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Abstract: Effective prediction of carbon prices matters a great deal for risk management in the carbon
financial market. This article designs a blended approach incorporating secondary decomposition
and nonlinear error-correction technology to predict the regional carbon price in China. Firstly, the
variational mode decomposition (VMD) method is used to decompose the carbon price, and then,
the time-varying filter-based empirical mode decomposition (TVFEMD) is introduced to decompose
the residual term generated by VMD, and the multiple kernel-based extreme learning machine
(MKELM) optimized by the sparrow search algorithm (SSA) is innovatively built to forecast the
carbon subsequences. Finally, in order to mine the hidden information contained in the forecasted
error, the nonlinear error-correction method based on the SSA-MKELM model is introduced to correct
the initial prediction of carbon price. The empirical results show that the proposed model improves
the prediction accuracy of carbon prices, with RMSE, MAE, MAPE, and DS up to 0.1363, 0.1160,
0.0015, and 0.9231 in Guangdong, respectively. In the case of the Hubei market, the model also
performs best. This research innovatively expands the prediction theory and method of China’s
regional carbon price.

Keywords: carbon price prediction; nonlinear error correction; TVFEMD; MKELM; SSA

1. Introduction

Cutting carbon emissions can benefit the natural environment and boost the rise in
economic value for financial assets [1]. Carbon emissions trading is an essential market
tool and sustainable environmental policy tool [2]. It can optimize the allocation of carbon
emission resources and reduce the cost of emissions [3]. In a sense, the carbon market can
internalize the externality of greenhouse gas emissions so as to combat climate change [4].
The BP statistical review of world energy states that China’s carbon dioxide emissions
related to energy were about 10 billion tons in 2020 and 2021, making up nearly 31%
of the carbon emissions worldwide. China is the largest carbon emitter [5]. In order to
actively address the issue of carbon emissions, China advocates the dialectical unity of
letting the market play a decisive role in the allocation of resources, better embodying the
function of the government. In this situation, China’s carbon emission reduction is driven
by the government and the market instead of singly by the government. This country has
formed an operational mode of coexistence between regional and national carbon markets.
Additionally, regional carbon markets have made good progress in design, operation, and
implementation in promoting the development and transformation of local energy [6].
The national carbon market, whose coverage, system design, and market operation are
immature, still needs the regional carbon markets to provide valuable reference [7].

The price of carbon serves as a key indicator for pricing greenhouse gas emissions in
the market [8]. Reasonable carbon market prices can deliver a valid price incentive signal for
businesses that reduce emissions [9]. Nevertheless, the operation process of China’s carbon
market suffers from greater uncertainty, resulting in severe fluctuations in the carbon
price and increased trading risks in the carbon market. Violent fluctuations in carbon
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prices hinder the sustainable development of the market [10]. Precise prediction of carbon
prices not only contributes to risk aversion for participants in the carbon market but also
provides investors with scientific decision-making tools. It can also encourage enterprises
to optimize resource allocation to achieve maximum profit. At the same time, carbon
price forecasting can further facilitate the formulation of economic and environmental
integration policies under the goals of carbon peak and carbon neutrality. Consequently,
it is essential to analyze and accurately predict the trend of the carbon price in order to
act as a guide for investors to avoid risks and for regulators to formulate a scientific and
reasonable mechanism.

In this study, Section 2 is the literature review. Section 3 outlines the theoretical
methods and the framework of the forecasting model. Section 4 introduces the empirical
analysis. The main conclusions and future research are summarized in Section 5.

2. Literature Review

The existing research for predicting carbon prices in China contains two kinds: single
models and hybrid models. For single models, Ren and Lo (2017) [11] utilized the general-
ized autoregressive conditional heteroscedasticity (GARCH) model to capture the carbon
price. Zeng et al. (2017) [12] adopted the structural vector autoregressive model to predict
carbon prices. Using the E-GARCH model, Zhang et al. (2018) [13] forecasted the price of
carbon and argued that the carbon price returns contained memory. Song et al. (2019) [14]
utilized a fuzzy stochastic model to forecast the carbon price in Shanghai. Precisely forecast-
ing the non-linear carbon price is particularly challenging because of the linear hypothesis
of statistical models. Huang et al. (2019) [15] pointed out that RBFNN outperformed BP in
terms of forecasting carbon prices. Utilizing a long short-term memory (LSTM) framework,
Xie et al. (2022) [16] predicted the carbon price, illustrating the practicality of the model.

However, because fluctuations in the regional carbon prices exhibit nonlinear, irregular,
and non-stationary characteristics [17–19], a single model cannot adequately describe
the intricate fluctuations in them. Signal decomposition technology can deeply explore
the laws of carbon prices at various frequencies to reduce noise and better grasp the
inherent characteristics of fluctuations in the carbon price [20–22]. Under this background,
prediction models based on signal decomposition technology have been extensively utilized
in carbon price prediction. Empirical mode decomposition (EMD) is a classic decomposition
method. Scholars adopted the EMD-GARCH model [23] and the EMD-SVM model [24]
to forecast carbon price. Given that ensemble empirical mode decomposition (EEMD)
performs slightly better than EMD in data decomposition, the EEMD-LSSVM model [25]
was proposed to capture carbon price. These single decomposition-based models reflect that
data decomposition processing plays an irreplaceable role in improving the performance of
carbon price prediction. However, EMD has mode aliasing, and EEMD still has residual
noise [26]. Yang et al. (2022) [27] forecasted the pilot carbon prices based on a modified
EEMD and LSTM models and concluded that the prediction effect of the combined model
outperformed the LSTM model. CEEMDAN is an improvement over EEMD. To this end,
Wang et al. (2021) [28] proposed the CEEMDAN-LSTM model to predict carbon prices.
Wang et al. (2023) [29] combined CEEMDAN, BP, extreme learning machine (ELM), Elman,
and LSTM to forecast the carbon price in Beijing and argued that the combined model
is superior to a single model. Unfortunately, the modes generated by CEEMDAN have
some residual noise [30]. Sun and Zhang (2022) [31] proposed a combined model that
integrates local characteristic-scale decomposition and LSSVM to forecast carbon prices.
Zhou and Chen (2021) [32] decomposed the carbon price by the ICEEMDAN, utilized
the ELM optimized by SSA to forecast carbon price, and concluded that carbon price
subsequences generated by ICEEMDAN are more regular compared to that of CEEMDAN.
Since KELM is an improvement on ELM, Hao and Tian (2020) [33] put forward a blended
model that incorporates ICEEMDAN and KELM to forecast carbon prices and proved the
superiority of the ICEEMDAN-KELM model. Sun et al. (2021) [34] combined VMD, SVM,
and LSTM to forecast carbon prices and maintained that the decomposition effect of VMD
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is superior to that of EEMD. Li et al. (2022) [35] developed a hybrid model based on VMD,
ELM, and KELM to capture the carbon price series and demonstrated the superiority of
VMD over EMD and CEEMDAN. Niu et al. (2021) [36] combined VMD, the outlier robust
ELM model, and an error-correction strategy to forecast the carbon price and suggested
that the model using the error-correction strategy achieved good prediction results.

However, a single decomposition strategy cannot completely deal with random and
irregular time series, resulting in large prediction errors for some decomposed series [37].
In order to reduce the data complexity, the secondary decomposition strategy is widely
used in carbon price decomposition. Namely, scholars have started attempting to combine
two decomposition approaches to decompose the price of carbon in an effort to lessen
the complexity of carbon price. Sun and Huang (2020) [38] adopted VMD to decompose
the highest frequency component generated by the EMD and used BP to forecast carbon
price, maintaining that the EMD-VMD-BP model can predict carbon price more accurately
than the EMD-based model. Zhou et al. (2021) [39] employed VMD to further decompose
the IMF1 obtained by EMD, used KELM optimized by SSA to forecast carbon price, and
linearly superimposed the predictions of each subsequence to obtain the predicted carbon
price. Zhou et al. (2022) [40] employed VMD to further decompose the most complex
subsequence of carbon prices obtained by CEEMDAN and utilized the LSTM to predict
carbon price, proving that the secondary decomposition-based model is conducive to
improving the forecasting levels of carbon prices. Li et al. (2022) [41] decomposed carbon
price by VMD; the modes with higher complexity were combined and decomposed by
CEEMDAN; then, they employed the ELM model to capture carbon price and concluded
that the decomposition effect of the VMD-CEEMDAN method is superior to the VMD or
the CEEMDAN method. Regarding ELM, the hidden node number needs to be addressed
and can be easily trapped in local optimum. Cheng and Hu (2022) [42] utilized ICEEMDAN
to decompose the residual term generated by VMD, used HKELM optimized by SSA to
predict the carbon price, and acquired the final prediction results by linearly superposing
the predictions of every subsequence. They found that the secondary decomposition
strategy outperformed the traditional decomposition method, and the prediction effect of
the HKELM on carbon prices is superior to the KELM.

In conclusion, there have been significant achievements in the current study of pre-
dicting the price of carbon. However, it still has shortcomings: (1) Previous research failed
to appropriately take into account the choice of kernel function when using KELM to
predict the price of carbon. The complicated properties of the carbon price may not be fully
captured by the KELM with a single kernel function or the KELM with a combination of
two kernel functions. Furthermore, for KELM, a bad kernel function could compromise
the forecasting precision of the carbon price. (2) Most studies used EMD, CEEMDAN, or
ICEEMDAN to decompose carbon residual sequences generated by VMD, which make
it difficult to depict the time-varying properties of the residual signal. (3) The existing
research on carbon price forecasting using the secondary decomposition technique ignores
the impact of forecast error on the prediction result of carbon price.

The innovations of this paper are as follows: (1) It builds the MKELM model to
forecast China’s regional carbon price. The wavelet kernel function has the advantages
of wavelet signal local analysis and multi-resolution analysis. KELM containing wavelet
kernel functions has never been used to predict carbon prices. Thus, MKELM is built to
predict carbon prices, which contains a novel mixed kernel function. The kernel function
is a combination of wavelet kernel, RBF kernel, and poly kernel functions. It can make
the expression ability of China’s regional carbon price prediction model closer to reality.
(2) TVFEMD, which can retain the time-varying characteristics of the signal, is innovatively
used to decompose the carbon price residual term generated by VMD. The secondary
decomposition strategy combining VMD and TVFEMD is utilized to better capture the
characteristics of carbon price at various frequency levels. (3) The two-step nonlinear
error-correction strategy is introduced to correct the initial prediction of the carbon price.
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This means that the error of the initial prediction is first predicted, and then, a non-linear
correction of the error is performed to obtain the final prediction.

3. Methods

This section provides a detailed description of the methods and frameworks required
to predict carbon prices.

3.1. VMD

Carbon prices are nonlinear and nonstationary, which increases the difficulty of their
forecasting. To this end, it is critical for forecasting to reduce the impact of volatility and
nonlinearity of the carbon price. The wavelet transform, EMD, and VMD models have
been frequently utilized in finance to address the nonlinear problem for time series [43].
However, the wavelet transform model suffers from problems including the choice of basis
function and an inaccurate description of the frequency-to-time transformation [44,45].
Compared with wavelet transform models, VMD has fewer tuning parameters. VMD [46] is
a signal decomposition method with strong noise robustness and a rigorous mathematical
theoretical framework. The noise or outliers in the data can be greatly removed via
VMD [47]. Compared with EMD, VMD can overcome mode aliasing [48]. Hence, VMD is
applied to extract the main characteristics of the carbon price.

For the raw carbon price y, the VMD method can decompose it into several intrinsic
mode functions, which are denoted by VMF components. Those VMFs contain the main
information about the carbon price and are more regular and predictable. According to the
theory of the VMD algorithm, the sum of all VMFs does not exactly match the raw carbon
price. Particularly, the residual term can be calculated by subtracting the sum of VMFs from
the raw carbon price. The process of VMD is realized by solving the following problem:

min
{yk},{wk}

{
K
∑

k=1
‖∂t[(δ(t) +

j
πt ) ∗ yk(t)]e−jwkt ‖2

2

}
s.t.

K
∑

k=1
yk = y

(1)

where yk is the k-th VMF, wk represents its central frequency, K is the number of VMFs, δ(t)
is the unit impulse function, ∗ is the convolution operation symbol, e−jwkt is an exponential
term, j is the imaginary unit, t is the time indicator, and ∂t is the partial derivative of t.

By introducing the Lagrange multiplier λ, we can turn the above problem into the
following problem:

L(yk, wk, λ) = α
K
∑

k=1
‖∂t[(δ(t) +

j
πt ) ∗ yk(t)]e−jwkt‖2

2

+‖y(t)−
K
∑

k=1
yk(t)‖2

2+ < λ(t), y(t)−
K
∑

k=1
yk(t) >

(2)

where α is the data-fidelity constraint. The alternative direction method of multipliers is
applied to address the above equation. The following formulas are used to update the
mode, its central frequency, and λ:

ŷn+1
k (w) =

ŷ(w)−
n
∑

i 6=k
ŷn

i (w) + λ̂n(w)
2

1 + 2α(w− wn
k )

2 (3)

wn+1
k =

∫ ∞
0 w|ŷ n

k (w)
∣∣2dw∫ ∞

0 |ŷ
n
k (w)

∣∣2dw
(4)
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λ̂n+1(w) = λ̂n(w) + τ(ŷ(w)−
K

∑
k=1

ŷn+1
k (w)) (5)

where τ is tolerance to noise.
The steps of the VMD are as follows:
Step 1: Define the initial y1

k , w1
k , and λ1.

Step 2: Update yk and wk with Equations (3) and (4).
Step 3: Update the value of λ with Equation (5).

Step 4: If the condition
K
∑

k=1
‖ŷn+1

k − ŷn
k ‖

2
2/‖ŷn

k ‖
2
2 < ε, is satisfied, the process of VMD

is over; otherwise, return to Step 2. The value of ε is set to 10−6.

3.2. TVFEMD

The carbon price residual term generated by VMD fluctuates violently and lacks
regularity. This study utilizes TVFEMD to weaken the prediction difficulty of the residual
term. Li et al. (2017) [49] proposed the TVFEMD. When compared to EMD, the TVFEMD
method helps avoid mode aliasing and retain the time-varying characteristics of signals [50].
The following are the main steps of the TVFEMD algorithm:

Step 1: Perform the Hilbert transform on the raw data series S(t), and the result is
noted as R(t). Then, calculate A(t) and λ(t). A(t) is the instantaneous amplitude of the S(t).
λ(t) is the instantaneous phase.

A(t) =
√

S(t)2 + R(t)2 (6)

λ(t) = arctan[S(t)/R(t)] (7)

Step 2: Define the local maximum and local minimum of the A(t), recorded as A({tmax})
and A({tmin}). Then, A({tmax}) and A({tmin}) are interpolated to obtain cur1(t) and cur2(t).
γ1(t) and γ2(t) are calculated as below.

γ1(t) =
cur1(t) + cur2(t)

2
(8)

γ2(t) =
cur1(t)− cur2(t)

2
(9)

Step 3: λ({tmin})A2({tmin}) and λ({tmax})A2({tmax}) are interpolated to obtain β1(t) and
β2(t); then, calculate the instantaneous frequency component λ′1(t), λ′2(t).

λ′1(t) =
β1(t)

2γ1
2(t)− 2γ1(t)γ2(t)

+
β2(t)

2γ1
2(t) + 2γ1(t)γ2(t)

(10)

λ′2(t) =
β1(t)

2γ22(t)− 2γ1(t)γ2(t)
+

β2(t)
2γ22(t) + 2γ1(t)γ2(t)

(11)

Step 4: Define λ′bis(t), which is local cut-off frequency:

λ′bis(t) =
λ′1(t) + λ′2(t)

2
(12)

Step 5: Readjust λ′bis(t) to solve the intermittent problem.
Step 6: Define ϕ(t) = cos[λ′bis(t)d(t)], where is employed to build the time-varying

filter. B-spline interpolation is utilized to filter S(t), and the outcome of the approximation
is given as m(t).
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Step 7: When σ(t) ≤ r is met, S(t) is determined as an IMF. Otherwise, S(t) = S(t) − m(t),
repeat the previous steps.

σ(t) =
Bloughlin(t)

λavg(t)
(13)

where σ(t) is the stop condition, λavg(t) is the weighted average of the instantaneous
frequency, and Bloughlin(t) is the Loughlin instantaneous bandwidth. The value of r is
set to 0.1.

Eventually, several IMF components are acquired.

3.3. MKELM Optimized by SSA
3.3.1. Basic Theory of MKELM

As a novel feedforward neural network, ELM model has less parameter setting, a faster
learning rate, stronger generalization ability, simplicity, and ease of use. However, the input
weights and hidden layer thresholds of the ELM model are created randomly. Meanwhile,
the number of hidden layer nodes of the ELM needs to be determined subjectively. These
shortcomings will weaken its the stability. To alleviate the problem, Huang et al. (2012) [51]
developed the KELM. Compared with ELM, the regression result of KELM is more sta-
ble [52]. In KELM, the kernel mapping replaces the random mapping. The generalization
ability and stability of the KELM model is superior to ELM. However, different kernel
functions have significantly different forecasting performance. Any base kernel may not be
suitable for a variety of applications. Usually, the KELM with a single kernel function has
limited representation capability and struggles to capture the complicated characteristics in
carbon price. Compared with KELM, the MKELM has better generalization performance
and learning ability and can enhance forecasting performance. Therefore, the MKELM is
used to forecast carbon price.

For the training dataset (xi, ti), the input included in the forecasting model is xi, and ti
is its output. The standard KELM regression model can be displayed as follows:

f (x) =

 K(x, x1)
...

K(x, xN)

(I/C + ΩKELM)−1T (14)

In Equation (14), ΩKELM is a kernel matrix, I is a unit diagonal matrix, C represents
a regularization coefficient, the addition of C can improve stability, and T is the target
output matrix.

The kernel function K(x, xi) has an important influence on the prediction ability of
KELM. The popular kernel functions used in the KELM model are RBF kernel, poly kernel,
and wavelet kernel function. They are, respectively, expressed as Krbf, Kpoly, and Kwav. The
corresponding formulas of Krbf, Kpoly, and Kwav are as follows:

1© Krbf(x, xi) = exp(− ‖x−xi‖2

a )

2© Kpoly(x, xi) = (x · xi + b)d

3© Kwav(x, xi) = cos
(

g1(x−xi)
g2

)
exp

(
− ‖x−xi‖2

g3

)
where d is the order of the Kpoly. While Kpoly has superior generalization capabilities,

Krbf has better learning capabilities [53], and wavelet kernel function has the advantages
of wavelet signal local analysis and multi-resolution analysis [54]. Each single kernel
function often has its own application field, making it challenging for them to maximize
their capacity for representation. An unsuitable kernel function may have a negative
impact on the predicted precision of the price of carbon [55]. It is thus crucial for modeling
and prediction to build a general multiple-kernel-based function for KELM. Based on
Mercer’s theory, another kernel function can be created by linearly mixing different kernel
functions. To combine the advantages of Krbf, Kpoly, and Kwav to their fullest extent, this
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paper constructs the following combined kernel function, which is made up of multiple
kernel functions:

Kcomb(x, xi) = w1 · Krbf + (1− w1 − w2) · Kpoly + w2 · Kwav (15)

In Equation (15), W1 is the weight of the corresponding RBF kernel function, W2
represents the weight of the wavelet kernel function, and (1− w1 − w2) is the weight of
the poly kernel function. MKELM uses Kcomb as the kernel function. When compared to
KELM, MKELM, which utilizes a weighted combination of multiple kernel functions, can
enhance prediction performance [56]. MKELM is therefore utilized to forecast the price of
carbon. It can be seen from Equations (14) and (15) that the stability and effectiveness of
the MKELM model depend primarily on the regularization coefficient C; kernel function
parameters a, b, d, g1, g2, and g3; and weights W1 and W2 in the model. These parameters
need to be optimized to achieve greater predictive performance of the carbon price.

3.3.2. Sparrow Search Algorithm

As an optimization algorithm, SSA was proposed by Xue and Shen (2020) [57]. Com-
pared with PSO, it has faster convergence, stronger optimization ability, and stronger
robustness [58]. Therefore, the aforementioned parameters of the MKELM are selected by
the SSA to effectively reduce the randomness of parameter selection.

In SSA, the results of optimization are obtained by simulating sparrows foraging and
anti-predatory behavior. Based on the basic idea of SSA, the sparrow population is divided
into three roles: discoverer, joiner, and vigilante.

The discoverers actively look for food sources. In general, the discoverers account for
10% to 20% of the total. The formula for position iteration of the discoverers is as follows:

xt+1
id =

{
xt

id · exp( −i
α·T ), R2 < ST

xt
id + Q · L, R2 ≥ ST

(16)

where T is the maximum iterations; i = 1,2, . . . ,N, N is the number of sparrows; α and
Q represent random numbers; t is the current times of iterations; L is a matrix whose all
elements are 1, with a size of 1 × d; ST ∈ [0.5, 1] represents a safe value; and R2 represents
a warning value between [0, 1]. When R2 < ST, the search environment is safe, there
are no predators, and the discoverers will broaden the search area to obtain better fitness.
When R2 ≥ ST, predators are found around the foraging location, and the population
immediately adjusts the search strategy.

The joiners follow the discoverer for food. The position update formula of the joiners
is as given below:

xt+1
id =


Q · exp( xwt

d−xt
id

i2 ), i > n
2

xbt+1
d + 1

D

D
∑

d=1
(rand{−1, 1} ·

∣∣∣xt
id − xbt+1

d

∣∣∣), i ≤ n
2

(17)

where xbt+1
d is the best position, and xwt

d represents the worst position.
Sparrows for early warning and reconnaissance usually occupy 10% to 20% of the

entire population. These sparrows are called vigilantes. The position is updated as below:

xt+1
id =

 xbt
d + β(xt

id − xbt
d), fi 6= fg

xt+1
d + K( xt

id−xwt
d

| fi− fw |+e ), fi = fg
(18)

where xbd is the globally optimal location, and K∈ [−1, 1] represents a random number.
e is a minimal constant for avoiding the situation in which the denominator equals 0, fi
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is the fitness value of the current sparrow, fg is the global optimal, and fw represents the
worst fitness values. β represents a random digit obeying standard normal distribution.

All in all, the sparrow population iterates based on the Equations (16)–(18). Once the
conditions are met, the process of position updating of the sparrow population ends.

3.4. Error Correction Strategy of Carbon Price Prediction

Any prediction model will have a certain degree of prediction error. Critical infor-
mation for carbon price forecasting is contained in the prediction error of carbon price.
Hence, it is essential to fully utilize the effective information contained in the historical
forecasting error. To further strengthen the prediction performance of the carbon price, the
initial prediction error can be predicted to modify the prediction of the original carbon
price, thereby weakening the inherent error of the combined model. The initial predic-
tion error of carbon price in this paper is obtained by subtracting the initial prediction
value of carbon price from the original carbon price. The choice of a correction strategy
for the initial prediction error is the key to carbon price-prediction error correction. The
current error-correction studies frequently employ the strategy of a simple addition of
the error-prediction value and the initial prediction value to arrive at the final prediction
result of the carbon price. However, the simple addition strategy has some limitations
in capturing the impact of the error sequence and the initial prediction on the overall
prediction result of the carbon price. To tackle carbon price forecasting with more precision,
a nonlinear error-correction approach is required. Accordingly, based on SSA-MKELM,
this research suggests a nonlinear correction technique. The following are the steps of the
error-correction technique for predicting the price of carbon:

Step 1: Create the error-prediction model to predict the error.
The initial prediction error of the carbon price is a set of time-series data. The auto-

correlation of the error series is determined by PACF as the lag of the error series. Define
Error(t) as the initial prediction error of the carbon price in period t. Using the historical
data of Error (t) as the input term, the SSA-MKELM model is adopted to train and predict
Error(t), and the predicted value of the error series in period t is obtained and recorded as
EForecast(t).

EForecast(t) = MKELM(EForecast(t − 1), EForecast(t − 2), . . . , EForecast(t − n))

Step 2: Carry out a non-linear correction to determine the final predicted results of the
carbon price.

The performance of the forecast model of the carbon price can be increased by imple-
menting an efficient error-correction approach. In this paper, a nonlinear error-correction
strategy based on SSA-MKELM is proposed; that is, take the EForecast(t) and the initial
prediction value of carbon price Forecast(t) as the input item of the MKELM model, take the
actual price of carbon price in t period as the output item, build the mapping relationship
between the input and the actual carbon price through sample training and learning, and
then obtain the final prediction. The expression is as follows:

ŷ(t) = MKELM(EForecast(t), Forecast(t))

3.5. The Framework of the Proposed Model

This study constructs a combined forecasting model for China’s regional carbon price
based on secondary decomposition and a nonlinear error-correction strategy called the
VMD-TVFEMD-SSA-MKELM-ENC model. Figure 1 is the flowchart of the model. The
following are the detailed modeling steps:

(1) Decomposition of the carbon price series: VMD is utilized to decompose the carbon
price into several VMF components, which contain the main information of the carbon
price. Subtract the sum of all VMF components from the carbon price to obtain a
residual term. The residual term is a time series with irregular fluctuations. As an
indispensable part of the carbon price, it offers valuable information for predicting
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the carbon price. Therefore, the residual term must be taken into account when
predicting the price of carbon. The residual term is decomposed by TVFEMD to lessen
its complexity. As a result, the residual term is divided into several IMFs;

(2) Initial prediction of the carbon price: Each subsequence, including each VMF and
IMF, is predicted based on the SSA-MKELM model. The input of each subsequence of
carbon price is identified by the PACF test. By adding the prediction values of each
VMF and IMF, the initial prediction result for the price of carbon is obtained;

(3) Prediction of the initial prediction error: The initial prediction error is calculated by
subtracting the initial prediction of carbon prices from the actual carbon prices. The
SSA-MKELM model is further utilized to forecast the initial prediction error time
series. Moreover, historical error data selected by PACF serve as the input;

(4) Integrated prediction of carbon price: The SSA-MKELM is utilized again to non-
linearly integrate the initial prediction and error prediction. More specifically, the
initial prediction of carbon price and the prediction value of the initial prediction
error are employed as input variables of the SSA-MKELM model to produce the final
prediction result for carbon price.
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4. Empirical Analysis

This section includes the empirical process and analysis of predicting carbon prices.
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4.1. Sample Selection and Evaluation Criteria

Among the carbon pilots in China, the cumulative trading volume and turnover of the
Guangdong and Hubei carbon markets have been leading the country for a long time [59].
The trading activities of these pilots are more active, and the carbon price markets are more
representative. Thus, this article selects the daily spot closing price of carbon emission
quotas in these two regional carbon markets as the carbon price sample data for research.
Among them, the data of carbon price in Guangdong are from the Guangzhou Carbon
Emission Exchange (http://www.cnemission.cn, accessed on 21 October 2022), and the
sample time range is from 3 January 2017 to 20 October 2022. The data of carbon price in
Hubei are from the website of the Hubei Carbon Emission Exchange (https://www.hbets.
cn, accessed on 10 November 2022), and the sample time range is from 3 January 2017 to
9 November 2022. See Table 1 for the division of sample data sets. The ratio of each training
set and each test set is about 8:2. In Table 1, stage 1 is the initial prediction stage of the
carbon price, and stage 2 is the stage of error correction. The empirical model of this paper
runs on MATLAB 2019b.

Table 1. Sample Data of Carbon Price.

Markets Stage Datasets Date Size

Guangdong
Stage 1 Training set 2017.01.03–2021.09.08 1106

Test set 2021.09.09–2022.10.20 270

Stage 2 Training set 2021.09.09–2022.08.03 218
Test set 2022.08.04–2022.10.20 52

Hubei
Stage 1 Training set 2017.01.03–2021.09.08 1076

Test set 2021.09.09–2022.11.09 270

Stage 2 Training set 2021.09.09–2022.08.22 218
Test set 2022.08.23–2022.11.09 52

Table 2 displays the descriptive statistics of the sample data of carbon price.

Table 2. Descriptive statistics.

Market Max Min Mean Std. Dev. Skewness Kurtosis Jarque–Bera p-Value

Guangdong 95.26 11.05 31.89 20.57 1.34 3.67 437.22 0.000

Hubei 61.48 11.26 29.45 10.89 0.31 2.30 48.57 0.000

Table 2 shows that during the sample period, the minimum carbon price is about
11 yuan. The highest carbon price in Guangdong and Hubei reached 95.26 yuan/ton and
50 yuan/ton, respectively. These data demonstrate that the regional carbon price time
series fluctuates significantly. The standard deviation of the carbon price in Guangdong
and Hubei is 20.57 and 10.89, respectively, indicating that the carbon price data are discrete
and that the carbon price in Guangdong fluctuates more violently than in Hubei. The
values of skewness, kurtosis, and Jarque–Bera indicate that the carbon prices of the two
markets are not subject to normal distribution.

To comprehensively evaluate the prediction effect of this model on carbon price,
Table 3 gives the specific calculation formula of evaluation criteria, consisting of RMSE,
MAE, MAPE, and DS. The first three indicators are used to evaluate the accuracy of the
prediction level. DS is used to evaluate the accuracy of the prediction direction of the model.
The larger the value, the more accurate the model in judging the trend.

http://www.cnemission.cn
https://www.hbets.cn
https://www.hbets.cn
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Table 3. Evaluation criteria for prediction performance of carbon price.

Index Formula

Forecasting accuracy

RMSE RMSE =

√
1
N

N
∑

i=1
(yi −

_
y i)

2

MAE MAE = 1
N

N
∑

i=1

∣∣∣yi −
_
y i

∣∣∣
MAPE MAPE = 1

N

N
∑

i=1

∣∣∣∣ yi−
_
y i

yi

∣∣∣∣
Forecasting direction DS

DS = 1
N

n
∑

i=1
di

di =

{
1 , (y(t)− y(t− 1))(ŷ(t)− y(t− 1)) ≥ 0
0 , (y(t)− y(t− 1))(ŷ(t)− y(t− 1)) ≤ 0

To more intuitively assess the prediction accuracy, three additional metrics were added.
They are the PRMSE, PMAE, and PMAPE. They can serve as a way to evaluate predicted
performance improvements. Among them, the RMSE1, MAE1, and MAPE1, respectively,
represent the corresponding metrics of the benchmark model. The RMSE2, MAE2, and
MAPE2, respectively, represent the corresponding metrics of the comparative model.

PRMSE =
RMSE1 − RMSE2

RMSE1
× 100%

PMAE =
MAE1 −MAE2

MAE1
× 100%

PMAPE =
MAPE1 −MAPE2

MAPE1
× 100%

4.2. Process of Decomposition and Prediction of Carbon Price

Due to space limitation, we take the Guangdong carbon market price as an exam-
ple to show the process of decomposition, selection of input items of each subsequence,
and prediction.

4.2.1. Analysis of Decomposition of Carbon Price

Before applying VMD to the carbon price, the number K of VMF components needs
to be preset. The setting of K value is related to the sufficiency of carbon price feature
extraction. Regarding the setting of the K, the existing literature proposed that the num-
ber of subsequences decomposed by EEMD is used as the number of K of VMD [60,61].
Since the decomposition effect of ICEEMDAN beats EEMD, and it can also automatically
decompose the appropriate number of carbon price mode components, the value of K in
this paper refers to the number of ICEEMDAN. Since eight components can be obtained
by decomposing the carbon price in Guangdong in the whole sample period through
ICEEMDAN, K is preset as 8; that is, eight VMF components can be obtained by VMD.
The residual term generated by VMD fluctuates violently and is highly complicated. To
better grasp the fluctuation rule of the residual term, the TVFEMD is further employed
to decompose it into six IMF components. Figure 2 displays the specific decomposition
consequence of VMD-TVFEMD for the carbon price in Guangdong:

In Figure 2, the carbon prices in the Guangdong market are decomposed by VMD.
Based on this, eight VMF subsequences and a residual term are obtained. Among them,
eight VMF series have obvious fluctuation rules, while the residual series has intricate
fluctuations and a lack of rules. The residual term is decomposed by TVFEMD, and
six IMF subsequences containing residual fluctuation information are obtained. Finally,
14 subsequences are obtained. These 14 subsequences are more regular, representing the
carbon price laws of different fluctuation periods, respectively.
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4.2.2. Selection of Input Variables

The selection of the input is essential for forecasting these subseries of carbon prices.
The PACF is a common method to determine the lag period of time series. This paper
adopts the PACF to examine the autocorrelation of each subsequence of carbon price
(Figure 3). In Figure 3, each subsequence of carbon price will be influenced by its own
previous historical data to varying degrees.
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Based on the above PACF consequences, Table 4 details the input of the prediction
models for each subsequence.
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Table 4. Input of each subsequence prediction model.

Subseries Lag Subseries Lag

VMF1 1,2,3,5 VMF8 1,2,3,4,6
VMF2 1,2,3,4,5,6 IMF1 1,2,3,4,6
VMF3 1,2,3,4,6 IMF2 1,2,3,4
VMF4 1,2,3,4,5,6 IMF3 1,2,3,4,5,6
VMF5 1,2,3,4,5,6 IMF4 1,2,3,4,5,6
VMF6 1,2,4,5,6 IMF5 1,2,3,4,5,6
VMF7 1,2,3,4 IMF6 1,2,6

In Table 4, different subsequences may have different degrees of autocorrelation
from historical data, which also indicates the necessity of the PACF test. Obviously, the
forecasting models for VMF2, VMF4, VMF5, IMF3, IMF4, and IMF5 take the data from the
preceding six trading days as their input.

4.2.3. Prediction Process of Carbon Price

In the first stage, the initial prediction of the carbon price is carried out. The MKELM
model optimized by SSA is employed to predict each VMF and IMF component, respec-
tively. Then, the initial prediction result for carbon price is obtained by superimposing
the prediction results of each subsequence. The combined model that performs secondary
decomposition and the initial prediction of carbon price is defined as the VMD-TVFEMD-
SSA-MKELM model. The optimization process of SSA for each key parameter consisting
of a, b, d, g1, g2, g3 and w1 and w2 is implemented in the training phase of the MKELM
model. The following are the parameter settings for the SSA: the pop is set to 20, the
maximum number of iterations is set to 20, the search range of d is [1, 10], the search
range for both W1 and W2 is [0, 1], and the search range of the other parameters = [0.001,
1000]. Table 5 shows the key parameters of the MKELM model obtained through the SSA
optimization algorithm.

Table 5. The parameters of MKELM model for forecasting carbon price subsequences.

Subseries W1 W2 C a b d g1 g2 g3

VMF1 0.2 0.1 559 169 561 2 227 61 111
VMF2 0.03 0.1 495 920 366 1 750 285 439
VMF3 0.002 0.01 711 867 118 1 598 604 516
VMF4 0.003 0.3 220 88 253 1 294 461 1
VMF5 0.04 0.1 338 430 859 1 506 618 282
VMF6 0.7 0.2 890 959 547 2 149 257 840
VMF7 0.1 0.4 712 823 705 1 675 84 574
VMF8 0.3 0.02 678 246 123 1 602 361 287
IMF1 0.32 0.71 118 39 932 2 475 598 604
IMF2 0.3 0.2 393 409 80 1 293 39 0.1
IMF3 0.2 0.3 763 914 28 1 448 654 139
IMF4 0.1 0.8 54 212 81 3 867 16 0.04
IMF5 0.8 0.1 264 212 94 2 138 746 202
IMF6 0.4 0.5 922 492 904 3 83 53 298

In Table 5, the Kpoly has the biggest weight for the training of VMF1–VMF5, VMF7–
VMF8, and IMF2–IMF3, suggesting that this kernel function is more crucial for the pre-
diction of these sequences. The weight of Kwav for training IMF1 and IMF4 is as high
as 0.71 and 0.8, respectively, indicating that it will be more important in the prediction
of these sequences. The Krbf has the biggest weight for the training of VMF6 and IMF5,
indicating that this kernel function will be more useful in the prediction of these sequences.
The analysis mentioned above supports the idea that different kernel functions may be
better suited for the prediction of certain subsequences. It also proves the necessity of
constructing combined kernel function.
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The prediction performance of each subsequence by using SSA-MEKLM is displayed
in Table 6. It is evident that the prediction performance of the MKELM optimized by SSA
for each subsequence is good. It shows that this method is suitable for forecasting each
subsequence of carbon price.

Table 6. The prediction performance of each carbon price subsequence.

Series RMSE MAE MAPE DS

VMF1 0.0153 0.01118 0.0002 0.9593
VMF2 0.0252 0.0173 0.0876 0.9704
VMF3 0.0327 0.0226 0.6981 0.9667
VMF4 0.0392 0.0269 0.1945 0.9667
VMF5 0.0420 0.0294 0.3269 0.9852
VMF6 0.0461 0.0338 0.7043 0.9593
VMF7 0.0414 0.0295 0.5768 0.9778
VMF8 0.0140 0.0101 0.1272 0.9963
IMF1 0.0031 0.0023 0.0450 0.9926
IMF2 0.0191 0.0149 1.3208 0.9741
IMF3 0.0047 0.0034 0.1535 0.9926
IMF4 0.0040 0.0025 0.1198 0.9852
IMF5 0.0018 0.0013 0.1104 0.9926
IMF6 0.0045 0.0027 0.8796 0.8852

To extract useful information from the historical error series more effectively and
reduce the impact of system error on the prediction accuracy of the carbon price, we enter
the second stage. This phase comprises two steps: error prediction and ensemble learning.
Firstly, the MKELM model optimized by SSA is used to predict the error of initial prediction
of carbon price, and the predicted value of the error is obtained. Then, an ensemble learning
model based on SSA-MKELM is constructed, where the initial prediction results and error-
prediction results of carbon price act as the input to obtain the final prediction results of
carbon price. The results of parameter optimization in this stage are shown in Table 7.
Up until now, a comprehensive process consisting of secondary decomposition, initial
prediction, and error correction of the carbon price has been accomplished. That is, using
these optimal parameters, the prediction of the carbon price based on the VMD-TVFEMD-
SSA-MKELM-ENC model can be acquired.

Table 7. Optimal parameters of MKELM model in error-correction stage.

Model W1 W2 C a b d g1 g2 g3

Error prediction 0.70 0.60 964 0.002 132 2 652 330 977
Ensemble learning 0.34 0.70 563 147 606 1 237 39 83

4.3. Comparison and Analysis of Carbon Price Prediction Effect
4.3.1. Comparative Analysis of Initial Prediction Effect of Carbon Price

To demonstrate the effectiveness of the initial prediction model VMD-TVFEMD-SSA-
MKELM, this model is compared with the reference group models. The reference group
models are composed of the SSA-HKELM, SSA-MKELM, the VMD-SSA-MKELM model,
and the TVFEMD-SSA-MKELM model. Among them, SSA-HKELM and SSA-MKELM
are two benchmark models that exclude decomposition technique. The input of these
single models for carbon price prediction is the historical data on the carbon price, which is
determined by the PACF. The VMD-SSA-MKELM model is applied VMD to process carbon
prices, disregarding the residual term, and then, we utilize the SSA-MKELM to predict each
subseries before aggregating the predictions of each subseries. The TVFEMD-SSA-MKELM
model applies TVFEMD to decompose the carbon price and then employs SSA-MKELM to
forecast each subseries before adding up the predictions of all subsequences. The VMD-SSA-
MKELM and the TVFEMD-SSA-MKELM are single decomposition-based models. Figure 4
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displays the initial predictions of the above models on the carbon price in Guangdong and
Hubei. Table 8 shows the comparison of the prediction performance, and Table 9 shows the
improvement percentage of the different forecasting models.
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Table 8. Comparison of initial predictive performance of carbon price.

Dataset Models RMSE MAE MAPE DS

SSA-HKELM 1.5865 0.9488 0.0139 0.5556
SSA-MKELM 1.5744 0.9365 0.0138 0.5667

Guangdong VMD-SSA-MKELM 0.2149 0.1591 0.0024 0.9296
TVFEMD-SSA-MKELM 0.2377 0.1630 0.0024 0.9000

VMD-TVFEMD-SSA-MKELM 0.1639 0.1219 0.0019 0.9333

SSA-HKELM 1.0934 0.6130 0.0140 0.5000
SSA-MKELM 1.0897 0.5960 0.0136 0.5481

Hubei VMD-SSA-MKELM 0.2845 0.2043 0.0047 0.8222
TVFEMD-SSA-MKELM 0.2543 0.1785 0.0042 0.8481
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Table 9. The improvement percentage of the models.

Dataset Benchmark Model Comparative Model PRMSE PMAE PMAPE

SSA-HKELM SSA-MKELM 0.76% 1.30% 0.72%
Guangdong SSA-MKELM VMD-SSA-MKELM 86.35% 83.01% 82.61%

VMD-SSA-MKELM VMD-TVFEMD-SSA-MKELM 23.73% 23.38% 20.83%
TVFEMD-SSA-MKELM VMD-TVFEMD-SSA-MKELM 31.05% 25.21% 20.83%

SSA-HKELM SSA-MKELM 0.34% 2.77% 2.86%
Hubei SSA-MKELM VMD-SSA-MKELM 73.89% 65.72% 65.44%

VMD-SSA-MKELM VMD-TVFEMD-SSA-MKELM 56.24% 56.53% 57.45%
TVFEMD-SSA-MKELM VMD-TVFEMD-SSA-MKELM 51.04% 50.25% 52.38%

Table 8 quantifies the forecasting performance of the models and suggests the follow-
ing points:

In terms of the Guangdong market, the specific comparative analysis is as follows:
(1) Each evaluation criterion demonstrates that VMD-TVFEMD-SSA-MKELM model out-
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performs the reference group models. The RMSE, MAE, MAPE, and DS of the VMD-
TVFEMD-SSA-MKELM are the best of all models. Their values are 0.1639, 0.1219, 0.0019,
and 0.9333, respectively. (2) In terms of the comparison among single models, compared
with the SSA-HKELM model, the SSA-MKELM model shows superior predictive capacity.
The values of RMSE, MAE, and MAPE of the SSA-HKELM are larger than those of SSA-
MKELM. The DS of the SSA-HKELM is lower than that of the SSA-MKELM. This is
primarily because the weighted kernel function adopted by MKELM is more flexible, and
the addition of wavelet kernel function to MKELM can improve the forecasted performance
of the carbon price to a certain extent. Thus, the MKELM is a more promising approach.
(3) The prediction capability of the hybrid models outperforms that of the single models.
For instance, compared with SSA-MKELM model, the VMD-SSA-MKELM obtains a lower
RMSE value of 0.2149. This is because the combined model weakens the complexity of
the carbon price series through signal decomposition technology. (4) The model using
the secondary decomposition of VMD-TVFEMD is superior to the model using the single
decomposition. For instance, comparison between VMD-SSA-MKELM and VMD-TVFEMD-
SSA-MKELM reveals that the latter performs better, with a lower RMSE of 0.1639. This is
because the introduction of TVFEMD to decompose the residual sequence generated by
VMD can improve the decomposition effect, which verifies the decomposition effectiveness
of the combination of VMD and TVFEMD.

In terms of the Hubei market, we next compare the results of the VMD-TVFEMD-SSA-
MKELM model and the reference group. They show tendencies and conclusions similar to
those drawn for the Guangdong market. As expected, the VMD-TVFEMD-SSA-MKELM
model achieves the optimal RMSE, MAE, MAPE, and DS of 0.1245, 0.0888, 0.0020, and
0.9074, respectively. It confirms the forecasting effectiveness of the model.

Table 9 investigates the contributions to improvement further. It suggests the
following points:

In the Guangdong market, the following can be seen: (1) In these single models, the
SSA-MKELM is better. Compared with the SSA-HKELM, the RMSE, MAE, and MAPE of the
SSA-MKELM model are improved by 0.76%, 1.30%, and 0.72%, respectively. (2) Comparing
the SSA-MKELM with the VMD-SSA-MKELM, the three indicators of this model are
improved by 86.35%, 83.01%, and 82.61%, respectively. (3) The three indicators of the
VMD-TVFEMD-SSA-MKELM model improved by 31.05%, 25.21%, and 20.83% when it is
in contrast with TVFEMD-SSA-MKELM. These results well support those in Table 8.

The relative values of the PRMSE, PMAE, and PMAPE on the Hubei market did not differ
considerably from the findings on the Guangdong market.

4.3.2. Comparative Analysis of Error-Correction Effect

To further verify the feasibility of the error nonlinear correction strategy proposed in
this paper, this part compares the model without error correction (VMD-TVFEMD-SSA-
MKELM), the direct error-correction model (VMD-TVFEMD-SSA-MKELM-EC), and the
error nonlinear correction model (VMD-TVFEMD-SSA-MKELM-ENC). More specifically,
the direct error-correction strategy means that the final prediction result is obtained by
directly adding the error-prediction value and the initial prediction value of the original
model. See Figures 5 and 6 and Table 10 for the comparison of prediction results and
prediction performance for different models in the stage of error correction. Table 11
displays the improvement percentage of the proposed model in the Guangdong and
Hubei markets.
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Table 10. Comparison of error-correction prediction performance of carbon price.

Dataset Models RMSE MAE MAPE DS

Guangdong
VMD-TVFEMD-SSA-MKELM 0.1501 0.1268 0.0016 0.9231
VMD-TVFEMD-SSA-MKELM-EC 0.1410 0.1166 0.0015 0.9231
VMD-TVFEMD-SSA-MKELM-ENC 0.1363 0.1160 0.0015 0.9231

Hubei
VMD-TVFEMD-SSA-MKELM 0.0580 0.0479 0.0009 0.8654
VMD-TVFEMD-SSA-MKELM-EC 0.0527 0.0418 0.0008 0.9231
VMD-TVFEMD-SSA-MKELM-ENC 0.0523 0.0408 0.0008 0.9231
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Table 11. The improvement percentage.

Dataset Benchmark Model Comparative Model PRMSE PMAE PMAPE

Guangdong
VMD-TVFEMD-SSA-MKELM VMD-TVFEMD-SSA-MKELM-EC 6.06% 8.04% 6.25%

VMD-TVFEMD-SSA-MKELM-EC VMD-TVFEMD-SSA-MKELM-ENC 3.33% 0.51% 0.00%
VMD-TVFEMD-SSA-MKELM VMD-TVFEMD-SSA-MKELM-ENC 9.19% 8.52% 6.25%

Hubei
VMD-TVFEMD-SSA-MKELM VMD-TVFEMD-SSA-MKELM-EC 9.14% 12.73% 11.11%

VMD-TVFEMD-SSA-MKELM-EC VMD-TVFEMD-SSA-MKELM-ENC 0.76% 2.39% 0.00%
VMD-TVFEMD-SSA-MKELM VMD-TVFEMD-SSA-MKELM-ENC 9.83% 14.82% 11.11%

Figure 5 intuitively reveals that the predicted value of carbon price in both markets
after nonlinear error correction has a high consistency with the true value of carbon
price, demonstrating the practicability of the VMD-TVFEMD-SSA-MKELM-ENC model.
Moreover, by deducting the predicted value from the actual carbon price, the prediction
error in the ordinate of Figure 6 is obtained. Figure 6 illustrates that the prediction errors of
the proposed model are lower than those of other models.

In Tables 10 and 11, the VMD-TVFEMD-SSA-MKELM-ENC model outperforms other
considered models. The prediction effect of the model can be further assessed:

In terms of the Guangdong market, from the perspective of predictive performance,
the following can be seen: (1) The nonlinear error-correction strategy outperforms the
linear correction strategy. The VMD-TVFEMD-SSA-MKELM-ENC model achieves the
optimal RMSE, MAE, MAPE, and DS of 0.1363, 0.1160, 0.0015, and 0.9231, respectively.
That is, the performance of the VMD-TVFEMD-SSA-MKELM-ENC model is superior to
the VMD-TVFEMD-SSA-MKELM-EC model. The reason for this could be that the direct
superposition correction strategy is a linear correction strategy that ignores the impor-
tance of potential nonlinear relationships in improving the prediction performance of
the model, whereas the initial prediction value of carbon price and the error-prediction
value may have different importance to the overall carbon price. (2) The effect of
the model with error-correction strategy outperforms that of the model without error
correction. The RMSE, MAE, and MAPE of the VMD-TVFEMD-SSA-MKELM model
are 0.1501, 0.1268, and 0.0016, respectively. For the VMD-TVFEMD-SSA-MKELM-ENC
model, the three values are 0.1363, 0.1160, and 0.0015, respectively. This is due to the
fact that the initial prediction error of carbon price contains more crucial information
for carbon price prediction. The prediction of the initial prediction error of carbon price
further enhances the prediction effect of carbon price. From the perspective of improve-
ment contribution, (1) compared with the VMD-TVFEMD-SSA-MKELM model, the
RMSE, MAE, and MAPE of the VMD-TVFEMD-SSA-MKELM-ENC model are improved
by 9.19%, 8.52%, and 6.25%, respectively. (2) Compared with the VMD-TVFEMD-SSA-
MKELM-EC model, the RMSE and MAE of the VMD-TVFEMD-SSA-MKELM-ENC
model are improved by 3.33% and 0.51%, respectively.

In terms of the Hubei market, the relative values of these indicators did not change
considerably from the findings on the Guangdong market.

As a result, it is clear that the nonlinear correction strategy is a potential method for
error correction. It can be stated that the VMD-TVFEMD-SSA-MKELM-ENC is an effective
and reliable prediction method.

In a word, the prediction performance of the proposed model is superior to that of the
reference group models and has the validity of carbon price prediction.

5. Conclusions

Carbon price prediction is among the crucial aspects of carbon financial market
research. To address the problem in which previous studies on China’s regional carbon
price forecasting based on secondary decomposition have ignored the effect of fore-
casting errors and only utilized HKELM models to capture the complex characteristics
of regional carbon prices, the VMD-TVFEMD-SSA-MKELM-ENC model was created in
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this study to forecast the carbon prices in the marketplaces of Guangdong and Hubei.
Firstly, the carbon prices were processed into several relatively smooth subsequences
by the secondary decomposition process combining VMD and TVFEMD. Secondly,
the SSA-MKELM model was constructed to forecast these subsequences of carbon
price. The prediction results of these subsequences were added together to obtain the
initial prediction value of the carbon price. Last but not least, a two-step nonlinear
error-correction strategy was constructed to further enhance the prediction effect of
the carbon price. The SSA-MKELM model was utilized to predict the initial prediction
error of carbon price and was employed to nonlinearly integrate the initial prediction
value and error-prediction value of carbon price to obtain the final prediction result of
carbon price. The empirical results demonstrate that the proposed VMD-TVFEMD-SSA-
MKELM-ENC model has superior prediction performance compared to the reference
group models and that it is valid for predicting carbon prices.

The prediction model developed in this work boasts a few advantages over the existing
prediction models of regional carbon prices in China: (1) The secondary decomposition
method using the combination of VMD and TVFEMD can deeply explore the fluctuation
characteristics and internal laws of different frequency series of carbon price, which is a
feasible and effective carbon price decomposition processing method. (2) The MKELM
model, which contains the multiple kernel function, is introduced to forecast the carbon
price, which further improves the prediction accuracy. (3) The nonlinear error-correction
strategy is innovatively introduced to correct the initial prediction results of the carbon
price, which can distinguish the impact of the error series as well as the initial prediction
results on the overall prediction results.

As a policy suggestion, the regional carbon prices are mainly affected by their own
historical time series according to our analysis. The government can further improve
the carbon price-management mechanism to avoid the risk caused by the drastic price
fluctuations. Furthermore, China’s carbon market is still dominated by spot trading.
Futures and options cannot be realized in these markets. Since diversified carbon financial
trading tools can provide a more accurate price mechanism for carbon emissions trading, it
is necessary to enrich carbon financial trading tools.

However, there are still some limitations in this study. Firstly, this analysis does
not take into account how external influences may affect the price of carbon. Future
work may attempt to incorporate external factors associated with the carbon price
into the model to further enhance the prediction performance. Secondly, from the
perspective of the optimization algorithm, the proposed prediction model only adopts
single-objective optimization, and multi-objective optimization can be introduced into
the proposed model in subsequent research. Finally, only the data from Guangdong and
Hubei are considered, and the carbon prices of other pilots in China can be considered
in the subsequent research.
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