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Abstract: Hydrogen addition affects the composition of exhaust gases in vehicles. However, the
effects of hydrogen addition to compression ignition engines in running vehicles have not been eval‑
uated. Hydrogen‑mixed air was introduced into the air intake of a truck equipped with a direct‑
injection diesel engine and running on a chassis dynamometer to investigate the effect of hydrogen
addition on fuel consumption and exhaust gas components. The reduction in diesel consumption
and the increase in hydrogen energy share (HES) showed almost linear dependence, where the per‑
centage decrease in diesel consumption is approximately 0.6 × HES. The percentage reduction of
CO2 showed a one‑to‑one relationship to the reduction in diesel consumption. The reduction in
emissions of CO, PM, and hydrocarbons (except for ethylene) had one to one or a larger correlation
with the reduction of diesel consumption. On the other hand, it was observed that NOx emissions
increased, and the percentage increase of NOx was 1.5~2.0 times that of HES. The requirement for
total energy supply wasmore when hydrogenwas added than for diesel alone. In the actual running
mode, only 50% of the energy of added hydrogen was used to power the truck. As no adjustments
were made to the engine in this experiment, a possible disadvantage that could be improved by
adjusting the combustion conditions.

Keywords: hydrogen; diesel; dual‑fuel; exhaust gas components; fuel consumption

1. Introduction
The use of fossil fuels has brought mankind great technological advances in a short

period of time [1]. However, this has caused problems such as climate change and air pol‑
lution by releasing greenhouse gases and reactive trace species into the atmosphere. As
mitigationmeasures have been taken to prevent climate change and air pollution caused by
fossil fuel consumption, an energy transition is expected to lead to decarbonization or the
creation of a carbon‑neutral society. Since clean technologies that do not emit greenhouse
gases or air pollutants, such as hydrogen technology, are expected to play an important
role in this energy transition [1,2]. The transportation sector, including road vehicles, avi‑
ation, and shipping, is the source of 16% of greenhouse gas emissions [3]. Particularly,
the combustion of fossil fuels such as gasoline and diesel in automobile engines is a ma‑
jor source of greenhouse gases and air pollutants. Therefore, clean technologies are also
expected to be used in automobiles.

Battery electric vehicles (BEVs) and fuel cell vehicles (FCVs) that use motors instead
of internal combustion engines are considered new clean technologies for achieving zero
carbon emissions. Alternatively, for cases where high power output is required and the
torque of the motor is reduced, hydrogen internal combustion engine vehicles (H2‑ICEVs)
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are being developed, in which hydrogen is burned in the engine to maintain a constant
torque even under high power conditions with no emission of carbonaceous emissions [4].

Hydrogen‑powered vehicles with spark‑ignition (SI) engines are being developed for
commercial use owing to their high suitability for using hydrogen as a sole fuel [3], al‑
though some drawbacks still exist [5]. However, the low cetane number and high auto‑
ignition temperature of hydrogen make its use as a sole fuel in compression ignition (CI)
engines difficult. Therefore, hydrogen has been used as an additive with diesel to facilitate
mixed combustion in CI engines [4].

Many reports have presented the effects of hydrogen addition to CI engines using en‑
gine dynamometers [3,6–23]. A typical trend of the effects of hydrogen addition to diesel
on CI engine emissions exhibited improved engine performance and increased engine tem‑
perature, which resulted in reductions of CO, PM, and CO2 emissions. However, it was
also shown that the effect of the hydrogen addition on total hydrocarbon (THC) and NOx
was more complex, and the hydrogen addition resulted in an increase or reduction of total
hydro THC and NOx depending on the engine load. Studies on engine dynamometers
have been performed with a constant load. During driving in the actual situation, engine
load varies frequently, and how hydrogen addition changed the emissions during such
actual running has not been investigated.

In this study, hydrogen was added to the intake air of a four‑cylinder CI engine
equipped on a diesel truck that was running in a practical test‑driving mode and three dif‑
ferent constant speed test‑driving modes on a chassis dynamometer at the Low Emission
Vehicle Facility in the National Institute for Environmental Studies (NIES) and its effects
on the engine’s fuel consumption and exhaust gas composition were investigated. Similar
benefits of hydrogen addition to the previous studies conducted using engine dynamome‑
ters were observed, which included and reduced diesel consumption and reduced CO2,
CO, and PM emissions. However, an increase in NOx emission and total energy consump‑
tion was shown as a disadvantage to be considered.

2. Experimental Method
The experiments were conducted on a diesel truck manufactured in 1991, of 2440 kg

vehicle weight and 4605 kg gross vehicle weight, with a mileage of 230,000 km, equipped
with a direct‑injection CI engine with a displacement of 3600 cc, to which the 1989 emis‑
sion regulations in Japan had been adapted. Table 1 shows technical specifications of the
test engine.

Table 1. Technical specifications of the test engine.

Engine Type
Inline 4 Cylinder,
Direct Injection CI Engine,
4 Stroke

Maximum power 110 ps (96 kw) at 3200 rpm
Maximum torque 31.0 kgm(304 Nm) at 1800 rpm
Type of cooling water
Swept volume 3600 cc
Bore × stroke 108.0 mm × 115.0 mm

For the driving test, the truck was installed on a chassis dynamometer at the National
Institute for Environmental Studies [24], as shown in Figure 1.

Hydrogen was generated by electrolysis of water using an oxyhydrogen (HHO) gen‑
erator (Enehelper EH‑4000, Notoice Ltd. Amagasaki, Hyogo, Japan. maximum total gas
production: 67 L/min) installed on the cargo bed. The produced gas contained hydrogen
and oxygen at a 2:1 ratio and a few water vapors. As produced, hydrogen gas was then
mixed with intake air and placed into the engine’s combustion chamber at a constant flow
rate (0, 3, 30, 60, and 67 L/min). To avoid gas backflow, safety and metering devices such
as a gas‑only flow meter, flow control valve, pressurizer, and backflow prevention valve
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were installed between the HHO generator and the air intake manifold. Since hydrogen
was produced through electrolysis, which electrolyzes water and does not separate gases,
it contained not only hydrogen, oxygen, and water vapor but also substances in a special
state that may change combustion reactions [25]. Although there are some differences
in the absolute amount of pollutant production between the use of hydrogen and HHO
as a second fuel, the relative effects of addition show similar trends [26]. Therefore, in
this study, we approximately treated HHO gas as a mixture of hydrogen and oxygen in a
2:1 ratio.
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Figure 1. Schematic diagram of a constant volume sampler (CVS) and method for sampling the
diluted exhaust gas.

Test run experimentswere performed as shown in Table 2, with the following four test
driving modes: JE 05 driving cycle [27] constant speed 40 km/h, constant speed
60 km/h, and constant speed 80 km/h, where the truck was driven by a programmed robot
(ADS‑1100, HORIBA). The JE 05 driving cycle is the emission test cycle for heavy vehicles,
including diesel trucks simulating driving on a city road and a highway, which consists
of many accelerations and decelerations that attempt to simulate driving on a city road,
whose maximum speed, average speed, and duration are 88 km/h, 27 km/h and approxi‑
mately 30 min, respectively (Figure 2).

Table 2. Features of the driving modes.

Run Modes Duration
(s)

Sample Dilution Average Speed
(km/h)

H2 Flow (L/min) *

0 2 20 40 or 45

JE 05 driving cycle 1829 16.3 27 〇 〇 〇 (40)
Constant 40 km h−1 900 19.8 40 〇 〇

Constant 60 km h−1 900 14.3 60 〇 〇 〇 〇 (45)
Constant 80 km h−1 900 12.0 80 〇 〇 〇 (40)

* Estimated from HHO flow rate assuming HHO contains only hydrogen and oxygen with 2:1 ratio.

The tailpipe of the vehicle was connected to a constant volume sampler (CVS; CVS‑
7200, HORIBA) via an introduction tube and dilution tunnel, and the exhaust gas was
diluted with zero air generated by a dilution air purifier (DAR‑2200, HORIBA) [26]. The
total CVSflow ratewas 3.5–20m3min−1, which varied according to the critical flowventuri
(CFV), as shown in Figure 1. The exhaust gas dilution factor was varied with each running
cycle andwas determined by the ratio of CO2 concentrations in the tailpipe and CVS. Total
emissions of CO, CO2, NOx, CH4, and THC during every test run were measured with
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a MEXA‑7200 (HORIBA), and those of PM were measured by gravimetric analysis after
being collected on a filter at a constant flow rate.
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Figure 2. Running speed in JE05 driving cycle.

Diluted exhaust gas was also collected continuously in a Tedlar bag having 150 L of
volume through a poly‑tetra‑fluoro‑ethylene (PTFE) bellows pump during a test run at
a constant flow rate depending on the driving cycle. A part of collected air was then in‑
troduced into sorbent‑filled cartridges at a constant flow rate of 50 sccm for 3 min. The
hydrocarbons (HCs) captured in the cartridges were desorbed using thermal desorption
system (Unity2, Markes International Ltd., Bridgend, UK) at 623 K and introduced to a
gas chromatograph with a flame ionization detector (GC‑FID; HP 6890, Agilent Technol‑
ogy, USA) equipped with dual columns (Agilent J&W HP‑1 and Agilent J&W GS‑Gaspro,
Agilent Technology, USA) [28]. In the analysis, the GC column was set at 313 K for 5 min
at first, then the temperature was increased at a rate of 5 Kmin−1 up to 413 K in 20min and
maintained for 5 min. Retention times and conversion factors between the GC‑FID peak
area and VOC concentration for each species were obtained by calibrating them against
a standard gas that includes various kinds of VOCs (PAMS‑J58, Sumito Seika Chemicals,
Japan) [28].

Furthermore, the change in combustion temperature with the addition of hydrogen
was evaluated using the KUCRS combustionmodel generated by the KUCRS software [29]
with somemodifications [30]. In the calculations, a simplified reaction simulation was per‑
formed with n‑cetane alone as fuel at an initial temperature of 1000 K, an initial pressure
of 30 atm, and constant volume conditions using the Cantera program [31]. The combus‑
tion temperature was calculated as an adiabatic flame temperature after ignition. Because
the present model does not include the NOx formation mechanism, the amount of NOx
formedwas not quantitatively evaluated; instead, relative change in the predicted combus‑
tion temperature in the hydrogen addition was calculated as a measure for the NOx forma‑
tion. The results for the fuel‑rich condition with an equivalence ratio of 10 are presented
to emphasize that the addition of hydrogen affects combustion temperature even under
oxygen‑deficient conditions. The correlation between the amount of hydrogen added and
combustion temperature was found to show the same trend for different equivalent ratios.
Calculations were performed for hydrogen addition volume fractions of 0, 0.001, 0.01, and
0.02; for simplicity, initial air CO2 concentration and reduced fuel consumption due to
hydrogen addition were not considered.

Hydrogen energy share (HES) was used as an indicator of hydrogenation and calcu‑
lated as follows:

HES =
MhydrogeneLHVhydrogen

MhydrogenLHVhydrogen + Mdiesel LHVdiesel
× 100 (1)
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whereM is the fuel consumption per run experiment (kg/run), and LHV is the lower heat‑
ing value (LHV) [3]. In this study, LHVs of 43 and 121 MJ/kg were used for diesel and
hydrogen, respectively [32].

3. Results and Discussion
The fuel consumption and total emissions of each component in each test are shown

in Table 3. In all tests, with the addition of hydrogen, a decrease in fuel consumption and a
fluctuation in emissions of each component were observed. Figure 3 shows the reduction
in fuel consumption corresponding to the total amount of hydrogen added.

Table 3. Summary of the fuel consumption and total emissions of each component.

Run Mode H2.5 Flow *
(L/min) HES (%) Fuel Consumption (L/run)

CO2 NOX CO THC CH4 PM

(g/run)

JE 05 driving cycle
0 0 1.38 3663 34.7 16.4 9.8 0.040 2.35
2 1.2 1.35 3578 34.2 15.6 10.1 0.041 2.31
40 21.6 1.20 3196 44.4 12.3 6.7 0.030 1.88

Constant speed at 40 km/h 0 0 0.61 1628 19.5 8.2 5.3 0.032 0.92
2 1.3 0.60 1599 19.2 8.2 5.7 0.028 0.88

Constant speed at 60 km/h

0 0 1.06 2805 22.0 11.9 6.8 0.057 2.07
2 0.8 1.05 2779 22.1 11.8 7.6 0.059 2.14
20 7.3 1.02 2725 24.5 10.6 6.9 0.030 1.68
45 16.1 0.95 2517 28.4 8.8 6.6 0.025 1.44

Constant speed at 80 km/h
0 0 1.74 4626 30.3 23.8 9.9 0.037 2.27
2 0.5 1.73 4591 30.1 24.0 10.3 0.052 2.21
40 9.2 1.60 4248 36.0 18.3 9.3 0.044 1.54

* Estimated from HHO flow rate assuming HHO contains only hydrogen and oxygen with 2:1 ratio.
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Figure 3. Dependence of the percentage reduction in fuel consumption on the percentage of hydro‑
gen addition in the total thermal energy of the fuel. HES: hydrogen energy share.

From Figure 3, in general, an increase in HES reduced the fuel consumption. For JE
05 driving cycle, fuel consumption decreased by 2.3% from 1.38 L without hydrogen to
1.35 L with a hydrogen flow rate of 2 L/min. For hydrogen flow at 40 L/min, fuel con‑
sumption decreased by 13% from 1.38 L to 1.20 L. At a constant speed of 40 km/h, fuel
consumption decreased by 1.6% from 0.61 L without hydrogen to 0.60 L with a hydrogen
flow rate of 2 L/min. At a constant speed of 60 km/h, the fuel consumption decreased by
0.8% from 1.06 L without hydrogen to 1.05 L with a hydrogen flow rate of 2 L/min and
10.3% to 0.95 L at a hydrogen flow rate of 45 L/min. At a constant speed of 80 km/h, the
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consumption decreased by 0.7% from 1.74 L without hydrogen to 1.73 L with a hydrogen
flow rate of 2 L/min and by 8.3% to 1.60 L at a hydrogen flow rate of 40 L/min.

On comparing the constant speed modes, a tendency for a greater reduction in fuel
consumption relative to HES at 80 km/h than at speeds below 80 km/h was observed. The
JE 05 driving cycle did not show the lowest reduction in fuel consumption relative to HES,
despite the lowest average speed of 27.4 km/h. The reduction in fuel consumption rela‑
tive to HES was found to be slightly dependent on the driving mode, but additional ex‑
periments are required to clarify the extent of the dependence. Although the reduction
in diesel consumption corresponding to an increase in HES was slightly different, they
showed almost linear dependence where the percentage decrease in diesel consumption is
approximately 0.6×HES. This relationship suggests that HES is useful to roughly predict
the reduction in diesel consumption.

CO2 was the most substantial emission component. CO2 was found to be reduced in
all the driving tests having hydrogen‑added fuel. In each test run, themaximum reduction
in CO2 occurred at the maximum hydrogen flow rate of 40 L/min, and 45 L/min at 60 km/h
constant speed. The reduction in CO2 was mainly due to an increase in the hydrogen
ratio in the fuel mixture and a decrease in the consumption of diesel. Figure 4 shows the
relationship of the percentage reduction in fuel consumption to the percentage reduction
in CO2 emissions.
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Figure 4. Relationship between the percentage reduction in diesel fuel consumption and percentage
reduction in CO2 emissions.

The percentage reduction in total CO2 emissions due to the addition of hydrogen
exhibited a very good agreement with the percentage reduction in fuel consumption. This
indicates that most of the fuel consumed was converted to CO2, and improving diesel
consumption is directly linkedwith a reduction inCO2 emission, and that reduction of CO2
emission can be estimated from HES as approximately 0.6 × HES using the relationship
shown in Figure 3.

The change in NOx emissions with the addition of hydrogen is shown in Figure 5.
At hydrogen addition at a rate of 2 L/min (HES~1%), NOx emissions decreased by

less than 2% for JE 05 driving cycle, constant speed 40 km/h and 80 km/h. On the other
hand, NOx emissions began to increase as hydrogen flow increased. The increase in NOx
emissions with HES tended to increase with increasing average speed during the test runs;
however, the differences between the driving modes were not pronounced. At a constant
speed of 80 km/h, where the effect of hydrogen was greatest, the percentage increase of
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NOx was 20% at 10% HES, almost twice that of the HES. The effect of hydrogen was small‑
est in JE05, the percentage increase of NOx was 1.5 times that of the HES.
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Figure 5. Change in NOx emissions with the addition of hydrogen.

Since NOx production enhances with increasing combustion temperature, in the
present experiment, the addition of hydrogen was considered to have increased the com‑
bustion temperature. The kinetic simulations under the fuel‑rich condition were used to
estimate the change in combustion temperature with the addition of hydrogen to n‑cetane
combustion. Figure 6 shows the change in combustion temperature predicted by themodel
calculations.
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Figure 6. Change in n‑cetane combustion flame temperature with the addition of hydrogen as pre‑
dicted by the combustion model.

Since the calculation conditions of the model were different from those in real, these
absolute values of the predicted temperatures cannot be applied to the experiments. An
increase in combustion temperature was relatively predicted as the hydrogen addition in‑
creased, as shown in Figure 6. The same trend was also observed in simulations under
stoichiometric and lean conditions. Talibi et al. reported that hydrogenation increases
NOx emissions only when the combustion temperature exceeds a threshold temperature
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and decreases when the temperature is below the threshold [13]. The small amount of hy‑
drogen added (HES~1%) resulted in a decrease in NOx as the temperature did not exceed
the threshold value, whereas the condition with sufficient hydrogen added resulted in an
increase in NOx as the temperature rose above the threshold value.

The percentage reduction in CO and PM relative to the percentage reduction in diesel
consumption due to the addition of hydrogen is shown in Figure 7.
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Almost all running tests demonstrated reduced CO and PM emissions with the addi‑
tion of hydrogen. As CO and PM are derived from diesel, it is assumed that the addition
of hydrogen reduced diesel combustion consumption, and therefore emissions were re‑
duced accordingly. With the hydrogen addition at a rate of 2 L/min (HES~1%), the rate
of reduction in CO and PM emissions was consistent with the rate of reduction in diesel
consumption. Furthermore, as the hydrogen addition increased, both the emissions of CO
and PM were reduced by more than the reduction in diesel consumption. This can be ex‑
plained by considering that the addition of hydrogen raises the combustion temperature,
increasing the degree of complete combustion and reducing CO and PM emissions [13].

Since hydrocarbons also originate from diesel combustion, such as CO and PM, THC
emissions also changed with the addition of hydrogen. The relationship between THC
emissions and the reduction in diesel consumption due to the addition of hydrogen gas
for each driving test is shown in Figure 8.

With the addition of a large quantity of hydrogen (≥40 L/min, ≥10% HES), a reduc‑
tion in THC emissions was observed. For JE 05 driving cycle, the rate of reduction in
THC emissions was greater than that in diesel consumption alone. For running tests at
higher average speeds other than JE 05 driving cycle, although THC emissions were re‑
duced, the rate of reduction was smaller than those in diesel consumption alone. On the
contrary, for the addition of a smaller quantity of hydrogen (<40 L/min, <10% HES), THC
emissions increased.

Figure 9 shows the change in HC components with hydrogen addition (2 L/min) at
the constant speed of 40 km/h in a running test, as measured by the GC‑FID.

Except for ethylene, a reduction in measured VOCs was observed after the addition
of hydrogen. This is mainly due to the reduction in diesel consumption after hydrogen
addition. Although not all VOCs were analyzed, it was assumed that the increase in com‑
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bustion temperature due to hydrogen addition accelerated the decomposition of the VOCs
with a higher carbon number, resulting in a simultaneous increase in ethylene emissions.
Since a large amount of acetylene is emitted as an exhaust gas component from diesel ve‑
hicles, besides ethylene, acetylene emissions may also have increased. This promotion of
VOC decomposition reactions is also thought to have suppressed PM formation besides
contributing to the degree of complete combustion.
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Figure 8. Percentage reduction in total hydrocarbons (THC) relative to the percentage reduction in
diesel consumption.
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Figure 9. Change in HC components with hydrogen addition at 2 L/min at a constant speed
of 40 km/h in a running test. Note: Alkene does not include ethylene, and aromatics do not
include benzene.

Finally, the energy balance of hydrogen addition was checked. A comparison of the
LHV of the added hydrogen and that of the diesel suppressed by hydrogen addition is
shown in Figure 10.

For small hydrogen additions (<40 L/min, <10%HES), the LHVof the added hydrogen
has shown to be consistent with the LHV of the reduced diesel fuel. On the other hand,
for large hydrogen additions (≥40 L/min, ≥10% HES), the LHV of the added hydrogen
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was greater than the LHV of the reduced diesel. For JE05, only 50% of the energy of added
hydrogen was used to power the truck. Presumably, some of the energy gained from com‑
bustion was used to increase the combustion temperature, which, in turn, increased the
total energy.

Energies 2023, 16, 4466 13 of 15 
 

 

Except for ethylene, a reduction in measured VOCs was observed after the addition 
of hydrogen. This is mainly due to the reduction in diesel consumption after hydrogen 
addition. Although not all VOCs were analyzed, it was assumed that the increase in com-
bustion temperature due to hydrogen addition accelerated the decomposition of the 
VOCs with a higher carbon number, resulting in a simultaneous increase in ethylene emis-
sions. Since a large amount of acetylene is emitted as an exhaust gas component from 
diesel vehicles, besides ethylene, acetylene emissions may also have increased. This pro-
motion of VOC decomposition reactions is also thought to have suppressed PM formation 
besides contributing to the degree of complete combustion. 

Finally, the energy balance of hydrogen addition was checked. A comparison of the 
LHV of the added hydrogen and that of the diesel suppressed by hydrogen addition is 
shown in Figure 10. 

 
Figure 10. Comparison of the lower hearting value (LHV) of the added hydrogen with that of the 
diesel suppressed by the hydrogen addition. 

For small hydrogen additions (<40 L/min, <10% HES), the LHV of the added hydro-
gen has shown to be consistent with the LHV of the reduced diesel fuel. On the other 
hand, for large hydrogen additions (≥40 L/min, ≥10% HES), the LHV of the added hydro-
gen was greater than the LHV of the reduced diesel. For JE05, only 50% of the energy of 
added hydrogen was used to power the truck. Presumably, some of the energy gained 
from combustion was used to increase the combustion temperature, which, in turn, in-
creased the total energy. 

4. Conclusions 
In this study, hydrogen was added to the intake air of a diesel truck having a four-

cylinder engine during running tests on a chassis dynamometer to investigate the effect 
of hydrogen addition on the engine’s fuel consumption and exhaust gas composition. The 
observed effects of hydrogen addition in JE05 actual driving mode and constant speed 
driving modes were similar and corresponded to the previous studies conducted using 
an engine dynamometer. The benefits included a reduction in diesel consumption and a 
reduction in CO2, CO, and PM emissions. 

The reduction in diesel consumption and the increase in HES showed almost linear 
dependence, where the percentage decrease in diesel consumption is approximately 0.6 × 
HES. The percentage reduction of CO2 showed a one-to-one relationship to the reduction 

0

5

10

0 5 10 15

LH
V

 o
f r

ed
uc

ed
 d

ie
se

l (
M

J)

LHV of added hydrogen (MJ)

JE05
60 km/h
40 km/h
80 km/h
1 to 1

Figure 10. Comparison of the lower hearting value (LHV) of the added hydrogen with that of the
diesel suppressed by the hydrogen addition.

4. Conclusions
In this study, hydrogen was added to the intake air of a diesel truck having a four‑

cylinder engine during running tests on a chassis dynamometer to investigate the effect of
hydrogen addition on the engine’s fuel consumption and exhaust gas composition. The
observed effects of hydrogen addition in JE05 actual driving mode and constant speed
driving modes were similar and corresponded to the previous studies conducted using
an engine dynamometer. The benefits included a reduction in diesel consumption and a
reduction in CO2, CO, and PM emissions.

The reduction in diesel consumption and the increase in HES showed almost lin‑
ear dependence, where the percentage decrease in diesel consumption is approximately
0.6 × HES. The percentage reduction of CO2 showed a one‑to‑one relationship to the re‑
duction in diesel consumption, i.e., approximately 0.6 × HES. The reduction in emissions
of CO, PM, andHCs (except for ethylene) has a one‑to‑one or larger correlation with the re‑
duction of diesel consumption, under the conditions of this study. This could be explained
by an increase in the combustion temperature with increasing hydrogen addition.

On the other hand, as an apparent disadvantage, it was observed that NOx emissions
increased in this study owing to the increase in combustion temperature. The effect of
hydrogen was smallest in JE05 and largest at a constant speed of 80 km/h, the percentage
increase of NOx was 1.5~2.0 times that of the HES It was also observed that THC emissions
increased because of a substantial increase in ethylene emissions when hydrogen addition
was not sufficient. The requirement of total LHV was more when hydrogen was added
than for diesel alone. For JE05, only 50% of the energy of added hydrogen was used to
power the truck. This also could be because energy is partly being used for increasing the
combustion temperature.

A major advantage of hydrogen‑mixed combustion diesel vehicles is that a hydrogen
tank could be installed in vehicles equipped with CI engines. Hydrogen additions to en‑
gines could be an inexpensive and simple low‑carbon strategy using existing CI engines
with little or no modification on engines. However, as mentioned above, an increase in
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NOx emission and total energy consumption exists as a major disadvantage of hydrogen
addition. How to deal with those disadvantages is the next issue to be considered.
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