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Abstract: As the popularity of electric vehicles (EVs) and smart grids continues to rise, so does the
demand for batteries. Within the landscape of battery-powered energy storage systems, the battery
management system (BMS) is crucial. It provides key functions such as battery state estimation
(including state of charge, state of health, battery safety, and thermal management) as well as cell
balancing. Its primary role is to ensure safe battery operation. However, due to the limited memory
and computational capacity of onboard chips, achieving this goal is challenging, as both theory and
practical evidence suggest. Given the immense amount of battery data produced over its operational
life, the scientific community is increasingly turning to cloud computing for data storage and analysis.
This cloud-based digital solution presents a more flexible and efficient alternative to traditional
methods that often require significant hardware investments. The integration of machine learning is
becoming an essential tool for extracting patterns and insights from vast amounts of observational
data. As a result, the future points towards the development of a cloud-based artificial intelligence
(AI)-enhanced BMS. This will notably improve the predictive and modeling capacity for long-range
connections across various timescales, by combining the strength of physical process models with the
versatility of machine learning techniques.

Keywords: lithium-ion battery; battery management system; machine learning; cloud; artificial
intelligence; state of charge; state of health; safety; field; real-world application

1. Introduction

The transportation sector’s shift towards electrification is crucial for reducing carbon
emissions and improving air quality [1]. Improving battery performance will enhance the
benefits of electrifying transportation. Lithium-ion batteries have undergone significant
advancements over the past decade [2], but proper evaluation and management practices
are still lacking [3]. The widespread adoption of battery-powered electric vehicles (EVs)
has been hindered by numerous challenges, including range anxiety [4] and battery ag-
ing [5]. The implementation of onboard battery management systems (BMS) provides
tools to address these issues by determining the state of charge (SOC) and state of health
(SOH) of the battery as well as the thermal management and cell balancing during the
system’s operational lifetime [6–8]. Throughout the last decade, significant strides have
been accomplished in reaching this objective via the evolution of sophisticated learning
algorithms [9]. However, despite advances in multiphysics and multiscale battery mod-
eling, seamless integration of academic progress into existing onboard BMS remains a
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challenge [10]. The computing ability of the onboard BMS is constrained by factors such as
cost, power consumption, and size limitations [11].

The onboard BMS for EV applications requires compact and energy-efficient systems,
limiting the processing power that can be incorporated. Furthermore, the high cost of
advanced processors and components may be a significant hurdle, particularly in cost-
sensitive automotive applications. Consequently, BMS is designed to execute essential tasks
like battery cell monitoring and balancing, which do not demand extensive computing
power. However, the accuracy of predicting battery characteristics under real-life opera-
tional conditions such as aging and dynamic environments is often limited. This is largely
attributed to the calibration of the model under laboratory-controlled conditions, which
may not accurately reflect the complex and varied conditions experienced in the field.

Recent developments in statistical modeling and machine learning present exciting
opportunities for predicting cell behaviors by distilling key characteristics from an im-
mense volume of multi-fidelity observational data [12,13]. Nonetheless, these advanced
learning techniques often necessitate meticulous design and complex execution. Before im-
plementation, it is essential to develop a comprehensive solution, and a cloud-based digital
solution may be a viable option [14,15]. In recent years, general-purpose Central Processing
Units (CPUs) that power cloud server farms have replaced specialized mainframe proces-
sors [16], providing researchers and start-up companies with access to public computing
resources from commercial providers such as Amazon, Google, and Microsoft [17]. The
EV and energy storage industries have also embraced this trend, with companies such as
Bosch [18], Panasonic [19], and Huawei [20] launching cloud-based software, referred to
as software as a service (SaaS). For instance, Bosch’s ‘battery in the cloud’ SaaS offering,
through leveraging vast data from vehicle fleets to create digital twins, promises to enhance
battery life cycles by 20%. Meanwhile, Panasonic’s Universal Battery Management Cloud
(UBMC) service aspires to discern cell state and optimize battery operations. Huawei’s
SaaS, on the other hand, offers a public cloud computing and storage service tailored for
EV companies. This service utilizes a purely data-driven model, embedded in its cloud
monitoring system, aiming to predict cell faults by uncovering complex patterns within
extensive EV battery datasets. On a broader scale, China has established the National
Monitoring and Management Platform for New Energy Vehicles (NMMP-NEV) [21]. This
expansive data platform provides remote fault diagnosis for over 6 million EVs.

In this review, we start by providing an overview of the functions and techniques
utilized for onboard BMS, as discussed in Section 2. We then delve into the key technologies
employed in cloud BMS in Section 3, followed by a comprehensive analysis of artificial
intelligence (AI) and machine learning (ML) applications for battery state prediction in
Section 4. Given the rapidly evolving nature of this field, we also offer insights into its
current limitations and future directions.

2. Onboard BMS

For large-scale EV or grid-scale energy storage applications, BMS is a technology that
monitors the performance of a battery system, which is typically composed of multiple
battery cells arranged in a matrix configuration [22,23]. BMS ensures that the battery system
can reliably work within a targeted range of voltage and current for a specific duration of
time, even under varying load conditions. By monitoring the battery’s system operations,
BMS helps to keep operating conditions under control and stabilize employment. BMS can
process and analyze data from various sensors and control algorithms in real-time and aims
to improve performance and ensure safe operation by adjusting battery parameters [24].
BMS technology is essential for many applications, including EVs, renewable energy
systems, and portable electronics, and is continually evolving to meet the demands of
increasingly sophisticated battery systems. However, BMS systems typically have limited
computing power and data storage capacity. The onboard BMS presently cannot be used as
a specialized technology designed to optimize battery performance but rather a general-
purpose computing system used to manage the battery system under a given program.
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Estimation of SOC and SOH, thermal management, cell balancing, and so on are the main
functions of the onboard BMS (Figure 1). An onboard BMS is a dedicated hardware and
software system installed directly within the battery pack of an EV. It monitors and controls
various parameters such as voltage, current, temperature, and SOC for individual cells
or the entire battery pack. The primary objectives of an onboard BMS are to ensure safe
and efficient operation, optimize battery performance, extend battery life, and prevent
thermal runaway or other hazardous conditions. The onboard BMS communicates with
other vehicle systems and provides real-time information to the driver or user.
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Figure 1. Onboard BMS for field applications (abbreviations: CMU, Communication Management
Unit; BMU, Battery Management Unit).

2.1. SOC

A crucial function of an onboard BMS is to precisely ascertain the SOC. Essentially, SOC
represents the comparison of the battery’s current capacity to its fully charged capacity,
serving as an equivalent to the stored charge measured in Coulombs. SOC in battery
management is generally defined as:

SOC =
Ahcur.

Ahful.
× 100% (1)

where Ahcur. represents the battery’s capacity in its present state, while Ahful. denotes
the battery’s capacity when fully charged. The Ampere-hour (Ah) counting [25] and
open-circuit voltage (OCV) [26] are commonly used for onboard BMS due to their low
computational complexity. However, it is susceptible to certain limitations that impact
the accuracy of Ah counting, including erroneous SOC initialization, drifts caused by
current sensor noise, and battery capacity variations. Furthermore, the OCV can only
be accurately gauged when the battery is not in use, which hinders its ability to provide
real-time SOC estimates during operation. In BMS for EVs, equivalent circuit models
(ECMs) are chiefly used because of their lower computational demand and fewer input
requirements than electrochemical models. Utilizing networks of resistors and capacitors,
ECMs simulate cell behavior tied to diffusion and charge-transfer processes [27]. Hence,
they serve as a pragmatic approach for real-time operation and management of onboard
battery systems in EVs. Early and typical examples of ECMs are the Rint model, Randles
model, Thevenin model, etc. Despite their computational efficiency, most equivalent circuit
models (ECMs) have limited accuracy in predicting battery characteristics, particularly
during complex loading conditions and cell aging. This limitation is due to the fact
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that model parameters are designed based on laboratory conditions and often lack the
incorporation of multifrequency impedance measurements [28–30].

The SOC of a battery is a crucial parameter for field applications since it signifies
the remaining energy capacity within the battery system. The necessity for precise and
real-time monitoring of SOC is underlined by several reasons:

(a) Range estimation: SOC is a primary factor in determining the remaining driving
range of an EV. By continuously monitoring the SOC, drivers can better plan their
trips and avoid anxiety.

(b) Optimal battery performance: Maintaining the battery within an optimal SOC range
helps preserve its health and prolong its life. Operating the battery at extreme SOC
levels (either too high or too low) can accelerate battery degradation and reduce its
overall lifespan.

(c) Charging management: Knowledge of the current SOC is crucial for optimizing
charging strategies. It allows for better estimation of the required charging time and
enables the use of smart charging algorithms that can balance the charging load on
the grid and minimize charging costs.

(d) Energy management: SOC information is vital for the efficient management of energy
consumption in EVs. The onboard energy management system uses SOC data to
optimize power distribution between various vehicle systems, ensuring efficient use
of energy and enhancing overall performance.

(e) Diagnostics and prognostics: Monitoring SOC over time, along with other battery
parameters, can provide valuable insights into the battery’s health and aid in the early
detection of potential issues. This can help prevent unexpected battery failures and
enable predictive maintenance, minimizing downtime and maintenance costs.

2.2. SOH

The SOH describes the capacity of a fully charged battery relative to its nominal
capacity at the point of manufacture when it was brand new. Upon manufacturing, a
battery’s State of Health (SOH) starts at 100% and diminishes to 80% at its end of life (EOL).
Within the battery manufacturing industry, EOL is typically characterized as the stage
when the actual capacity at full charge dwindles to 80% of its initial nominal value. The
count of charge/discharge cycles left until the battery attains its EOL is denoted as the
battery’s Remaining Useful Life (RUL). Consequently, SOH can be articulated as:

SOH =
Ahful.

Ahnom.
× 100% (2)

where Ahnom. represents the nominal capacity of the battery when it is brand new.
Battery degradation is a complex issue that involves numerous electrochemical reac-

tions taking place in the anode, cathode, and electrolyte [31,32]. The operating conditions
have a critical impact on the degradation process and ultimately impact the battery life-
time. Predicting the remaining battery lifespan with precision under a variety of operating
conditions is of utmost importance to ensure reliable performance and timely maintenance,
as well as for battery second-life applications [33]. Onboard SOH estimation is used to
determine the health of a battery system during its operating lifetime. The battery capac-
ity frequently serves as a health indicator, given its association with the energy storage
potential of batteries and its immediate influence on the remaining operational duration
and overall lifespan of the batteries. Computational tools have provided insights into
fundamental battery physics, but despite the advances in first principles and atomistic
calculations, they are unable to accurately predict battery performance under realistic
conditions. As is the case for SOC estimation for online applications, the most commonly
used onboard SOH estimation methods are ECMs with limited accuracy. Data-driven
approaches can provide a better nonlinear fitting capability [34–37]. However, due to
the computational complexity, it is challenging to make most existing advanced methods
widespread and practical. This could potentially be attributed to the substantial computa-
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tional resources required to accurately estimate the SOH of a battery, especially when it is
exposed to various operating and environmental conditions during its lifetime. In addition,
the need to continuously monitor and analyze battery performance can place a significant
burden on the vehicle’s onboard system and affect overall vehicle performance.

In field applications such as EVs, battery SOH provides an indication of the battery’s
overall condition and its remaining useful life. Precise and timely evaluation of SOH is
crucial for various reasons:

(a) Battery life prediction: Monitoring SOH allows for better estimation of the battery’s
RUL, enabling vehicle owners and fleet managers to plan for battery replacements or
upgrades, thus minimizing unexpected downtime and associated costs.

(b) Performance optimization: As a battery degrades, its capacity and power capabilities
decrease, affecting the vehicle’s range, acceleration, and overall performance. By
keeping track of the battery’s SOH, the energy management system can optimize the
power distribution among various vehicle systems, ensuring consistent performance
and preserving battery life.

(c) Safety assurance: A deteriorating battery may pose safety risks, such as an increased
probability of thermal runaway events, which can lead to fires or explosions. Moni-
toring SOH can help identify potential safety hazards early, allowing for preventive
measures to be taken in case of anomalous capacity degradation.

(d) Charging management: Knowledge of the battery’s SOH is vital for adapting charg-
ing strategies that account for its current condition. As battery health declines,
charging algorithms can be adjusted to minimize further degradation and maintain
safe operation.

(e) Warranty management: SOH information can be used by manufacturers to manage
warranty claims more effectively and ensure that battery performance remains within
the specified warranty limits.

(f) Second-life applications: Accurate SOH assessment can facilitate the identification of
batteries suitable for applications in their second life, like stationary energy storage
systems, once their performance in EVs has degraded below acceptable levels.

(g) Residual value estimation: The SOH is a pivotal factor in establishing the residual
value of an EV in the used vehicle market, as it directly impacts the battery’s remaining
useful life and the vehicle’s overall performance.

2.3. Thermal Management

The thermal management system plays a crucial role in ensuring optimal performance
and longevity of the battery system [38]. It aims to maintain an average temperature that
balances performance and life, as determined by the battery manufacturer. The thermal
management system should fulfill the requirements outlined by the vehicle manufacturer,
such as compactness, affordability, reliability, easy installation, low energy consumption,
accessibility for maintenance, compatibility with varying climate conditions, and provision
for ventilation as needed [39]. Various methods can be employed for these processes,
such as the utilization of air for temperature regulation and ventilation, liquid for thermal
control, insulation for maintaining temperature levels, and phase change materials for
thermal storage. Alternatively, a combination of these methods can be used. The approach
can be either passive, where it relies on environmental conditions, or active, where an
internal source is employed for heating or cooling purposes. The battery’s electronic control
unit manages the control strategy.

The battery’s temperature directly affects its discharge power, energy, and charge
acceptance during regenerative braking, which can impact the vehicle’s fuel economy
and driving experience. Moreover, temperature significantly determines the battery’s
lifespan [40]. Hence, batteries ought to function within a temperature spectrum that’s
optimal for their electrochemical processes, as specified by the manufacturer. However, this
range may be narrower than the vehicle’s specified operating range, as determined by the
manufacturer. For instance, the optimal operating temperature window for a lithium-ion
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battery is typically between 20 ◦C and 40 ◦C. However, the operating temperature range for
an EV battery system might be much wider, extending from as low as −20 ◦C to as high as
55 ◦C. Hence, thermal management is crucial for EV applications, and can be summarized
for the following reasons:

(a) Performance optimization: Maintaining optimal temperature ranges for battery cells
is essential for achieving peak performance levels, ensuring efficient energy utilization,
and extending the driving range of electric vehicles.

(b) Safety: Effective thermal management helps prevent thermal runaway, which can lead
to battery fires or explosions. By closely monitoring and regulating the temperature,
potential hazards can be mitigated.

(c) Battery life extension: Prolonged exposure to extreme temperatures can degrade
battery materials, leading to a reduction in overall battery life. Proper thermal man-
agement helps maintain the battery within its optimal operating temperature range,
thus prolonging its lifespan.

(d) Charging efficiency: Effective thermal management enables faster and more efficient
charging of batteries by minimizing temperature-related inefficiencies and maintain-
ing safe charging conditions.

(e) Consistent performance: By maintaining consistent temperature conditions within
the battery pack, thermal management systems ensure that the battery’s performance
remains stable and predictable, regardless of external environmental factors.

At present, EVs do not have temperature information for every cell within the battery
pack due to practical constraints associated with the large number of required sensors.
Adding more sensors and wiring can increase the battery pack’s weight and complexity,
leading to reduced vehicle efficiency and performance. Additionally, the cost of adding
more sensors and wiring can be prohibitively expensive for mass-produced EVs that
need to be cost-effective for consumers. Hence, EVs typically rely on strategically placed
temperature sensors within the battery pack to provide an overall temperature reading,
rather than individual readings for each cell. To enhance the batteries’ safe operation,
one possible way is to develop advanced data-driven learning algorithms that leverage
time-resolved data (voltage and current). However, this comes at the cost of computing
efficiency losses.

2.4. Cell Balancing

A crucial element of electric vehicles, the battery balancing system (BBS), is composed
of two main components: the balancing circuitry and the control strategy governing the
balancing process [41]. To transfer charge between cells and maintain balance, the balancing
circuit can be either passive or active [42]. Passive balancing relies on resistance to convert
excess energy in a high-charge cell into heat, which is then dissipated until the charge
is equalized with a low-charge cell. Passive balancing is simple, cost-effective, and easy
to implement, but it generates substantial heat and has low balancing efficiency. Unlike
passive balancing, active balancing utilizes energy carriers to transfer energy from the cells
with high SOC to the cells with low SOC inside the battery pack. While active balancing is
the preferred choice for applications that operate at high temperatures and require rapid
balancing, it does increase the complexity of the circuit.

The architectural composition of the BBS holds paramount importance, yet the bal-
ancing control strategy it employs shares an equally critical role in dictating the circuit’s
overall conversion efficiency and speed of balance, as indicated by references [43,44]. These
balancing tactics can be classified according to the control variable they utilize, such as the
state of charge (SOC), cell voltage, or capacity. Creating an optimized balancing control
strategy tailor-made for a specific battery system and its corresponding application is vital
to guaranteeing a balanced operation that is both efficient and effective.

The merits of utilizing cell balancing span several areas, including:
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(a) Capacity utilization: Cell balancing ensures that all cells within a battery pack are
utilized to their full capacity, maximizing the overall energy storage and extraction
capability. This, in turn, optimizes the vehicle’s driving range and performance.

(b) Lifespan extension: Imbalances in cell voltages can lead to some cells aging faster
than others, ultimately reducing the overall battery pack’s lifespan. Cell balancing
helps equalize the charge and discharge cycles across all cells, promoting even wear
and prolonging the battery pack’s life.

(c) Safety enhancement: Unbalanced cells can cause overcharging or over discharging,
which may lead to thermal runaway and other safety risks. Cell balancing prevents
these issues by ensuring that all cells are charged and discharged within their safe
operating limits.

(d) Performance consistency: Cell imbalances can result in inconsistent performance
and reduced efficiency. By maintaining balanced cells, the battery pack can deliver
predictable and stable performance, improving the overall driving experience.

(e) Reduced Maintenance: Employing cell balancing can minimize the frequency of
maintenance checks and services. By ensuring uniformity in cell usage, the system
reduces the possibility of individual cell failures and maintains the overall health of the
battery pack. This, in turn, lowers maintenance costs and offers greater convenience
to the user.

3. Key Components and Technologies of Cloud-BMS

Machine learning has emerged as a powerful instrument; however, it necessitates sub-
stantial quantities of high-quality and pertinent observational samples. The computational
complexity associated with this requirement surpasses the capabilities of onboard Battery
Management Systems (BMS). Cloud-based BMS (Figure 2) provides a brand-new digital
solution, as it can process and analyze data in a more efficient and flexible manner. Sensor
measurements can be uploaded to the cloud, enabling machine learning to continually
learn from these data points while harnessing the vast wealth of information present in
the samples. A cloud BMS enables remote monitoring, diagnostics, and even predictive
maintenance, improving overall battery management and reducing the need for manual
inspections or on-site intervention. The cloud BMS can also facilitate fleet management by
aggregating data from multiple vehicles or energy storage systems, allowing operators to
optimize energy consumption and plan maintenance schedules more efficiently. Addition-
ally, a Cloud BMS can enable over-the-air (OTA) updates to the onboard BMS firmware
and algorithms, further enhancing battery performance and extending its lifespan.
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3.1. IoT-Devices

Given the extensive embrace of Internet of Things (IoT) technology [45], end-use
devices have gained the ability to collect and analyze vast amounts of data across various
spatial and temporal scales. Equipped with electronics and network connectivity, these
devices hold a key position in monitoring and management. As the number of sensors is
expected to reach trillions in the near future, integrating data streams with diverse levels of
fidelity into real-world applications and battery models becomes increasingly feasible.

The physical, chemical, and electrochemical performance of batteries can exhibit
significant variations due to dynamic loading conditions such as current rate, operating
voltage, temperature, and more. Consequently, continuous monitoring throughout the
operational lifetime is of paramount importance [46]. The onboard Battery Management
System (BMS) enables the transfer of sensor measurements from the battery cells to the IoT
component, employing the Controller Area Network (CAN) protocol for communication.
To optimize resource utilization while efficiently transmitting a substantial volume of
sequential data generated by both private and fleet vehicles, the message queuing telemetry
transport (MQTT) protocol [47] enables bidirectional communication between the device
and the cloud. The infrastructure can effortlessly support millions of IoT devices, seamlessly
accommodating their operations. Moreover, the data stored in the onboard memory can be
efficiently transmitted to the cloud system using TCP/IP protocols, ensuring smooth and
reliable upload processes. Modern cities’ IoT systems provide infrastructure for remote
data transmission through the use of IoT actuators and on-board sensors. For a more
detailed explanation of the next-generation IoT, please refer to [48].

3.2. Cloud Server-Farm

A cloud server farm is a large-scale data center infrastructure that offers remote data
storage and analysis capabilities, including real-time monitoring, early warning systems,
and intelligent diagnosis over the internet. This beckons scientists as data sets continue to
expand [49]. Cloud storage and computing has been widely recognized and acknowledged
as a highly effective and flexible solution for remote monitoring, especially in the context of
large-scale EV applications [50]. In this context, developers have the flexibility to seamlessly
tailor their cloud to meet their specific needs and demands, thereby achieving maximum
efficiency and convenience. The cloud based BMS has the capability to learn and analyze
the continuous flow of the charging and discharging data of battery systems, enabling the
generation of health information.

The cloud BMS can learn and analyze the continuous stream of time-series battery
data and generate electronic health records, which provide insightful information about the
battery’s performance and health status. Java and Go are among the most commonly used
programming languages for cloud development, providing developers with robust and
efficient tools to create sophisticated and reliable cloud applications. Additionally, PHP
offers a flexible and effective solution for web developers to design interactive interfaces
and engage with the vast amount of data generated by the system [51].

In order to implement the battery-cloud system efficiently, it is essential for users to
have some basic computing skills, but more importantly, it requires a deep understand-
ing and knowledge of the learning task at hand, particularly in the context of complex,
nonlinear multiphysics battery systems that exhibit gappy and noisy boundary conditions.
Moreover, modeling of battery systems for field applications, such as prognostics and pre-
dictive health management (PHM), is often prohibitively expensive and requires complex
formulations, new algorithms, and elaborate computer codes.

3.3. Machine Learning

In spite of the progress achieved in forecasting the dynamics of battery systems utiliz-
ing fundamental principles, atomic-level analysis, or methods rooted in physics, a notable
obstacle persists due to the lack of all-encompassing prognostic models capable of establish-
ing robust connections between cell properties, underlying mechanisms, and the states of
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the cell. The prognostication and modeling of battery systems’ multi-dimensional behavior,
influenced by various spatio-temporal factors, emphasize the necessity for a revolution-
ary approach. Deep learning has exhibited extraordinary advancements in addressing
enduring quandaries faced by the artificial intelligence community [52]. The widespread
availability of open-source software and the automation capabilities of material tools have
seamlessly integrated machine learning into computational frameworks. Prominent soft-
ware libraries like TensorFlow [53,54], PyTorch [55,56], and JAX [57] contribute significantly
to the analysis of cell performance by harnessing diverse data modalities encompassing
time series data, spectral data, laboratory tests, field data, and more.

In the realm of predictive modeling of battery systems, there has been a recent push
towards synergistically integrating machine learning tools with cloud computing. In this
context, researchers and engineers can access real-time data streams and perform real-
time analysis and predictions of battery performance, which is pivotal when it comes
to the design and optimization of battery systems. The integration of machine learning
algorithms, cloud computing, and big data analysis has created a powerful ecosystem for
the representation of multiscale and multiphysics battery systems. By incorporating actual
sensor data to calibrate the models, a battery-powered digital twin strives to emulate the
dynamics of the physical entity in a digital environment. Physics-informed learning is
poised to emerge as a driving force in the transformative era of digital twins, thanks to its
innate ability to seamlessly integrate physical models and data.

A recent illustration of this innovative learning approach is Physics-Informed Neural
Networks (PINNs). The integration of data from measurements and partial differential
equations (PDEs) is flawlessly accomplished by PINNs through the incorporation of these
PDEs into the neural networks. This approach exhibits exceptional adaptability, allowing it
to effectively handle a wide range of PDE types, including integer-order PDEs, fractional
PDEs, and stochastic PDEs. To illustrate its effectiveness, the PINN model can be success-
fully employed to solve forward problems utilizing the viscous Burgers’ equation, which
can be represented as:

∂u
∂t

+ ρ
∂u
∂x

= ϕ
∂2u
∂x2 (3)

The physics-uninformed networks act as a surrogate for the PDE solution u(x, t),
whereas the physics-informed networks characterize the PDE residual. The loss function
encompasses both a supervised loss, incorporating data measurements of u obtained
from initial and boundary conditions, and an unsupervised loss, which captures the
PDE discrepancy:

L = ωsampleLsample +ωPDELPDE (4)

where
Lsample =

1
Nsample

∑
Nsample
i=1 (u(xi, ti)− ui)

2 (5)

LPDE =
1

NPDE
∑NPDE

j=1

(
∂u
∂t

+ ρ
∂u
∂x
−ϕ∂2u

∂x2

)∣∣∣∣(xj, tj
)

(6)

The two sets of points, {(xi, ti)} and {(xj, tj)}, correspond to samples taken from initial
and boundary locations and the complete domain, respectively. To effectively balance the
relationship between the two loss terms, weight,ωsample andωPDE are utilized. The neural
network undergoes training using gradient-based optimizers like Adam to minimize the
loss until it is below a predefined threshold ε. For a detailed discussion and introduction of
PINN, one can refer to a comprehensive review [58].

4. AI Modelling for Battery State Prediction

Machine learning plays a vital role in AI modeling as it empowers systems to learn
and enhance their performance through data-driven experiences, without the need for
explicit programming. Machine learning algorithms analyze large datasets to identify
patterns and relationships, which are then used to make predictions and decisions. Machine
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learning utilizes a customizable function with adjustable parameters to accurately predict
battery behavior, often through the use of experimental training data [59]. This allows
for generalization to other battery systems. A representative example includes transfer
learning, which leverages data-driven mechanisms to govern personalized health status
prediction tasks [60]. Machine learning has surfaced as a powerful tool for analyzing the
ever-growing amount of time-series data, but it faces limitations when dealing with complex
spatio-temporal systems. To overcome this, deep learning has attracted significant attention
over the past few years, with its ability to automatically extract spatio-temporal features.
Deep learning has made significant progress in addressing challenges that have previously
proven difficult for the artificial intelligence community. It has proven to be particularly
effective in identifying complex structures in large data sets for battery systems [61–64].
This would not only improve the accuracy of models for forecasting and long-range
spatial connections across multiple timescales but also enable a deeper understanding
of complex physical processes. In this section, we provide a concise overview of the
recent advancements in battery state estimation achieved through diverse machine learning
methods (Figure 3).
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4.1. SOC

Machine learning (ML) methods have exhibited remarkable efficacy in accurately
interpolating between data points, even for high-dimensional tasks. With the ability to
learn complex patterns and relationships within data, ML models can accurately capture
the underlying structure of the data, allowing for effective interpolation and prediction.
For example, a gated recurrent unit (GRU)-based recurrent neural network (RNN) has
shown good performance in estimating the battery SOC using data from varied loading
patterns [65]. Despite the training process demanding several hours in a GPU environ-
ment, the testing phase demonstrated remarkably swift execution, even within a CPU
environment. This underscores the efficiency and efficacy, in precisely estimating SOC,
which serves as a crucial parameter for management and control in diverse applications.
In another study, a stacked bidirectional long-short-term memory (LSTM) neural network
was applied to estimate the cell SOC [66]. The study focuses on three main improvements:
(1) the use of bidirectional LSTM to capture temporal dependencies in both forward and
backward directions within time-series data; (2) the stacking of bidirectional LSTM layers
to create a deep model with increased capacity to process nonlinear and dynamic LiB data;
and (3) a detailed comparison and analysis of multiple parameters that affect the estimation
performance of the proposed method. The results demonstrate the effectiveness of the
approach and its potential to enhance SOC estimation. A single hidden layer GRU-RNN
algorithm with momentum optimization for SOC estimation is proposed [67]. GRU is
a streamlined variant of LSTM that integrates the forget and input gates into a singular
update gate, resulting in reduced parameters and enhanced computational efficiency com-



Energies 2023, 16, 4403 11 of 21

pared to LSTM. The algorithm employs the momentum gradient method, which balances
the current gradient direction and historical gradient direction to prevent oscillations in
the weight change and improve the speed of SOC estimation. The performance of the
algorithm is evaluated under varying parameters, including β, noise variances σ, epochs,
and the number of hidden layer neurons. The results of the study provide insights into
the accuracy and efficiency of the GRU-RNN-based momentum algorithm in estimating
the SOC of lithium batteries, demonstrating its potential as a promising approach for
battery management and control in various applications. More recently, a combined SOC
estimation method called gated recurrent unit adaptive Kalman filter (GRU-AKF) was pro-
posed, which is both robust and efficient [68]. The method eliminates the requirement for
developing a complex battery model by employing a GRU-RNN for initial SOC estimation
and establishing a nonlinear relationship between observed data and SOC across the entire
temperature range. Subsequently, the Adaptive Kalman Filter (AKF) is utilized to refine
the SOC estimated by the GRU-RNN, resulting in the final estimated SOC. The proposed
GRU-AKF exhibits enhanced adaptability to practical battery applications, facilitated by
the improved adaptive approach. The design cost of the estimation method is reduced since
the hyperparameters of the network do not need to be carefully designed as the output
SOC is further processed by the AKF. AKF offers an effective tool for estimating the state of
a dynamic system based on noisy measurements. The method is specifically designed to
address the challenge of noisy data in dynamic systems, where conventional data-driven
approaches may fall short in delivering accurate outcomes. The study’s findings showcase
the efficacy of the proposed method in accurately estimating SOC for batteries.

In addition to the RNN model, self-supervised transformer model is another deep
learning method that has attracted a lot of attention for predicting cell SOC. For example,
transformer-based SOC estimation was used to leverage self-supervised learning to achieve
higher accuracy with limited data availability within a constrained timeframe [69]. The
framework additionally integrates cutting-edge deep learning techniques, including the
Ranger optimizer, time series data augmentation, and the Log-Cosh loss function, to
enhance accuracy. The acquired parameters can be efficiently transferred to another cell
by fine-tuning, even with limited data available within a short timeframe. Another study
proposes a hybrid methodology for SOC estimation of batteries by employing a sliding
window to pre-process data, using a Transformer network to capture the relationship
between observational data and SOC, and feeding the result into an adaptive observer [70].
The effectiveness of the proposed method is validated across different temperatures using
US06 data, demonstrating accurate SOC estimation with less than 1% Root Mean Square
Error (RMSE) and maximum error in the majority of temperature scenarios. The proposed
method surpasses LSTM-based approaches and exhibits the ability to provide reliable
predictions even for temperatures not included in the training dataset.

4.2. SOH

In a recent research endeavor, a battery health and uncertainty management pipeline
(BHUMP) is introduced as a machine learning-driven solution, showcasing its adaptabil-
ity to various charging protocols and discharge current rates. Notably, BHUMP excels
at making accurate predictions without the need for specific knowledge about battery
design, chemistry, or operating temperature [71]. The study underscores the significance of
incorporating machine learning techniques in conjunction with charge curve segments to
effectively capture battery degradation within a limited timeframe. However, the authors
stress that even if the algorithm produces low errors, it is crucial to perform uncertainty
quantification tests to ensure its reliability before deploying it in real-world applications.

Differential approaches, namely incremental capacity and differential voltages are
frequently employed to identify causes of deterioration in online applications. One research
study, for example, combines the Support Vector Regression (SVR) algorithm with a multi-
timescale parameter identification approach based on Extended Kalman Filter-Recursive
Least Squares (EKF-RLS) and a known relationship model between representative RC
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(Resistor-Capacitor) parameters and State of Health (SOH) [72]. The study’s results show-
case that the proposed method achieves Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) values below 3% for SOH prediction, utilizing both static and dynamic ob-
servational data. This suggested technique demonstrates excellent capability in accurately
estimating SOH in complex dynamic environments, offering high accuracy, robustness,
and practicality.

In recent years, some large datasets relating to batteries during the daily operation of
EVs have been collected and analyzed. For example, one study used 147 vehicle data points
from two sources to verify a proposed method for estimating the capacity and internal
resistance of EV batteries [73]. The results demonstrate that the estimation results converge
to the true trend, with a maximum estimation error of less than 4% for the capacity of
sampled real EVs. The proposed method can accurately estimate the battery capacity of
EVs and enable life prediction using current cloud data. Another study proposed a SOH
estimation method for EV batteries based on discrete incremental capacity analysis that
is robust, compatible, computationally efficient, and memory-efficient [74]. The SOH of
EVs does not decrease linearly with mileage but shows stagnation and fluctuations due to
seasonal temperature variations, driving habits, and charging strategies.

To emphasize the importance of cloud-based AI modeling for battery BMS, ensemble
machine learning offers opportunities to accurately predict SOH using only daily operat-
ing charging data (i.e., voltage, current, and temperature) [75]. A two-step approach is
employed to reduce noise in battery data, while domain-specific features derived from IC
(incremental capacity) and DV (differential voltage) analysis offer physically consistent
representations of intricate battery degradation patterns. To enhance prediction accuracy
and model generalization, a stacking technique is adopted, leveraging four base-level mod-
els (linear regression, random forest regression, gaussian process regression, and gradient
boosting regression) along with a meta-learner. The proposed multi-model fusion method
exhibits robustness, stability, and compatibility with diverse usage histories, making it a
valuable tool for forecasting cell capacity and constructing battery pack trajectories. Further-
more, the study indicates that with the advancement of onboard computing capabilities, the
proposed method can be seamlessly migrated from cloud-BMS to onboard-BMS by employ-
ing feature engineering techniques and constructing lookup tables. In summary, this study
demonstrates the potential of integrating onboard observational samples with data-driven
machine learning models to predict the dynamics of complex systems like lithium-ion
batteries, even in the presence of missing/noisy data and uncertain boundary conditions.

Reinforcement learning, which combines machine learning principles with neuro-
scientific approaches, offers a normative framework for agents to learn policies and op-
timize their behavior in response to rewards received from interacting with the environ-
ment [76]. In battery prognostics and health management applications, such as optimizing
fast-charging protocols, the BMS acts as the agent, making decisions (like determining
the applied current) based on rewards for each possible action while interacting with the
environment (the battery) [77]. A pseudo-two-dimensional electrochemical model, Doyle-
Fuller-Newman [78], is employed to predict the evolution of multiphysics battery systems
by capturing macro-scale physics, including lithium concentration in solids and electrolytes,
solid electric potential, electrolyte electric potential, ionic current, molar ion fluxes, and
cell temperature. The Deep Deterministic Policy Gradient (DDPG)-based reinforcement
learning demonstrates a remarkable ability to handle continuous state and action spaces by
updating the control policy in the actor-critic network architectures, thereby reducing the
likelihood of safety hazards during fast-charging protocols.

4.3. Battery Safety and Thermal Management

In addition to SOC and SOH estimation, cloud-based BMS can also be tailored to
a much more complex problem—that is, battery failure. Lithium-ion batteries are mul-
tiphysics and multiscale systems, and their safety and reliability are crucial due to their
widespread adoption in various applications. However, given the intricate nature of battery
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behavior, accurately predicting failures remains a formidable challenge, given the lack of
understanding of the underlying degradation mechanisms. In light of the ever-evolving
cell and battery designs, the multitude of potential failure scenarios and associated risks
make it impractical to comprehensively understand the origins and consequences of each
through laboratory testing alone. While computational modeling can reduce the number of
required experiments, its effective implementation can be limited by rigorous validation
requirements and computational resources.

The establishment of a “safety envelope”, defining the operational range in which
individual cells can function safely, is essential for ensuring the overall safety of electric
vehicle battery packs. However, the challenge lies in acquiring a substantial dataset of
battery failure tests. In a recent study, researchers developed a highly accurate compu-
tational model for lithium-ion pouch cells, incorporating calibrated constitutive models
for each material composing the cell [79]. To construct a data-driven safety envelope,
supervised machine learning techniques were applied to a vast matrix of severe mechanical
loading scenarios. This study demonstrates the synergistic combination of numerical data
generation and machine learning modeling to forecast the safety of battery systems.

Emerging technologies are addressing previously challenging obstacles by providing
accessible and effective solutions, highlighting the significance of cloud-based AI modeling
in battery BMS. Machine learning approaches utilizing data-driven frameworks excel at
accurately forecasting complex nonlinear systems. A specific research study [80] focuses
on the development of a tightly integrated cloud-based machine learning system for
predicting real-life EV battery failure. By leveraging graphite/NMC cells, a data-driven
early-prediction model is created, enabling the generation of longitudinal electronic health
records through digital twins. The proposed hybrid semi-supervised machine learning
model combines observational, empirical, physical, and statistical insights, achieving a
7.7% test error utilizing field data. Cloud-based machine learning approaches exemplify
the significance of adopting a multifaceted strategy for continuous lifelong learning. These
approaches not only provide a novel means of forecasting battery failure but also underscore
the value of incorporating diverse methods to enhance accuracy and robustness.

Thermal management is a critical aspect in the context of battery systems, and a
specific study [81] conducted a comprehensive analysis of the performance of a liquid-
cooled Battery Thermal Management System (BTMS). The study primarily concentrated
on the analysis of experimental data pertaining to air conditioning and the exploration of
design considerations for the liquid-cooled Battery Thermal Management System (BTMS).
By integrating these thermal characteristics, a more accurate and efficient operation of
the liquid cooled BTMS can be achieved, thus contributing to the overall improvement
of the HPACS for EVs. This can be achieved by coupling the battery electrochemical
model with the machine learning model of HPACS and optimizing the liquid cooled BTMS
based on the automatic calibration model and battery electrochemical model, leading to
more efficient system optimization. In another case study, a multiphysics approach was
employed to demonstrate the temperature-position-dependent thermal conductivity of
Heat Pipes (HPs) [82]. By leveraging the multiphysics nature of HPs, which provides
variable thermal conductivity, valuable insights into heat pipe efficiency can be gained.
Increasing the condensation surface area of the heat pipes enables a reduction in the size
and number of heat pipes required for cooling applications. However, it is crucial to
utilize advanced methods to analyze the complex equations, multiphysics phenomena,
and boundary conditions associated with these systems. By employing such advanced
techniques, a deeper understanding of thermal management can be achieved, leading to
improved design and performance of battery systems.

Machine learning techniques, such as physics-informed machine learning [58] offer
a promising direction to follow. Such learning approach blends mathematical models
with noisy data, utilizing neural networks or other kernel-based regression networks. By
incorporating physical invariants into specialized network architectures, this approach
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can improve accuracy, training speed, and generalization. Additionally, this technique can
automate the satisfaction of certain physical invariants for more effective implementation.

5. Current Limitations
5.1. Multiscale and Multiphysics Problems

While physics-informed learning has achieved remarkable success in various applica-
tions, ongoing efforts are being made to address challenges that involve multiple scales and
physics. It is recommended to initially study each physics in isolation before integrating
them, as learning multiple physics concurrently can pose computational challenges. Ad-
ditionally, it is important to utilize fine-scale simulation data selectively to gain a broader
understanding of the physics at a coarser scale. The existing body of research primar-
ily focuses on models that specialize in predicting the SOH and Remaining Useful Life
(RUL) over multiple cycles, as well as the SOC within a single charge/discharge cycle.
However, to achieve a more comprehensive understanding of battery performance, it is
necessary to develop a model that can forecast the long-term SOH from any arbitrary
point in the charge/discharge cycle. This can be accomplished through a hybrid approach
that combines sophisticated models capable of accurately forecasting the SOC up to a
specific point in the cycle, such as a fully charged state, with a SOH model that takes into
account multiple cycles. By integrating both short-term and long-term dynamics models, a
comprehensive model of battery development can be created, enabling more accurate and
reliable predictions of battery performance.

5.2. Gap between Lab Tests and Field Conditions

High-throughput testing offers a valuable means to obtain large and reliable datasets
for machine learning applications. Various electrochemical techniques, such as cyclic
voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy,
enable precise and reliable measurements of batteries’ lifetime, rate capability, capacity, and
impedance. This comprehensive approach ensures that the acquired data reflects real-world
conditions and provides a solid foundation for machine learning algorithms to analyze and
extract valuable insights from the battery performance characteristics. Large amounts of
meaningful data can be swiftly generated. Machine learning models can then be trained
using this data, and the battery testing process can be expedited further by detecting poorly
performing batteries based on their initial cycles.

One approach to reconciling standard laboratory tests with field data involves labo-
ratory testing of batteries using representative loading patterns, based on characterized
typical user driving patterns. This methodology offers the benefit of a controlled envi-
ronment with high-precision equipment and frequent characterizations. However, it is
crucial to supplement this approach with field data for multiple reasons. Firstly, laboratory
experimentation is limited in scope and cannot encompass all necessary conditions over an
extended duration, particularly as the number of aging parameters grows exponentially.
In contrast, field data is readily accessible and covers the complete range of operating
conditions, offering a relatively cost-effective option as the cells are already in practical
use. Secondly, laboratory testing is artificial and may diverge from real-world usage. Con-
straints in time and equipment within the laboratory often result in extreme conditions
and short resting periods between cycles, potentially leading to an underestimation of
battery lifespan and an excessive design of battery packs. Thirdly, external factors encoun-
tered in real-world environments, such as seasonal temperature variations or mechanical
vibrations that contribute to failure, are not accounted for in laboratory settings. Fourthly,
the accumulation of additional data is always valuable in enhancing statistical confidence
when constructing models for battery lifespan and performance, considering both inherent
factors related to manufacturing variability and external factors associated with usage
patterns. The standardization of methodologies for interpreting not only accelerated cycle
aging data but also accelerated calendar aging and scenarios involving a combination
of cycle and calendar aging is crucial to extending the applicability of models beyond
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laboratory-accelerated aging tests to real-world applications. Lastly, gaining a comprehen-
sive understanding of the influence of cycles and calendar conditions on battery lifespan is
imperative for both laboratory and field applications.

5.3. Data Generation and Model Training

Accurately predicting the state of batteries, both in real-time and offline, is critical to en-
hancing cycle life and ensuring safety by enabling informed engineering and adaptation to
unfavorable conditions. However, due to the wide range of battery options and constantly
evolving pack designs, it is challenging to predict cell behavior under various conditions.
One promising approach to address this is to use finite-element model data to train machine
learning algorithms that can predict cell performance when exposed to different loading
conditions. While this approach offers numerous benefits, it also encounters a common
obstacle faced by data-driven methods, which is the acquisition of trustworthy, abundant,
high-quality, and pertinent experimental data. This requires overcoming obstacles such as
experimental data collection and curation as well as ensuring that the data is representative
of real-world usage scenarios. Overcoming these challenges and obtaining the necessary
data will be crucial in the application of machine learning for battery prediction.

The battery dataset provided by the Prognostics Center of Excellence at NASA Ames
is extensively utilized by researchers [83]. These datasets involve subjecting batteries
to various operational profiles at different temperatures. Impedance measurements are
recorded after each cycle. The NASA battery dataset is a valuable resource for researchers
who are interested in studying battery performance, aging, and prognostics. Making open
data and software available is a promising approach to enhancing the transferability of
models and making them more useful for battery design. This involves the systematic
generation of datasets and their release for reuse by other researchers.

Harnessing data-based methods for discerning materials, estimating the lifespan
and efficiency of lithium-ion batteries, has proven promising, leading to a heightened
interest in utilizing these methodologies to amplify the prognostic abilities related to cell
behaviors. The recent developments in amassing and processing vast quantities of data
have paved the way for real-time learning and forecasting of battery operations. For
example, Severson and colleagues [84] recently furnished an openly accessible dataset
packed with a comprehensive array of battery data. This dataset comprises 124 LFP-
graphite cells, subjected to diverse quick-charging conditions, varying from 3.6 to 6 C, and
evaluated within a temperature-controlled chamber at 30 ◦C, achieving up to 80% of their
original capacities. The cells underwent one or two charging steps, such as 6 C charging
from 0% to 40% State of Charge (SOC), followed by a 3 C charging process up to 80%
SOC. Additionally, all cells were charged from 80% to 100% SOC using a 1 C Constant
Current-Constant Voltage (CC-CV) phase to 3.6 V and depleted with a 4 C CC-CV phase
down to 2.0 V, with the end current regulated at C/50. During the cyclic evaluation, both
cell temperature and internal resistance were documented at 80% SOC. This dataset offers a
valuable resource for those looking to delve into battery performance, especially pertaining
to rapid charging conditions. The feature-based machine learning model adeptly utilized
voltage and capacity data from the initial 100 cycles (roughly 10% of the overall lifespan)
of equivalent commercial cells to build a straightforward regression model capable of
forecasting the cycle lifespan with approximately 90% precision. Nevertheless, a pressing
query persists: How might data-based methods be employed to anticipate cell behavior
within ever-changing field uses? Additionally, can these strategies provide an efficient
solution to comprehend and predict the reaction of emerging cell and pack configurations
to authentic environmental conditions, thus enhancing the efficacy of battery systems?

In certain scenarios, gathering training data can be a costly and challenging task. In
such cases, there is a growing need to develop high-performance learning models that
can be trained using data from different domains that is more easily accessible. This
technique is commonly known as transfer learning [85]. Transfer learning offers a practical
solution to the challenge of obtaining sufficient training data and has become increasingly
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relevant in a wide range of fields. With the help of transfer learning, it is possible to achieve
high-performing models without incurring excessive costs or resource allocation.

While the exploration of negative transfer remains somewhat sparse, infusing negative
transfer methods into transfer learning frameworks could be a potent path for forthcoming
research. One conceivable trajectory entails the creation of solutions that cater to multi-
ple origin domains, potentially enhancing the filtering out of irrelevant data. A further
promising field is the concept of optimal transfer, a process that aims to selectively con-
vey certain information from a source domain to maximize the performance of the target
learner. Although there is some intersection between negative and optimal transfer, optimal
transfer concentrates on boosting the performance of the target, whereas negative transfer
emphasizes the detrimental influence exerted by the source domain on the target learner.

6. Outlook
6.1. Cloud-End Collaboration

In BMS, a collaboration with cloud computing capitalizes on the substantial compu-
tational power and storage space offered by cloud servers, overcoming the constraints
of traditional BMS and paving the way for the use of advanced algorithms such as deep
learning and reinforcement learning. The BMS’s 5G communication module is used to
capture real-time battery data, which can then be employed to build battery models in the
cloud. This allows for a two-way dynamic correlation between the digital twin model and
the actual battery, enabling detailed and secure battery management throughout its lifespan
through online learning and model updating. The data gathered from the batteries and
their associated digital twin models throughout their full lifespan is used to construct an
optimal performance improvement path via the application of smart OTA remote program
update technology. In order to cater to the escalating needs of battery management, the
immediate processing abilities of the embedded system are integrated with the high-level
intelligence offered by the cloud platform. To enhance the efficiency of the system further,
the notion of a collaborative management model that incorporates cloud, edge, and end
is introduced.

6.2. Digital Twins

Leveraging a digital twin, a virtual counterpart of the physical object, may serve as a
bridge linking laboratory experiments to real-world uses [86]. The digital twin, integrat-
ing sensor readings from real-world scenarios into computational models, can faithfully
simulate the conductivity of lithium-ion batteries under a variety of operational states like
random discharge, dynamic charge, and idle stages. Fundamental aspects like voltage,
current, temperature, and so on can be derived from the onboard BMS and used to optimize
the digital twin. The goal is to improve the predictive ability of the digital twin under
realistic conditions, which can lead to a better understanding and evaluation of battery
behavior. The use of IoT technology, such as the MQTT protocol, enables the collection of
large amounts of sequential data from the ever-increasing running time of EVs. This data
can be seamlessly transmitted to the cloud for analysis, improving our understanding of
complex battery behavior under different operating conditions.

Despite the potential benefits of digital twins, several challenges need to be solved
before their widespread implementation can become a reality. Firstly, acquiring accurate
and comprehensive observational data can be difficult, as it may be scarce and noisy and
can take various forms. Secondly, physics-based computational models can be complex
to set up and calibrate, requiring significant effort in pre-processing and determining
initial and boundary conditions, making their use in real-time applications impractical.
Additionally, the physical models of complex systems are often only partially understood,
with conservation laws that do not provide a complete system of equations without further
assumptions. Physics-informed learning, however, offers a solution to these issues by
seamlessly blending physical models with data and utilizing automatic differentiation to
eliminate the need for mesh generation.
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6.3. Data-Model Fusion

Simulations based on fundamental principles are commonly employed to probe mate-
rial degradation, incorporating techniques like density functional theory and molecular
dynamics. Additionally, the transformation of microstructures and formations, such as
lithium dendrite creation and phase segregation of active electrode materials, is examined
using physics-rooted models like the phase field method. Despite the phase field mod-
eling not yet achieving complete cell simulation, the simulation results align well with
experimental data. In order to carry out in situ computations, a machine learning model
needs to be trained first, followed by the establishment of a database comprising previous
outcomes from multiscale first principles and phase-field simulations. This model serves
as a proxy for the simulations; if machine learning demonstrates significant uncertainty, an
additional simulation is conducted, added to the database, and the machine learning model
is retrained. This iterative process of active learning holds the potential to drastically reduce
the number of simulations required to understand a system. Similar machine learning
applications can be utilized in experimental design and to eliminate costly experiments.
Further studies focusing on the mechanical properties of solid electrolytes and voltage
demonstrate how machine learning can expedite simulations.

As the fusion of physics-based modeling and machine learning progresses, researchers
are likely to frequently encounter situations where multiple models of the same phe-
nomenon are developed using the same training data, or even data that is equally infor-
mative. Even though their predictions based on the training data are nearly identical, this
could lead to differentially trained networks. To address this issue, the construction of
machine learning-based transformations between theories, models of varying complexity,
and predictive models that can be validated is crucial. This will ensure that a phenomenon
retains a unique and clear physical interpretation, even when multiple models are used to
describe it. The merging of data and models can yield enhanced representations of physical
systems by capitalizing on the strengths of each information source.

6.4. Explainable AI

In several scientific disciplines, the prevailing trend is an overflow of observational
data that often surpasses our ability to understand and analyze effectively. Despite ma-
chine learning (ML) methodologies showing substantial promise and early successes, they
continue to face hurdles in deriving significant insights from the wealth of data at hand.
Furthermore, a sole reliance on data-driven models can lead to accurate correlations with
observed data, but such models might produce physically inconsistent or implausible
predictions due to extrapolation or biases inherent in the data, potentially diminishing their
generalizing capabilities. In many instances, AI systems fall short of offering clear explana-
tions of their autonomous actions to human users. While some argue that the emphasis on
explain ability is misguided and unnecessary for specific AI applications, it remains vital
for a number of key applications where users need to understand, trust, and effectively
manage their AI counterparts. Explainable AI (XAI) systems [87], striving to improve
their understandability for human users by delivering explanations of their actions, hold
promise for enriching materials science and battery modeling. They can contribute to a
more thorough understanding of the underlying physics, more effective hypothesis testing,
and a higher level of confidence in learning models. By granting researchers the ability to
interpret and visualize decision-making processes in complex models, XAI can assist in
identifying crucial features and parameters impacting material and cell characteristics. This
understanding can further promote the creation of new materials with superior properties
and deepen our comprehension of their behavior under varying conditions. Furthermore,
the transparency and interpretability provided by XAI methods can foster trust in learning
models, empowering researchers to make well-informed decisions and draw accurate con-
clusions. In designing more effective, user-friendly AI systems, certain basic principles and
domain-specific knowledge must be taken into consideration. Specifically, an XAI system
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should be capable of articulating its capabilities and insights, justifying its past actions,
outlining its current trajectory, and revealing crucial information that steers its decisions.

7. Conclusions

Artificial intelligence and machine learning methods are increasingly being utilized
to reveal patterns and insights from the expanding volume of battery data. However,
these approaches often require craftsmanship and intricate implementations, especially
when system dynamics are predominantly influenced by spatio-temporal context. This is
where cloud-based digital solutions come in. The cloud environment can be configured
by us-ers/developers to meet their specific needs and requirements. Cloud-BMS opens
up a new world for collecting observational data and assimilating it sensibly through the
seamless integration of data and abstract mathematical operators. However, merely moving
data to the cloud isn’t enough. New physics-based learning algorithms and computational
frameworks are vital in addressing the challenges faced by complex battery systems,
especially in real-time EV scenarios. Integrating AI and machine learning into BMS could
boost battery diagnosis and prognosis accuracy. Furthermore, integrating cloud-based
frameworks into the BMS can improve battery monitoring and management efficiency
and scalability. Advanced sensing and monitoring technologies, such as wireless sensor
networks and IoT devices, could allow for real-time data collection and analysis, enhancing
battery management precision. The fusion of data-driven and physics-based modeling
through physics-informed machine learning techniques promises to further boost battery
management performance. The potential to model long-range correlations across multiple
time scales, simulate thermodynamics and kinetics, and explore the dynamics of nonlinear
battery systems holds promise for accelerating technology transfer from academic progress
to real-world applications.
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