κ is a function of phonon scattering rates (1/τ) or the
relaxation time (τ) [142]. τ has contributions from grain boundary scattering (τB), point
defect scattering (τPD), phonon-phonon Umklapp scattering (τU), and electron-phonon
scattering (τep) as represented by Equation (8) [142,143].

1
τ
=

1
τB

+
1

τPD
+

1
τU

+
1

τep

=
νm

L
+ Aω4 + Bω2Texp

(
−ΘD

nT

)
+ Cω2 (8)

Here, vm is the mean acoustic velocity, L is the average grain size, ΘD is the Debye
temperature,ω is the phonon frequency, and A, B, and C are parameters corresponding to
the point defects, Umklapp process, and electron-phonon scattering, respectively. Phonons
are more likely to be strongly scattered by lattice defects of considerable size. Therefore,
during the defect regulation, attention should be paid to building a full-scale hierarchical
structure containing defects of various forms and scales to achieve “total phonon scattering”
in a broad frequency range. Specifically, the atomic scale point defects, such as vacancy,
replacement atoms, etc., can realize effective phonon scattering by the high-frequency short
wavelength [134,136]. Nanoscale defects such as dislocations and nano precipitates can
achieve effective scattering of phonons with a moderate mean free path. Mesoscopic scale
(micrometer level) features such as grain boundaries, phase interfaces, pores, clusters, etc.,
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can realize the effective scattering of large free path phonons. Based on this full-scale
hierarchical structure, it can achieve enhanced phonon scattering and obtain low lattice
thermal conductivity.

Controlling the A-site deficiency [27,54,144,145] and oxygen vacancies [27,146] in the
donor-doped SrTiO3 ceramics can create mobile carriers to improve their thermoelectric
performance. By mixed-donor doping, a high concentration of the A-site vacancies was cre-
ated, which can combine with the oxygen vacancies to form Schottky pairs. For example, in
the Sr0.825La0.05Ce0.05Ti0.95Nb0.05O3 sample [27], a large Sr deficiency was created with the
help of liquid-phase sintering, leading to abundant Sr-O vacancy pairs formed as electronic
defects without compromising carrier transport across the grain boundaries, which results
in the ZT value surpass 0.38 at 1000 K. Kovalevsky et al. [54,91] explored and clarified
the links and interactions of defect engineering combined with co-substitutional doping
with La. The combined effect of A-site vacancies, oxygen vacancies, and the generated Ti3+

contribute to ZT values up to 0.42 under highly reducing sintering conditions [91].
In summary, defects engineering of the introduction of A-site cation vacancies such

as Sr1±yTi0.9Nb0.1O3±δ [55] and Sr0.95Sm0.0125Dy0.0125Ti0.90Nb0.10O3±δ system [147], or
oxygen vacancies of Sr0.8La0.067Ti0.8Nb0.2O3−δ [144], play a synergistic role in charge and
phonon transport properties specifically generating additional phonon scattering centers
including point defects, dislocations, and strain fields to suppress κ while maintaining
rapid carrier transport in the perovskite lattice; hence, the resulting ZT ranges in 0.25–0.4.

In the CaMnO3 system, single doping of Fe2+ and Al3+ on the Mn site or dual doping of
Ni-Fe and Al-Ga on the Mn site [102] can facilitate the formation of O vacancies. The oxygen
vacancies order in a zig-zag arrangement in partial reduction CaMnO2.75 can improve S,
and a brownmillerite-like structure is expected to form in a further reduction to CaMnO2.5
according to first-principles calculations.

In the BiCuSeO system, an effective strategy to realize the collaborative optimization of
thermoelectric property through Bi/Cu dual vacancies reached a high ZT = 0.84 at 750 K [148].
Moreover, positron annihilation spectroscopy shown in Figure 8a combined with a Schematic
representation of trapped positrons (Figure 8b) confirms the interlayer charge transport
between these Bi/Cu dual vacancies, which results in a notable improvement in σ main-
taining a relatively high S to realize the synergistic effect of enhancing phonons scattering
without deteriorating the electrical transport properties (Figure 8c,d). Figure 8 shows the
ultra-low κ = 0.37 W m−1 K−1 at 750 K obtained as a result of the dual vacancies introduced
compared to the pristine and monovacancy samples.
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Dislocations in the lattice can dramatically increase phonon scattering to suppress the
lattice’s thermal conductivity while maintaining high carrier transport. Due to phonon
scattering on dislocation cores (τDC∝ω−3) and dislocation strain fields (τDS∝ω−1) ex-
hibiting frequency dependency properties, dislocation is especially effective for scattering
mid-range frequencies phonons. In oxide TEs, creating a high density of dislocations
can be accomplished by introducing a large concentration of vacancies. In the reduc-
tion annealing process of SrTiO3-based TEs, these vacancies diffuse to create lower en-
ergy vacancy clusters, which then collapse into edge dislocations. In the HRTEM images
(Figure 9) of high-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3, Sr0.9La0.1(Zr0.25Sn0.25Ti0.25Hf0.25)O3,
(Sr0.25Ca0.25Ba0.25La0.25)TiO3, and (Sr0.25Ca0.25Ba0.25Nd0.25)TiO3 system [59,61,134,135], edge
dislocations are detected, and the corresponding strain field distribution is quantified by
geometric phase analysis (GPA, presented in Figure 9c3).
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In addition, collision with the “cage” can result in greater chemical bond anhar-
monicity, resulting in resonant phonon scattering of the “Rattle type”. For example, the
Na0.8CoO2 sample [149] has a large-period superstructure with multiple vacancy clusters
existing throughout a broad concentration range that are also responsible for rattling modes
confirmed by the inelastic X-ray and neutron scattering techniques. At low energy, the
Einstein-like rattling mode is correlated to large anharmonic shifts of Na+ in multi-vacancy
clusters has been directly observed. Correspondingly, κ is reduced by a factor of six due to
these rattling modes compared to that of vacancy-free NaCoO2. Compared with conven-



Energies 2023, 16, 4475 17 of 31

tional defect scattering, this scattering mode has more simple phonon selectivity, higher
scattering frequency, and greater scattering intensity, which can cause strong dispersion of
phonons at specific frequencies (mainly low frequencies).

Due to the defects can also act as the potential scattering center of the electron. One
key point to note in “defect engineering” is that the positive effect of reduction in κ can
compensate for even surpassing the negative impact on electrical conductivity decrease.
Therefore, defect engineering involving defects concentration, microstructure character-
istics, and their distribution should be in a rational range of importance for improving
thermoelectric performance.

4.5. Grain Boundary and Nanostructure Engineering

Grain boundaries (GBs) form ubiquitous microstructures in polycrystalline oxide
ceramics, which play a significant role in tuning their ZT. Different grain size has a varied
impact on σ and κ. To ensure that the effect of GBs or/and the nanostructure on decreasing
κ is larger than its deterioration in σ, the grain sizes should be appropriately tuned. The
energy filtering mechanism was proposed, meaning that randomly distributed potential
barriers can filter away low-energy carriers to cause a decrease in the actual carrier den-
sity to improve S. In the nanostructured polycrystalline ceramic TEs, low energy carrier
filtering effects combined with the enhanced phonon scattering can effectively suppress
κl [26,65,78,150,151], confirmed by both computational and experimental results.

Optimized thermoelectric performance by grain boundary and nanostructure are
mainly reflected in lowering κ [78,152], or the formation of a conductive path at grain
boundary to promote the carrier mobility; these two factors play a synergistic effect on the
electron and phonon transport process contribute to a trade-off ZT values of 0.3–0.4. In the
cases of the nanostructured Sr0.91La0.09TiO3 sample, ZT = 0.37 was achieved at 973 K [153],
a greatly improved performance ZT = 0.35 in Pr-doped of SrTiO3−δ because of the Pr-rich
grain boundaries contributed to improving carrier mobility [153,154], and the improving
ZT = 0.38 obtained in Sr0.8La0.067Ti0.8Nb0.2O3-δ system containing Cu or Fe inclusions [155].
Figure 10a–f presents the nano-scale powder and Sr0.9La0.9Ti0.9Nb0.9O3 bulk ceramic which
exhibit high electrical conductivity and PF through the synergy effect of modulation doping
and microstructure controlling approach.

Due to enhanced boundary scattering, a low κ = 3 W/m K at room temperature was
obtained in bulk ZnO [34] with a grain size of 20 nm prepared by the pulsed electric current
sintering method under a pressure of 500 MPa. The nanostructured CaMn0.98Nb0.02O3 [83]
was synthesized by ultrasonic spray combustion (USC) method with κ decreasing from
~2.5 W m−1 K−1 at 300 K to less than 1.5 W m−1 K−1 above 1000 K. Figure 10g–l shows
the results of the nanostructured In1.92(ZnCe)0.08O3 ceramics which were fabricated by
co-precipitation and SPS [132]. A high ZT = 0.4 at 1050 K in the sample with a 50 nm grain
size was achieved, ascribed to κ decreasing by 50% while maintaining a high σ. When the
grain size is smaller than 20 nm, the ZT value is anticipated to approach 0.7.

To maximize |S| and PF, it is preferable to utilize the energy-dependent scattering
mechanism and scatter phonons more efficiently than electrons, as for a “PGEC” system.
Therefore, the basic principle of this nanostructured method depends on the influence of
the classical size effect and quantum effect on the electrons and phonons transport behavior.
Although the classical size effects limit the mean free paths of phonons and electrons,
quantum size effects (localization) may provide some beneficial changes in the transport
properties of phonons and the electron states.
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Figure 10. (a) SEM and (b) TEM image of powder; (c) SEM and (d) TEM image of bulk 10 mol%
Nb-10 mol% La-doped SrTiO3 bulk sample. Temperature dependence of (e) electrical conductivity
and (f) power factor [36]. (g) The TEM image of In1.92(ZnCe)0.08O3 nanopowder, (h) the SEM image
of 50 nm grained sample. (i) TEM image at medium-magnification, (j) HRTEM image of the 50 nm
grained sample. Temperature dependence of (k) power factor and (l) thermal conductivity for
In1.92(ZnCe)0.08O3 bulks with different grain sizes [132].

4.6. Textured Engineering

Texture engineering offers a strategy for gaining better thermoelectric performance
in bulk ceramics by creating crystallographic anisotropy. Especially in layered crystal
structure TEs, the electron and phonon transport properties are highly anisotropic. Multi-
scale parallel interfaces, including zigzag interfaces and “core-shell” interfaces inside the
orientation of the stripe-like grains, the paralleled grain boundaries, and lattice stacking
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faults were observed in the “brick-wall” microstructure can contribute to suppressing
the thermal conductivity [12,156]. The physical properties of this special crystallographic
orientation in textured ceramics can approach 60–80% of the properties of single crystals of
the same composition. Creating the textured structure helps to the decoupling of electrical
and thermal properties. As an example shown in Figure 11a–k, (Ca0.87Ag0.1La0.03)3Co4O9
textured ceramics with texture fraction of 0.93 [12] by template grain growth (TGG) method,
the carrier concentration in the direction parallel to the tape casting is three times that of in
the direction perpendicular to the tape casting, and the PF was achieved 0.64 mW/(m K2)
at 800 ◦C, which is 10 times that of in the direction perpendicular to the tape casting. The
resultant κl = 0.37 W/(m·K) at 800 ◦C was obtained, which is 40% lower than that value
parallel to the tape casting direction. As a result, the maximum ZT reached 0.43 at 800 ◦C,
which was 1.2–3 times the ZT values in the vertical direction.
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Figure 11. (a) BSE image, (b–d) TEM images, and (e) the sketch diagram of phonon scattering
at the grain boundary and zigzag edge of the (Ca0.87Ag0.1La0.03)3Co4O9 textured ceramics, and
temperature dependence of the thermoelectric properties of the samples in parallel and perpendicular
to the tape-casting direction. (f,g) Electrical resistivity, (h,i) thermal conductivity, (j,k) ZT values [12].
(l) BSE image, (m) Total thermal conductivity, and (n) ZT values of the Sr0.9La0.1TiO3-based textured
ceramic [156].
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Figure 11l–n presents the textured Sr0.9La0.1TiO3-based ceramics [156] with a texture
fraction of 0.81, in which 10 wt.% plate-like Sr3Ti2O7 template seeds served as templates
for guiding epitaxial growth of grains combined with matrix powders of Sr0.9La0.1TiO3/20
wt.%Ti to obtain the multi-scale interfaces decoupled electron and phonon transport perfor-
mance to optimize ZT values. In the direction perpendicular to the tape casting direction,
the maximum ZT = 0.26 was obtained at 1073 K. Comparing with the SrTiO3, Sr0.9La0.1TiO3,
and the same composition of non-textured ceramics fabricated by the same sintering pro-
cess, the lowest κl = 1.9 W/(m K) was obtained at 1073 K in the textured Sr0.9La0.1TiO3-based
ceramic which decreased by 40%, 38%, and 34%, respectively.

In the Bi0.96Pb0.04CuSeO system [157], the significantly increased density of the inter-
faces generated along the pressure direction during the sintering process can effectively
reduce κl; hence, the ZT = 0.85 at 840 K was achieved. In the textured KSr2Nb5O15 ceram-
ics [51,158], the power factor was significantly enhanced depending on different testing
directions, such that it was 283 µW/mK2 in perpendicular and 390 µW/mK2 in parallel
to the c direction at 1120 K. In summary, the above results indicate that the textured TE
ceramics should both possess a high texture fraction and a narrow grains distribution for
obtaining anisotropic thermal conductivity and high electrical conductivity.

4.7. Composites

For the ionic compound of oxide ceramics, their resistivity after doping modification,
nanostructuring, or entropy engineering is still relatively high. To further reduce the
resistivity of oxide ceramics, some compounds with excellent electrical conductivity, such
as metal particles, graphene, and its derivatives, are added to the matrix to improve the
thermoelectric properties.

M.J. Qin et al. added Bi2O3, nanosized Ag (30–40 nm in size), micro-sized Ti, and
nano-sized Ti particles into the Sr0.9La0.1TiO3 or Ca3Co4O9 matrix to optimize the electri-
cal and thermal properties [23,25,66]. These results demonstrate that the metal Ag and
Bi/BiOx located at grain boundaries can act as a conductive path between the adjacent
Sr0.9La0.1TiO3 and/or TiO2 grains to improve the carrier mobility and serve as the phonon
scattering centers to suppress κl. In the Sr0.9La0.1TiO3+20% Ag composite system shown in
Figure 12a–d, the conductive network illustrated in Figure 12d significantly increased σ to
~101.4 S cm−1 and the |S| slightly improved to ~241 µV K−1 at 883 K [25] simultaneously.
The (Ca0.9Ag0.1)3Co4O9/nano-sized Ag composites [159] were fabricated by a two-step
processing method of SPS combined with a heat–treatment and achieved the maximum
PF = 0.43 mW/(m·K2), S = 196.90 µV/K, the corresponding κl = 1.86 W/(m·K), and
ZT = 0.24 at 1223 K. In the polycrystalline SmBaCuFeO5+δ/Ag composite ceramics [160],
the hole concentration and mobility can be increased through the conductive effect of the
second phases of copper oxides and Ag; thus, the obtained ZT value is about 16 times that
of the pure SmBaCuFeO5+δ sample.

The Ca3Co4O9 and Na2Ca2Nb4O13 composite ceramic (Figure 12e) [161] can be pre-
pared by uniaxial pressing of the mixed compound powders followed by a conventional
sintering process with promising synergistic thermoelectric properties of ZT = 0.32 at
1073 K.

In addition, it has been confirmed that the 2D graphene can be introduced into SrTiO3-
based ceramics for grain refinement and promoting more oxygen vacancy formation to
enhance carrier mobility [162]. Therefore, SrTiO3-based ceramics containing graphite or its
derivatives achieve single-crystal-like electron mobility [162–165] because the delocalization
of Anderson localized electrons aided by graphite leads to a manifold improvement in
weighted mobility and further the enhanced electron transport properties.
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Figure 12. (a,b) TEM images, (c) temperature dependent on electrical conductivity, and (d) schematic
diagram of the conductive network formed by Ag particles of Sr0.9La0.1TiO3/xAg samples [25].
(e) Cross-sectional SEM and (e1–e5) EDS elemental maps of the composite sample after sintering
showing a single Na2Ca2Nb4O13 plate-like particle embedded in a Ca3Co4O9 matrix [161]. (f) TEM
image of dispersed SrTi0.85Nb0.15O3 particles in graphite flakes (schematic of the SrTi0.85Nb0.15O3

+ graphite composite in the inset), (g) σ, (h) ZT values, (i) B factor, and (j) schematic of electrical
transport promoted by G in the SrTi0.85Nb0.15O3 + graphite composite sample [162].

In the matrix of La0.07Sr0.93Ti0.93Nb0.07O3, graphite (G) was used to improve the
electrical conductivity, and the maximum ZT = 0.68 is obtained (Figure 12f–j) [162]. In the
nanostructured SrTi0.85Nb0.15O3 composited with graphene oxide sample, the maximum
ZT = 0.5 was attained at 1200K as a result of several orders increase of carrier mobility [165].

Ceramics of Sr0.9La0.1TiO3 with additions of B2O3 [65] exhibit a core–shell-like struc-
ture resulting in a high ZT = 0.39 ± 0.03. In SrTiO3-TiO2 biphase ceramics [166], a two-
dimensional electron gas (2DEG) formed spontaneously on the heterointerface. Addition-
ally, the addition of TiO2 increases carrier mobility as well as carrier concentration by
forming A-site cation vacancies. Therefore, a high PF = 1.66 mW/(m K2) and ZT = 0.24 was
achieved when the 25 wt% TiO2 addition at 447 K.

In future research, one or more optimization strategies will be explored and expanded
to improve the ZT values. Great efforts are required to pave the way for new oxide
TEs exploration for the manufacture of the next generation of TE power generators for
high-temperature applications.

5. Device Applications

Typically, a thermoelectric module consists of p-type and n-type TE legs and a metal
electrode. Multiple thermoelectric modules need to be connected by wire to achieve the
required output voltage, as shown in Figure 13 [167]. The thermoelectric device is usually
made of a Cu electrode and alumina substrate, which is welded as the connection means
to fix TE legs. The ceramic plates exhibit mechanical integrity and also act as electrical
insulators for cooled and heated surfaces. Besides the commonly used Aluminum Oxide
(Al2O3) ceramics, other ceramics, such as Beryllium Oxide (BeO) and Aluminum Nitride
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(AlN), can also be employed. Electrode materials, besides the commonly used Cu and Ag,
can also include Ni and alloy brazing materials, etc.
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assembly with temperature measuring points [167].

Traditional thermoelectric device design has the following concerns. The first is to
choose the appropriate p-type and n-type TEs which can be used in a wide temperature
range, with high thermoelectric properties, high mechanical properties (Vickers hardness
and fracture toughness), and high chemical stability. When the p-type and n-type TE legs
of the thermoelectric module have different σ and κ, the two types of TE legs need to be
designed with different geometric sizes [168]. In addition, it is necessary to pay attention to
the connection between the TE legs and the electrode. An effective means is a reasonably
well-designed sandwich. Electrode materials need to have high thermal conductivity and
high electrical conductivity, and a similar expansion coefficient, with high bond strength,
low contact resistance, and no serious diffusion reaction. To meet the above requirements,
a multi-layer interface layer is usually introduced into the electrode, which can resist the
element diffusion and chemical reaction, improve the connection strength, and minimize
the interface resistance and thermal resistance [169].

5.1. Power Generation

In recent years, thermoelectric modules have attracted wide attention due to their great
potential for power generation and electronic refrigeration. At present, oxide thermoelectric
devices can be used in a wide temperature range, especially in high temperatures, but
there are few types of research focused on oxide thermoelectric devices, and the efficiency
and power of thermoelectric conversion still need to be further improved. Most of these
modules are made of Ca3Co4O9 as p-type materials, and the most common thermoelectric
n-type oxides are CaMnO3, SrTiO3, ZnO, etc. [45]. TE modules usually adopt the silver bar
and silver paste [170], Cu, Ni, etc., as electrode contacts.

Skomedal et al. [167] assembled n-type CaMnO3 and p-type Ca3Co4O9, which were
sintered by discharge plasma into a thermoelectric module. The test setup is exhibited
in Figure 13a, and the schematic diagram is shown in Figure 13b. It contains a water-
cooled cooling block, an Inconel block with a 100 W heater, and two recesses for K-type
thermocouples. Each module was slowly ramped up in steps of 200 ◦C up to a maximum
hot side temperature of 800 ◦C. When the temperature difference is 760 ◦C, the maximum
specific power output is 56 mW/cm2, and the cycle test between 400 and 800 ◦C in a week
shows that the power output is reduced by more than 50%, mainly because of cracks and
oxidation layer formed near the nickel/oxide interface.

Choi et al. [171] use n-type (ZnO)7In2O3 and layered p-type Ca3Co4O9 legs to fabricate
an oxid-based thermoelectric generator. The silver paste was printed on the top and bottom
of each p-type Ca3Co4O9 and n-type (ZnO)7In2O3 leg by a screen printing method. At
1100 K, the ZT of thermoelectric properties of p-type and n-type legs are 0.55 × 10−4 and
1.35 × 10−4, respectively. When a temperature difference is 673 K, the maximum power
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obtained by 44 p-n modules is 423 mW. Funahashi et al. [172] tested the tensile and bending
strength of a device consisting of n-type CaMn0.98Mo0.02O3 and p-type Ca2.7Bi0.3Co4O9,
silver paste, and two alumina substrates at room temperature. The p-type device reaches
about 20 MPa when the pressure is 6.36 Mpa. The tensile strength of n-type devices is
less than 10 Mpa. By measuring the thermoelectric generation properties of the module,
including internal resistance, open circuit voltage, and output power, the performance
of the module under thermal cycling and the vibration is tested. For the module under
6.36 Mpa, no deterioration of thermoelectric properties was observed within 10,000 h.

5.2. Sensor Devices

One of the primary applications of TEs is the temperature sensors, namely thermo-
couples, in which the temperature measurement of thin film thermocouples belongs to
the contact in situ temperature measurement technology. For example, indium tin oxide
(ITO) -In2O3 film thermocouple [173] have a limit measuring temperature reaching 1300 ◦C
and the Seebeck coefficient reaches 160 µV/◦C, the MoSi2-Al2O3 and TaSi2-Al2O3 thin film
thermocouple [174] prepared by screen printing technology presented the thermoelectric
output of 16 mV at the high-temperature stage. In addition, Saini et al. [175] used pulsed
laser deposition technology to prepare on-chip thermoelectric film modules containing
five pairs of p-type Ca3Co4O9 and n-type Al0.02Zn0.98O legs on alumina, SrTiO3 single
crystal, and fused silicon substrate and the maximum output power is 29.9 pW. The re-
search and exploration of thermoelectric sensors are still in progress, and the oxide ceramic
thin film thermoelectric modules are expected to be widely used in high-temperature
thermoelectric sensors.

5.3. Flexibility and Wearable Devices

Flexible thermoelectric materials with excellent plastic deformation, light, inconspicu-
ous, and other characteristics have a widespread application in portable electronic devices
and wearable devices. Due to the ductility of inorganic semiconductors and ceramic in-
sulators rarely observed, the application of inorganic oxides in flexible TEs field is rarely
reported. Tian et al. [176] reported a flexible Na1.4Co2O4 TE based on Na1.4Co2O4 prepared
and coated on printing paper by the self-flux method. The obtained thermoelectric material
has S = 78–102 µV/K in the temperature range of 303–522 K. The PF = 159–223 µWm−1K−2,
which is superior to the Seebeck coefficient and power factor of other conducting polymers
such as PEDOT and derivatives and their compounds.

5.4. Other Application

Other applications of thermoelectric modules include aerospace, automotive waste
heat recovery systems, refrigeration, etc. At present, the application of alloy thermoelectric
has been well-researched, while oxide needs to be further studied.

Recently, organic-inorganic composites and hybrid materials have promoted a flexible
TE devices’ design and exploration, which can be used in wearable electronic devices,
and sensors to apply to the “Internet of Things” (IoT) field [177] with the spring-up and
development of novel two-dimensional (2D) materials growth, superlattice growth, and
inorganic-organic composites. Furthermore, using of high-performance nanostructured
TEs combined with spectrally selective solar absorbers to develop solar thermoelectric
generators (STEGs) obtained a peak efficiency of 4.6% [178], opening up the door to the
comprehensive application of TEs for energy conversion.

6. Future Outlook

At present, the main problem faced by oxide TEs is still the relatively low thermo-
electric conversion efficiency compared with alloy systems. For most oxides bulk TEs,
the challenge focuses on poor electrical conductivity, especially low carrier mobility. The
progress of relevant technologies and the strategies in other fields of alloy TEs provide
many new optimizing directions and guidance for the oxide TEs, such as further exploring
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the physical connotation of electricity and heat transport, predicting the corresponding
results through theoretical calculation or/and machine learning, and analog simulation,
which can also combine with experiments to prove each other to reduce the exploring time
of new TE materials.

Rapidly developed strategies of high-entropy engineering, multi-scale interface engi-
neering, defect chemistry, low-dimensionalization, nanoscale engineering, and quantum
dot hybrid array thermoelectrics and/or their composite strategies emerged and expect to
optimize thermoelectric performance. It is noteworthy that the 2D electronic gas (2DEG)
system is an intriguing area of study that could expect to achieve a great breakthrough
in thermoelectric performance. For example, at the interfaces between SrTiO3 and other
specific oxides such as TiO2 or LaAlO3, 2DEG can be created, and quantum confinements
combined with the consequent energy filtering effects lead to the ZT beyond 2 [179].

The application of magnetic field, addition or combination of the quantum dot, and
quantum effects in the low-dimensional semiconductors [180] can also be used to explore
their effects in thermoelectric applications through reasonable regulation methods. In the
near future, 3D printing technologies, direct ink writing, superstructures, and integration
of structure and functionality will become important strategies in the TE fields for material
research and development. The geometrical size and interfacial design of the modules
and devices should be focused on for the develop high-efficiency devices in future work.
In summary, oxide TEs with the advantages of chemical stability, oxidation resistance at
high-temperature, and no toxic or volatile elements will have broad application prospects,
such as industrial waste heat cycle, automobile exhaust gas utilization, etc.
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