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Abstract: Increasing levels of distributed generation (DG), as well as changes in electricity consump-
tion behavior, are reshaping power distribution systems. These changes might place particular stress
on the secondary low-voltage (LV) distribution systems not originally designed for bi-directional
power flows. Voltage violations, reverse power flow, and congestion are the main arising concerns
for distribution system operators (DSOs), while observability in these grids is typically nonexistent
or very low. The present paper addresses this issue by developing a method for nodal voltage
estimation in unbalanced radial LV grids (at 0.4 kV). The workflow of the proposed method combines
a data-driven grey-box modeling approach with generalized additive models (GAMs). Furthermore,
the proposed method relies on experimental data from a real-world LV grid in Denmark and uses
data input from only one measuring device per feeder. Predictions are evaluated by using a test data
set of 31 days, which is more than twice the size of the training data set of 13 days. The prediction
results show high accuracy at root mean squared errors (RMSEs) of 0.002–0.0004 p.u. The method
also requires a short computation time (14 s for the first stage and 2 s for the second stage) that meets
requirements for the practical, real-time monitoring of DSO grids.

Keywords: data-driven modeling; distribution power systems; grey-box modeling; generalized
additive models; phase voltage estimation

1. Introduction

As a necessary means towards carbon-neutral energy systems, power systems opera-
tion is undergoing a paradigm shift. More devices are becoming electrified, e.g., vehicles
and heating devices; the uptake of distributed generation (DG) is increasing; and demand-
side flexibility is attracting increasing attention in providing flexibility services for power
system operation [1]. These developments are leading to changes in consumption and
production patterns, which might stress the low-voltage (LV) distribution power systems
that were originally not designed for these conditions. Meanwhile, operational observ-
ability in LV grids is generally nonexistent or very low. As a result, to ensure the reliable
operation of grids, distribution system operators (DSOs) require techniques to improve
grid observability.

Although smart meters are being installed on a large scale in Europe, they offer limited
potential for improving the observability of distribution grids. In [2], the authors state that
it is not the smart meters that carry the largest cost but rather the required communication
infrastructure. Moreover, smart meter communication systems could be subject to cyber-
attacks; data are often delayed and not available in near-real time (e.g., residential smart
meters that collect data only once a day) and have a slower sampling frequency than phase
measurement units (PMUs). Hence, to infer the values of the system’s state variables using
a limited number of data, distribution system state estimation (DSSE) is required.
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While state estimation is common practice in transmission grids, some factors com-
plicate the application of the same state estimation methods in distribution grids, such
as low X/R ratios, unbalanced operation, and fast changes in the configuration of distri-
bution grids [3]. Thus, new methods are proposed in the literature for DSSE that can be
categorized from different viewpoints. In general, DSSE problems are voltage-based or
branch-current-based. The main focus of this paper is on voltage-based methods. However,
several branch-current-based studies can be found in the literature, e.g., [4–6].

Among voltage-based DSSE methods, many studies try to apply or modify the
weighted least square (WLS) approach as the most commonly used method in trans-
mission system state estimation [7] for DSSE. For instance, Lin et al. [8] proposed a fast
decoupled DSSE method taking into account the virtual measurements, i.e., perfect infor-
mation about the grid, as an equality constraint in the problem formulation. A penalty
factor was defined and added to the standard WLS problem that enforces satisfaction of
this equality constraint. This method needs no assumptions about voltage magnitudes and
phase angles. Chen et al. [9] proposed a methodology for DSSE in cases where only the
aggregated data of smart meters are available in order to respect the customers’ privacy.
The variance of the smart meters’ measurement errors was used to construct the weight
matrix in the WLS optimization problem. A power flow analysis was performed to create
time series of active and reactive power data for the study. The problem of DSSE for areas
with high numbers of electric vehicles (EVs) was addressed by Nie et al. [10]. To provide
more reliable and accurate results, a new quasi-Newton method was used to solve the
WLS problem. The effectiveness of the method was evaluated by applying it to the IEEE
14-bus and 30-bus test systems using real travel survey statistics and base load records.
Simulation results showed better performance of the proposed method than standard WLS
and extended Kalman filter methods, especially when the number of EVs increased. The
DSSE solvers of the WLS problems may face the issue of numerical instability and high
sensitivity to the choice of initial values. To address this issue, Yao et al. [11] proposed a
semi-definitive programming (SDP) approach for the DSSE problem obtained by convex
relaxation of the original WLS problem. The method was evaluated by applying it to IEEE
13-bus, 34-bus, and 123-bus test systems. Similarly, Zhu et al. [12] proposed a distributed
SDP approach to formulating the DSSE problem, which can be used for areas with several
DSOs and minimal data exchange among DSOs due to data confidentiality concerns.

WLS-based approaches are fast and simple, but they could be susceptible to bad
data [3]. This has led to the introduction of robust state estimation approaches. Some
research papers upgrade the WLS-based approaches to improve the robustness of state
estimation. For instance, Wu et al. [13] developed a DSSE method for a grid with limited
real-time measurements or with delayed information from smart meters. To provide robust
results, a machine learning approach was used to create inputs for the weight matrix of the
WLS problem in the state estimator. The test data were generated using power flow analysis
at each time interval, and then errors were intentionally added to the system to simulate
different measurement errors. Simulation results confirm the robustness of the results
against the measurement errors; the type, location, and accuracy of measurements; and the
temporary failure of the communication system. Liu et al. [14] proposed a methodology
based on the matrix completion approach to perform a robust DSSE. The matrix completion
approach uses the known elements in the matrix to estimate the missing elements by solving
a rank minimization problem. In the proposed approach, system information is used to
form the system state–measurement matrix. The distribution grid model and Ohm’s law
are added to the rank minimisation problem as constraints. A decentralized PMU-based
robust state estimation method for distribution grids, including a utility grid and several
micro-grids, was introduced by Lin et al. [15]. The state estimation problem was formulated
as a quadratic optimization problem for the utility grid and micro-grids. Each micro-grid
was assumed to be responsible for evaluating its bad data measurements and an iterative
algorithm with minimum data exchange between operators was proposed to perform
robust DSSE. Fast convergence and scalability are the two main features of this method.
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Dahale et al. [16] proposed robust formulations for four sparsity-based DSSE approaches
(1) 1-D compressive sensing, (2) 2-D compressive sensing, (3) matrix completion, and
(4) tensor completion. Simulation results highlight the great performance of compressive-
sensing-based approaches compared to tensor completion and matrix completion methods.
Furthermore, Raghuvamsi et al. [17] developed a data-driven denoising autoencoder
approach for their DSSE model that is robust to false data injection attacks. Their model
showed improvements compared to other denoising autoencoder approaches and was able
to identify the location of the false data injection and replace the measurements.

Data-driven methods are one of the most recently introduced approaches in DSSE.
These methods can be an auxiliary tool in solving the DSSE problem, such as using a neural
network (NN) method to generate initial points to solve the main optimization problem [18]
or applying machine learning to exploit pseudo-measurements (i.e., artificial measurements,
typically acquired from another model or simulated data) [19]. Data-driven approaches
could also be used to solve the DSSE problem. NN is one of the most common data-driven
approaches for DSSE [20–22]. Kim et al. [20] introduced a modified long short-term NN for
state estimation in hybrid DC/AC distribution grids. Zamzam et al. [21] proposed a NN
method that utilizes the structure of the power grid for DSSE. The proposed architecture
reduces the number of coefficients required for mapping from the measurements to the
network state, which prevents overfitting and reduces the complexity of the training stage.
Among other data-driven approaches, Weng et al. [23] introduced a data-driven DSSE
approach that uses the power system patterns and physics to clean data. Supervised
learning was used to learn the relationship between the measurement and the system’s
state using historical data. Moreover, an approach was suggested to speed up the estimation
by 1000 times. To benefit from the advantages of both data-driven and classical methods,
Anubi et al. [24] proposed an enhanced resilient DSSE algorithm, which combines a data-
driven model with the compressive sensing regression method. Using this algorithm helps
the system estimator to recover the true state of the system if faced with false data injection
attacks, which mislead regression-based algorithms.

Although the abovementioned studies have covered a wide range of issues and
solutions for DSSE, it is worth noting that all these studies are focused on medium-voltage
(MV) distribution grids, i.e., voltage levels higher than 0.4 kV. Low-voltage (LV) distribution
grids, i.e., 0.4 kV, have characteristics that make them different from MV grids. For instance,
LV systems are typically more unbalanced than MV systems. Since customer loads are
connected to different phases, uneven load distribution between the phases often arises,
marking the need for per-phase voltage estimations. Moreover, MV loads are not as volatile
as the aggregate customer loads from the connected LV networks, resulting in lower load
variance, supposedly easier to estimate. Additionally, there are DSSE methods for MV
distribution grids that rely on more measurements than those that are practically feasible in
LV networks. Hence, new methods must be developed for state estimation in LV systems.
With this in mind, it is worth mentioning that the authors in [25] developed an NN approach
to estimate voltages in a 0.4 kV distribution grid. However, it seems that the method is
developed based on confidential customer data, and it could be questioned whether these
data inputs should be used for operational purposes. Meanwhile, the reported root mean
squared error (RMSE) is 0.59 V and the method requires retraining after 20 days. In [26],
the authors derive a method for voltage control in LV grids with high levels of photovoltaic
(PV) system uptake, including a remote voltage estimation technique. However, the method
relies on the load estimations of customers and the number of customers to produce a
generic feeder and is rather designed for voltage control in networks with on-load-tap-
changers, limiting the applicability in the context of this study. Mokaribolhassan et al. [27]
developed a DSSE method using the augmented complex Kalman filter, also in a power
system with PV systems. However, the authors here apply a technique where they separate
the PV generation from the customer loads. Testing their model on one month of data for
one LV feeder, the authors obtain a mean average error of 0.3% in their simulated studies.
Furthermore, in [28], a remote voltage estimation method for radial LV grids is developed,
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combining a series of power flow calculations and polynomial regression. While the model
shows good accuracy, it relies on pseudo-measurements, which can complicate the required
retraining of the model; hence, applicable and relevant pseudo-measurements need to be
ensured. The model is also tested based on simulated data, and the computation time to fit
the model is 0.79 h.

Our comprehensive literature review of DSSE shows that methods for estimating
remote voltages in radial LV grids are scarce, as opposed to the many methods found for
MV grid DSSE. Furthermore, it would be advantageous in the DSO grid operation to have
methods that place an emphasis on providing an estimation of the error components of the
model, whereas most methods in the literature focus on mean value prediction. Methods
with higher accuracy and a lower computational burden are also crucial for the DSOs to
fully realize remote voltage estimation techniques for grid operation. In addition, methods
relying on a few measurements that are based on and validated for real-world data are
needed. In light of this, the present paper contributes to the field by

• Proposing a data-driven approach for nodal voltage estimation in unbalanced LV
grids;

• Combining a grey-box modeling approach to gain explainability and a generalized
additive modeling approach to reduce the computational burden significantly, which
makes the method practical for online monitoring;

• Deriving the method for a real-world experimental setup and validating the results
with high accuracy.

Through the real-world experimental setup, it is ensured that the method is based on
input variables that are practical for the DSO to measure because of hardware installations,
unlike pseudo-measurements that rely on simulated data. In addition, the experimental
setup also includes a new type of electronic measuring device from Linc.world.

The rest of the paper is structured as follows. Section 2 defines the problem. Section 3
provides a generic description of the proposed method. Section 4 describes the experimental
setup with electronic measuring devices in a radial LV grid in Denmark. In Section 5, the
applied method is presented, including an analysis of the data collected in the experimental
setup, a workflow for the model selection process, as well as the applied grey-box and
generalized additive modeling approaches. In Section 6, the results from the model selection
process are presented and analyzed. The paper is concluded in Section 7 and improvements
that could form the basis for future work are also suggested.

2. Problem Definition

During the operation of a radial DSO grid, the end nodes are the most critical regarding
voltage stability since the largest voltage drop occurs in this location. Studying different
DSO grids, we can see that while there are usually a few end nodes that are equipped with
measuring devices, most of the other end nodes are not measured. Estimating the voltage
in the end nodes without measurement devices is thus very important.

The model developed in this work is intended to support DSOs in diagnosing the state
of the grid during the operation through improved voltage observability. The focus is to
develop a method for voltage estimation at the end nodes using the available data from the
measuring devices installed in the upper levels and at least one other end node.

The model is further intended to be used in an online monitoring system or integrated
into DSOs’ supervisory control and data acquisition (SCADA) systems; thus, priority is
given to methods resulting in a low computational burden. We further intend to develop a
scalable model for DSO grids, which are generally large grids with many nodes and radial
branches, and the goal is to provide reasonable state estimates given input data from a few
measurement devices.

3. Workflow of the Proposed Method for Voltage Estimation

The workflow of the proposed method is illustrated in Figure 1. To build the data-
driven model shown in the workflow, in addition to the transformer measurements, we
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use an end node for which we have data through measurement devices, i.e., an end node
with high observability. Then, we adapt the model to estimate voltages at other end nodes
without real-time measurements, i.e., the nodes with low observability. The end node was
chosen instead of a middle node because it is prioritized in the DSO operation to obtain
the end node voltage and the entire voltage drop along one radial feeder with very high
certainty through direct measurement, to add robustness to the model setup in case of
disturbances.

End node voltage estimation is performed in two steps. First, the proposed workflow
is followed to estimate the voltage in a node at the middle of the radial using the data from
upper levels and the available data from the end node with high observability. Then, we
use the estimated value for the middle node and follow the workflow again to estimate the
voltages in other end nodes with low observability.

To perform the voltage estimation, we start with data analysis. In this step, all the
data collected from measurement devices, including the available voltage and current
measurement data from phases and neutral conductors and weather information, e.g., so-
lar radiation and ambient temperatures, are considered. The information from the data
analysis, such as correlation, is then utilized to choose parameters to construct the model.

In the next step, these parameters should be applied to a data-driven approach to
perform the voltage estimation. Our investigations indicated that different methods can
show different accuracy levels and advantages in voltage estimation at different nodes.
Thus, it is suggested to choose two data-driven approaches, (1) a generalized additive
model (GAM) and (2) grey-box modeling, for state estimation. For each approach, we apply
the data to both approaches, fit the models, evaluate the results, and choose the best model
for state estimation.

It is worth mentioning that other time series modeling approaches, such as Autore-
gressive Moving Average eXogenous (ARMAX) models, could also be alternative modeling
techniques. However, GAMs and grey-box models were found to provide satisfactory
results for the problem. Therefore, we focus on these approaches in this paper.

Figure 1. Workflow for the model selection process. Solid arrows represent the offline model selection
approach using data collected from the power grid. Dotted arrows represent how the model would
operate in real time using measurements and model estimates from a radial with high observability
to estimate end nodes with lower observability.

Note that the solid arrows in Figure 1 represent the model fitting path of the workflow
and might include measurements from more devices for model validation. The idea is that
the model fitting could occur when an entire data set is collected by the DSO, e.g., daily.
The real-time estimation path of the workflow is represented by the dotted arrows and is
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based on a few measurement devices and could occur in real time. Thereby, a lower burden
on the communication system could be achieved.

Since the proposed method is data-driven and deals directly with data, we cannot
present the approach in detail without using real data. Hence, in the next sections, first,
the experimental setup is introduced as the case study. Then, the abovementioned approach
is applied to this setup step by step to explain how the method should be applied to a real
grid. Although there might be differences in applying the method to different grids, such
as differences in the parameters with a high correlation or the results of model selection,
the main approach will be the same as in Figure 1.

4. Experimental Setup Description

The studied case is a low-voltage (LV) grid at 0.4 kV in Jutland, Denmark, with a 400 VA
10/0.4 kV transformer serving 170 residential customers. In the network, 5–10 customers
have electric vehicles (EVs), and 15–20 customers have photovoltaic (PV) systems with
rated sizes of 3–6 kW. The households use either district heating or heat pumps for space
heating. There are 12 electronic measuring devices installed in the grid, as shown in
Figure 2. The electronic measuring devices are placed at the transformer and cable cabinets
(cable cabinets are seen as horizontal lines in Figure 2). As seen in the figure, the devices
were already installed on three out of the five feeders by the DSO. This research aims to
make the best use of these installed measuring devices to perform voltage estimation in
end nodes where there is no real-time measuring device installed. It is worth mentioning
that the optimal placement of measuring devices in the grid could also be a topic for future
studies, but it is beyond the scope of this paper. Due to space limitations in the cable
cabinets to install all sensors for the electronic measuring device, some of the devices
do not collect current measurements since the DSO prioritizes voltage measurements.
Furthermore, the current collecting devices might not measure all in- and outgoing cables
from the cable cabinets due to space limitations. Figure 2 indicates which devices collect
only voltage measurements and which collect both voltage and current measurements.
The devices deliver per-phase data with a one-second resolution. When measuring the
current, the devices also measure the active power, power factor, current harmonics, and
peak current. The DSO operating the grid has full information on the cable types; thereby,
cable impedances and lengths in the grid are known. Active power data from household
meters are also available and delivered daily in hourly resolution.

Figure 2. Grid topology and installation of devices (blue dotted circles). The naming of the devices
is constructed from the letter of the feeder (i.e., A, B, C, D, and F), subscript M indicates that it is a
middle node, and subscript E indicates an end node. T1 and T2 represent the two devices installed at
the transformer. It is also indicated whether the device measures both voltage and current [V, I] or
only voltage [V]. Squares represent customers in the grid.
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5. Method

The models designed and developed in this research are physics-informed (physics-
based) and data-driven. This means that the physics and known theories are used to build
the first structure of the model, while the data, together with statistical and analytical tools,
guide the process of finding the final model (e.g., a grey-box model). The data reflect the
system of interest, including disturbances, which are not always possible to foresee or
measure directly. Thus, a probabilistic model that reflects the real-world system, namely the
power system in the experimental setup, is achieved. In this section, we first describe the
physics of the system utilized to build the end node voltage estimation models, followed by
analysis of the data collected in the experimental setup. We then present how generalized
additive models (GAMs) and grey-box models are applied in the model selection process.

5.1. Physics of the System—Voltage Drop

Since the model is developed for a radial LV network, the equations that guide the
first structure of the model are voltage drop equations. For a meshed network, power flow
equations might be more suitable, but due to the low X/R ratio in LV grids, this would
directly become a set of non-linear equations.

It should further be noted that the common voltage drop equations are used to calculate
line-to-neutral voltage drops [29]. Since the LV grids are unbalanced, the neutral conductor
might carry currents; hence, the neutral conductor voltage might not be zero [30,31]. Thus,
we will investigate whether a term for the neutral current voltage drop, ∆VN, should be
included in the voltage drop equations such that

VS = VR + ∆V + ∆VN (1)

where VS is the sending-end voltage (i.e., the voltage at the node upstream of the net-
work) and VR is the receiving-end voltage (i.e., the voltage at the node downstream of the
network).

Looking at Figure 2, we can see that using the nodes with installed devices as sending-
end and receiving-end voltage inputs (VS and VR) in Equation (1), there will be loads not
only at the receiving end but also along the feeder. The effective cable length (or impedance)
in the voltage drop equations was discussed in [32], where the authors suggested calculating
the load center distance as it varies with the total ampere distribution along the feeder.
However, their suggested method becomes impractical for a real-time algorithm as it
requires real-time data from all households. Instead, we will fit a parameter in the model,
based on available data, that reflects the effective resistance and reactance of the feeder.
The resistance also increases with temperature. This might lead to seasonal deviations in
the model, which will be investigated as well.

Since distribution networks are quite large and the installation needs to be scalable,
another objective of this work is to devise a technique that requires the minimum number
of extra measurements from the network. This avoids extra capital investment for the
DSOs when rolling out the solution at scale. For example, the distribution network studied
in this paper has 22 end nodes. Assuming that the DSO owns 1000 such grids, installing
one measurement unit at each end node will result in 22,000 measuring devices, which
is an expensive solution. However, if the proposed solution can reduce the number of
measurement units to one at each branch, they would only need 5000 units. Turning to
classical WLS state estimation is not an option here as it would require more devices to
provide enough observability or accurate pseudo-measurements in at least the same time
resolution as the model (minimum 10 min). Instead, we use the data at hand to develop a
model that estimates the states of concern, i.e., the states at the customer premises.

5.2. Data Analysis

To avoid redundant discussion, the data analysis only presents data for the third
phase, L3. The input parameters used in the model selection process are listed in Table 1.
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The training data set is from 18 April 2022 to 30 April 2022 and the test data set is from
1 May 2022 to 31 May 2022.

Table 1. Measured input variables used in the model selection process. All electrical measurements
from the experimental setup are per phase, and their placements in the LV grid are seen in Figure 2.

Variable Notation Unit

VT1 voltage at T1 V
VCM voltage at CM V
VCE1 voltage at CE1 V
VCE2 voltage at CE2 V
VCE3 voltage at CE3 V
IT1 current at T1 A
cos(φT1) power factor at T1 -
IN,T1 neutral conductor current at T1 A
cos(φN,T1) neutral conductor power factor at T1 -
IN,CM neutral conductor current at CM A
cos(φN,CM) neutral conductor power factor at CM -
ICM current at CM A
cos(φCM) power factor at CM -
ICE1 current at CE1 A
cos(φCE1) power factor at CE1 -
solar solar radiation (from DMI) W/m2

Tamb ambient temperature (from DMI) ◦C

The voltage time series is shown in Figure 3 for feeder C in the grid (see Figure 2).
It can be seen that there is a significant voltage drop from the transformer (device T1) to
the nodes at the edge of the radial (e.g., device CE3) and that the variations in voltage
drop seem quite correlated. In Figure 4, scatter plots and correlations of the same voltage
measurements (as in Figure 3) and also the neutral currents along radial C (i.e., IN,T1 IN,CM)
can be seen. The behavior seen in Figure 3 is further supported by Figure 4, where higher
correlations are seen between the node voltages (at CM, CE1, CE2, and CE3) than between
the nodes and the transformer voltages.

Figure 3. Phase L3 voltage measurements of all devices on feeder C. VT1 is the voltage at the
transformer (device T1) and VCM, VCE1, VCE2, and VCE3 are voltages at the corresponding devices on
the feeder.
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Figure 4. Scatter plots, data density, and correlation for voltages and neutral current, for all devices
on feeder C (i.e., T1, CM, CE1, CE2, and CE3) using a time resolution of 10 min. “***” indicates a
p-value < 0.001, “.” indicate a p-value < 0.10.

Figure 5 presents scatter plots, data density, and correlations for relevant input pa-
rameters. It is noteworthy that although the CM voltage has a higher correlation with the
other edge voltages, the current for CE1 has a higher correlation with the edge voltages than
the current at CM. Ambient temperature has a very low correlation and will be excluded
as a potential input. Solar radiation, on the other hand, has a higher correlation with
the voltages. However, it may not necessarily be an explanatory variable as it probably
coincides with a higher load. Therefore, the current should be a better input variable
as the voltage drop equation supports it. Nevertheless, this observation will be further
investigated in Sections 5.4 and 5.5. Interestingly, Figure 4 suggests a high correlation
between neutral currents and the nodal voltages, which will be further explored in the
model selection process.

The original data are collected at a 1 second resolution. Therefore, filtering is required
to manage the large data set. In Figure 6, filtering to time resolutions of 1, 5, 10, and 15 min
can be seen for the CM third phase voltage. Comparing time resolutions of 1 min to 15 min,
it can be seen that the voltage peaks and drops appear smoothed, and the time series is
less volatile, which is a natural outcome of low-pass filtering. As persistent voltage peaks
and drops are of concern for power system operation to avoid outages, we instead aim to
find a suitable model for time resolutions of 5 or 10 min, which should be sufficient for
DSO operation while having a manageable data throughput (or computational burden).
Voltage data in lower resolutions would be less meaningful for the DSO to detect any
voltage stability issues due to the volatile behavior. Higher time resolutions might, on the
other hand, result in control strategies that are too volatile and miss the overall voltage
behavior over time. However, higher time resolutions could be of interest for other voltage
dynamic stability issues, but this is beyond the scope of this paper. Ten-minute filtering is
initially chosen to offer the possibility of incorporating environmental data, which have a
time resolution of 10 min.
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Figure 5. Scatter plots, data density, and correlation for voltages and input variables, using a time
resolution of 10 min. “***” indicates a p-value < 0.001, “**” indicate a p-value < 0.01, “*” indicate a
p-value < 0.05, “.” indicate a p-value < 0.10.

Figure 6. Phase L3 voltage time series for device CM filtered to time resolutions 1 min, 5 min, 10 min,
and 15 min.

5.3. Model Selection

To build the initial end node voltage estimation model, data collected from feeder C
in the grid (see Figure 2) were utilized. As previously stated, one of the objectives of the
proposed method was to minimize the number of required measuring devices. However,
it was realized early in the model selection process that using only the measurements at
the transformer level was insufficient to model the end node voltages. Instead, a workflow
using devices at specific locations in the feeder was derived (see Figure 1).
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GAM and grey-box modeling approaches were used to build the observability model,
which will be discussed in detail in Sections 5.4 and 5.5. In both approaches, a forward
selection process was followed for model evaluation, as described in Section 5.6.

To better understand the workflow, let us consider feeder C in Figure 2 as an example.
The goal is to estimate the voltage in one of the end nodes, such as CE2 or CE3. To this end,
we need one measurement in addition to the measurements in the transformer level. Both
CE1 and CM measurements can be used. However, in the case of using CE1, one end node
voltage will be known by the DSO with very high accuracy. Furthermore, if the voltage
drop along the feeder is known, it will supposedly be easier to derive models for other end
nodes in the network. Thus, measurements in transformer T1 and one of the end nodes,
e.g., CE1, are used to build the model. Considering the two measurements and node CM,
two voltage drop equations can be expressed as below:

VCM = VT1 − ∆VT1−CM (2)

VCE1 = VCM − ∆VCM−CE1 ⇔ VCM = VCE1 + ∆VCM−CE1 (3)

where VT1, VCM, and VCE1 are the phase-to-ground voltages at devices T1, CM, and CE1,
respectively. ∆VT1−CM is the voltage drop between devices T1 and CM, and ∆VCM−CE1
is the voltage drop between devices CM and CE1. Both the GAMs and grey-box model
structures are derived assuming that VCM is partly described by Equation (2) and partly by
Equation (3) such that

VCM,k = a(VT1,k − ∆VT1−CM,k) + b(VCE1,k + ∆VCM−CE1,k) + εk (4)

where k are measurement instants in time; tk, a, and b are coefficients to scale the contri-
butions from Equations (2) and (3), respectively; and εk are independent and identically
distributed errors assumed to be Gaussian white noise, N (0, σ2

ek
). Both modeling ap-

proaches start with this formula as an initial model structure.
To estimate the end node voltages at low-observability radial feeders, estimates from

a high-observability feeder are then utilized as model inputs.

5.4. GAM Model

GAMs are investigated in this subsection as possible structures to obtain the voltage
estimation model. The general expression for GAMs is

g(µi) = Aiθ+ f1(x1i) + f2(x2i) + f3(x3i, x4i) + . . . (5)

where µi is the expected value of a response variable Yi. Aiθ represents the parametric part
of the model with explanatory variables Ai and parameters θ, and fm represents smooth
functions of variables xj [33]. For more details of the GAM models, the reader is referred
to [33].

The initially derived GAM model from Equation (4) has the following structure:

g(µVCM,t) = VT1,t + s1(IT1,t, cos(φT1,t)) + VCE1,t + s2(ICE1,t, cos(φCE1,t)) (6)

where the inputs are described in Table 1 and t is the time variable. s1() and s2() represent
smooth functions using B-splines. The parameters were estimated using the gam() and
gamm() functions in R package mgcv version 1.8–40 [33–37]. Furthermore, a Gaussian
distribution was used.

The initial formula in Equation (6) is derived using only the terms associated with the
resistance of the voltage drop equations. Following the data analysis in Section 5.2 and the
voltage drop description in Section 5.1, various extensions of the inputs were explored:

• Adding a smooth term relating to the reactive-current term in the voltage drop equa-
tion by using the line current and sin (φd) = sin (arccos (cos(φd))) as inputs, where
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cos(φd) is the power factor measured by device d. This was done to investigate the
impact of the reactance in the cable.

• Adding voltage drop terms using IN,T1 and cos(φN,T1) to investigate the impact of the
voltage drop in the neutral conductor. It was impossible to use the neutral current
data in CE1 due to a lack of data availability.

• Adding the temperature as an input by incorporating it into the smooth functions
related to cable resistance (s(Id, cos(φd))) to investigate whether the temperature has
an impact on the resistance.

• Adding a smooth term for solar radiation to investigate the potential impact of PV
panels in the network. Here, a smooth term was used due the complicated functional
relationship.

• Adding a seasonal term to investigate whether there is an additional daily or hourly
variation not explained by other data. This was done using cubic splines with periodic
incremental time step inputs (i.e., a vector [1,. . . , m], where m is the period length of a
day or hour).

Additionally, variations of the smooth functions were explored.

5.5. Grey-Box Model

Grey-box models were also explored as another modeling approach because they have
proven useful when developing data-driven models for physical systems (e.g., in [38,39]).
In grey-box models, a known theory of a physical system is used to build the first structure
for the model, while statistics and data are used to develop the model further, as well as to
estimate the parameters of the model [40]. Thus, it is a mixture of deterministic modeling,
relying purely on the known theory, and black-box models, relying purely on statistics
and data. Grey-box models, consisting of a set of stochastic differential equations, can be
described in a continuous–discrete time state-space representation as follows:

dxt = f (xt, ut, t, θ)dt + σ(ut, t, θ)dwt (7)

yk = h(xk, uk, k, θ)+ ek (8)

where k are points in time, tk, of measurements; xt ∈ Rm is the state vector; yk ∈ Rn is the
vector of measured outputs; ut ∈ Rp is the vector of input variables; θ ∈ Rl is a vector of
unknown parameters; f (xt, ut, t, θ) ∈ Rm, σ(ut, t, θ) ∈ Rm×m, and h(xk, uk, k, θ) ∈ Rn are
linear or nonlinear functions; wt are m-dimensional standard Wiener processes; and ek ∈ Rn

are the measurement errors [41]. The Wiener processes are associated with the system error
and we assume that they are independent, and the measurement errors are assumed to be
Gaussian white noise N (0, σ2

ek
) and uncorrelated to other measurement errors. We further

assume that the Wiener processes and the measurement errors are independent.
The initial grey-box model in the model selection process is described as follows:

d∆VT1−CM = a(RT1−CM(∆IT1) cos(φT1))dt + σ1dw1 (9)

d∆VCM−CE1 = b(RCM−CE1(∆ICE1) cos(φCE1)))dt + σ2dw2 (10)

VCM,k = c(VT1,k − ∆VT1−CM,k) + f (VCE1,k + ∆VCM−CE1,k) + ek (11)

where k are points in time, tk, of measurements; a, b, c, and f are parameters to be esti-
mated; RT1−CM and RCM−CE1 are cable resistances; ∆ICE1 is the discrete differential of the
current at CE1 to the previous time step, i.e., ∆ICE1 = ICE1,k − ICE1,k−1 (since only discrete
measurements are available); consequently, ∆IT1 is the discrete differential of the current
at T1 (∆IT1 = IT1,k − IT1,k−1) and other inputs are described in Table 1. Note that the time
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indices in the system equations are omitted here for simplicity. The state equations are
derived by taking the derivative of the voltage drop equation.

Again, various extensions to the model structure were explored:

• Adding a voltage drop related to the reactive current by adding Rd1−d2∆Id2 sin (φd2)
to Equations (9) and (10), where d1 is the device at the sending end and d2 is the device
at the receiving end.

• Adding a state for the voltage drop in the neutral conductor using IN,T1 and cos(φN,T1).
• Adding temperature as an input to Equations (9) and (10).
• Adding solar radiation as an input to Equations (9) and (10).

The parameters were estimated using the maximum likelihood method as imple-
mented in the R package CTSM-R [40,42].

5.6. Model Evaluation

To evaluate the models in the forward model selection process, we used a similar
approach to that described in [38]. For each tested model, the autocorrelation function
(ACF) and cumulated periodogram for the residuals were evaluated to investigate whether
the model assumption of residual white noise had been achieved and whether there were
any patterns left in the data that were not captured by the model. Root mean squared
errors (RMSE) for both the training and test data sets, along with visual inspection of model
estimations on the training set and predictions on the test set, were used to evaluate each
model. We also evaluated the significance levels of the estimated parameters, and the
model was reduced if higher p-values than 5% were observed. Log-likelihood was also
used in the grey-box modeling approach and the Akaike Information Criterion (AIC) in the
GAM approach to compare candidate models.

6. Results and Analysis

Throughout the model selection process, several variations of the described models in
Sections 5.4 and 5.5 were evaluated. While discussing the majority of the models, special
focus is given to the models with the best statistical performance.

6.1. GAM Model

In the GAM modeling approach, it was discovered that the neutral conductor voltage
drop, ambient temperature, and reactance terms in the voltage drop equation were signif-
icant terms, improving the model results while having statistically significant estimated
parameters. Adding solar radiation and seasonal cubic splines resulted in insignificant
parameters and/or worse predictive capabilities. The resulting GAM model is given below:

g(µVCM,t) = s1(VT1,t) + s2(IT1,t, cos(φT1,t))Tamb,t + s3(IT1,t, sin (φT1,t))

+s4(IN,T1,t, cos(φN,T1,t)) + s5(VCE1,t)

+s6(ICE1,t, cos(φCE1,t))Tamb,t + s7(ICE1,t, sin (φCE1,t))

(12)

where t is the time variable; s() represents smooth functions as described in Section 5.4;
s2() , s3() , s6() , and s7() are tensor product smooths; and the input variables are described
in Table 1. The estimated parameters and function terms are reported in Table 2. Log-
likelihood and RMSE values for the training and test data sets are presented in Table 3.
Interestingly, the model maintains a similar RMSE for the test data set, which is promising
for estimations and predictions outside the training data set. This is further validated in
Figure 7, showing model predictions for the training and test data sets. Here, the predictions
are very close to the observations, and the 95% confidence intervals can barely be seen
due to the small span. Although showing good estimations and a low RMSE, the ACF
(Figure 8) and cumulative periodogram (Figure 8) demonstrate patterns in the data that the
model does not capture. Additionally, the model has 146 parameters (due to the smooth
functions), which limits the explainability and possibility of extending the model to explain
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other end node behavior. For this reason, we need a model where the voltage drop for a
section of the radial feeder can be separated/extracted.

(a)

(b)

Figure 7. GAM model state estimates on training (a) and test (b) data sets for three days, respectively.
The black and blue lines represent the observations and the model predictions, respectively. There is
also a 95% confidence interval indicated by the blue area, but it is visually difficult to see in the graph
due to the low standard deviation in the model.

Table 2. Estimated parameters and function terms in Equation (12), as well as corresponding p-values.

Parameter/Term Estimated p-Value

Intercept 230.6 <2× 10−16

s(VT1,t) 6.229 <2× 10−16

te(IT1,t, cos(φT1,t))Tamb,t 8.595 1.03× 10−5

te(IT1,t, sin (φT1,t)) 9.831 0.09692
s(INT1,t, cos(φT1)) 10.546 0.00115
s(VCE1,t) 4.733 <2× 10−16

te(ICE1,t, cos(φCE1,t))Tamb,t 15.979 6.86× 10−6

te(ICE1,t, sin (φCE1,t)) 0.306 <2× 10−16

Table 3. Comparison of log-likelihood between the GAM and grey-box models, as well as RMSEs of
the training and test data sets.

GAM Grey-Box

Log likelihood 1678 1685
RMSE training data set 0.099 0.100
RMSE test data set 0.109 0.107
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Figure 8. Residual ACFs and cumulative periodograms, for the GAM model in (a,b) and for the
grey-box model in (c,d). Blue horizontal and diagonal lines indicate a 95% confidence interval.

6.2. Grey-Box Model

In the grey-box model, a lower model order was achieved with the following model
structure:

d∆VR,CM−CE1 = (aRCM−CE1∆ICE1 cos(φCE1))dt + σ1dw1 (13)

d∆VX,CM−CE1 = (bXCM−CE1∆ICE1 sin (φCE1))dt + σ2dw2 (14)

VCM,k = cVCE1,k + d(VR,CM−CE1,k + VX,CM−CE1,k) (15)

where k are points in time, tk, of measurements; a, b, c, and d are parameters; ∆VR,CM−CE1
represents a state for the voltage drop related to the resistance between CM and CE1
(RCM−CE1), whereas ∆VX,CM−CE1 represents a voltage drop state related to the reactance
(XCM−CE1) along the same cables; ∆ICE1 is the discrete differential of the current at CE1 to
the previous time step, i.e., ∆ICE1 = ICE1,k − ICE1,k−1 (since only discrete measurements
are available). Although inputs from the transformer devices could be used in the model
structure, it had similar performance without these inputs. For instance, using the device at
T1 to model states for the voltage drop along the radial feeder from T1 to CM and the neutral
current voltage drop gave a log-likelihood of 1687 and RMSE of 0.100 and 0.108, for the
training and test data sets, respectively. This is to be compared with the reported values
in Table 3, keeping in mind that the model structure in the latter has 18 parameters, as
opposed to nine parameters in the model in Equations (14) and (15). Obviously, the smaller
model structure is preferred if its performance is comparable to or better than that of larger
models. All other extensions, as described in Section 5.5, either proved to give insignificant
parameters or produced similar or even worse performance in the predictions.

The estimated model parameters and standard errors are reported in Table 4. It can be
seen that the p-values are very low and are more significant than the estimated parameters
in the GAM model in general. Improvements compared to the GAM model are also seen
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in the residual ACF (Figure 8) and cumulative periodogram (Figure 8), indicating that
there is almost no autocorrelation in the residuals. Thus, the model is better at capturing
the existing patterns in the data. According to the cumulative periodogram, there are
either higher frequencies left in the residuals or the model has a slight tendency towards
overfitting. It should, however, be noted that the voltage tends to change quite rapidly,
and higher-frequency patterns left in the residuals could be due to other load currents
for which we do not have the measurements. Looking at the model performance on the
training and test data sets in Figure 9, it can be concluded that although there is a slight
deviation in the cumulative periodogram, the model performs exceptionally well even on
the test data set.

The advantage of the grey-box model is the model structure, which offers more
explainability compared to the GAM model. The grey-box model also has far fewer
parameters than the GAM model. Furthermore, the estimated states of the grey-box model
can be used to derive models for other end nodes in the radial network.

Table 4. Estimated parameters for the final grey-box model in Equations (14) and (15), with standard
errors (Std. errors) and corresponding p-values.

Parameter Estimated Std. Error p-Value

Initial state VR,CM−CE1 2.3693× 102 18.476 <2.2× 10−16

Initial state VX,CM−CE1 2.3716× 102 18.498 <2.2× 10−16

a 1.5318× 10−1 3.7564× 10−3 <2.2× 10−16

b 9.8561× 10−6 1.8247× 10−6 7.48× 10−8

c 9.5597× 10−1 2.0718× 10−3 <2.2× 10−16

d 2.1358× 10−2 9.9780× 10−4 <2.2× 10−16

(a)

(b)

Figure 9. Grey-box model estimations on the training, (a) and test (b) data sets for three days,
respectively. The black line represents the observations, and the blue line shows the model predictions.
A blue area also indicates a 95% confidence interval, but it is visually difficult to see in the graph due
to the low standard deviation in the model.
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6.3. End Node Estimation

For the end node estimation model, a similar model evaluation process was performed
as described in Sections 6.1 and 6.2. Here, GAM models produced slightly better results
compared to grey-box models for the end node estimations. At this stage in the workflow
(see Figure 1), less explainability is required and accurate estimations and lower computa-
tion times are prioritized. Therefore, this section focuses on the results of the GAM models.
The best results were acquired using the following model structure:

g(µVend,t) = s(Vest,CM,t) + s(∆Vest,R,CM−CE1,t, IT1,t) + s(tday,t) (16)

where s(tday,t) is a seasonal spline for the daily variation using B-splines of degree 3 and
144 knots, and ∆Vest,R,CM−CE1,t and Vest,CM,t are the estimated states of VCM,t from the
grey-box model. Incorporating ∆Vest,X,CM−CE1,t, i.e., ∆VX,CM−CE1,t estimated from the grey-
box model, demonstrated an insignificant impact on the model; hence, it was removed.
Estimating the voltage at CE2, VCE2,t, gave RMSE values of 0.22 V and 0.24 V for the
training and test data sets, respectively, as well as the predictions in Figure 10. The voltage
estimations, VCE3,t, at CE3 can be seen in Figure 11, for which the RMSE was 0.39 V and
0.49 V, respectively.

(a)

(b)

Figure 10. GAM model estimations on the training (a) and test (b) data sets for VCE2 for three days,
respectively. The black line represents the observations and the blue line represents the model
predictions. There is also a 95% confidence interval indicated by a blue area.
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(a)

230

225

(b)

Figure 11. GAM model estimations on the training (a) and test (b) data sets for VCE3 zooming in on
three days, respectively. The black line represents the observations and the blue line represents the
model predictions. There is also a 95% confidence interval indicated by a blue area.

6.4. Analysis of Measurement Device Setup Configuration

To evaluate the impact of using the data from different nodes for end node voltage
estimation, the proposed method is applied to the following cases.

• Case 1: Installing a measuring device at node CM and estimating the end node voltages
at CE1, CE2, and CE3.

• Case 2: Installing a measuring device at end node CE1 and estimating the voltage at
CE2 and CE3.

• Case 3: Installing two measuring devices at end nodes CE1 and CE2 and estimating the
voltage at CE3.

To model Case 1, Equation (16) is replaced by the following equation:

g(µVend,t) = s(VCM,t) + s(IT1,t) + s(tday,t) (17)

where VCM represents the online measurement of the measuring device at CM. Case 2 is
the proposed method in this paper. To implement Case 3, we should replace Equation (16)
with the following equation:

g(µVend,t) = s(VCM,est,t) + s(VCE2,t) + s(∆Vest,R,CM−CE1,t, IT1,t) + s(tday,t) (18)

where VCE2 represents the online measurement of the measuring device at CE2.
Simulation results of these cases are presented in Figure 12. As shown in Figure 12,

Case 1 gives the best RMSE for voltage estimation in nodes CE2 and CE3. This happens
because, in this case, the estimation of the voltage in CM is replaced by online measurement,
which reduces the error. However, the improvement in voltage estimation in comparison to
other cases is not significant. Additionally, it does not provide the possibility of direct end
node voltage measurement for any of the end nodes. In contrast with Case 1, Case 2 gives
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direct voltage measurement (RMSE = 0) in one end node due to installing the measuring
device at end node CE1, but, as mentioned before, the RMSEs for voltage estimation in other
end nodes are slightly greater than in Case 1. Case 3 requires the installation of one more
measuring device compared to Cases 1 and 2. However, as shown in Figure 12, adding a
new device does not improve the RMSE of the estimation, although it gives the possibility
of two direct measurements. Another case would involve installing devices at all end nodes
to achieve direct measurement at CE1, CE2, and CE3. As stated in Section 5.1, assuming that
the DSO would have 1000 similar grids to the one presented in Figure 12, the latter would
correspond to an installation setup with 22,000 devices, as opposed to 5000 devices for
Cases 1 and 2. Overall, in Case 2, the number of required measuring devices is less than in
Case 3, direct measurement possibility for one end node is obtained, and the estimation
errors are close to those in Case 1. Thus, this is a good choice to install the measuring device
and perform voltage estimation for all end nodes.

Figure 12. RMSE for voltage estimations at end nodes CE1 (red circle), CE2 (green triangle), and CE3

(blue square). Case 1 corresponds to installation of a measuring device at node CM and estimating
the end node voltages at CE1, CE2, and CE3; Case 2 corresponds to installation of a measuring device
at end node CE1 and estimating voltage at CE2 and CE3; Case 3 corresponds to installation of two
measuring devices at end nodes CE1 and CE2 and estimating the voltage at CE3.

6.5. Application of the Proposed Method and Future Setup Extension

Following the results from the analysis in Section 6.4, placing the measuring device
at CE1 produces better overall results. Furthermore, the models can be used in an online
estimation or forecasting algorithm due to their fast computation times. The grey-box
model parameters are optimized in 13.7 s, while the GAM models for voltages at CE2 and
CE3 are optimized in 1.1 and 1.3 s, respectively, using an Intel core i7® 1.90 Ghz, with 16 GB
RAM, running on Linux Pop!_OS version 21.10. It should be noted that for online operation,
the computation times can be further improved—for instance, by choosing the previously
estimated parameters as initial values. Similarly, the computation times for the grey-box
modeling could be improved if the software CTSM-R was able to use several cores for
parallel computation of the value of the likelihood function.

Comparing the computation times to other DSSE methods found in the literature,
the proposed method performs well when considering the computation time of 0.79 h as
in [28], and its result is similar to the computation time in [27] of 1 s. Furthermore, these
computation times should be compared in the context of the prediction results. For instance,
in [27], a mean average error of 0.3% was achieved, corresponding to 0.003 per unit (p.u.),
and an RMSE of 0.59 V is reported in [25]. The RMSE for the end node estimations in this
study ranges from 0.2 to 0.5 V (0.0008–0.002 p.u.) and the mid-node estimations are around
0.1 V (0.0004 p.u.).

Although the proposed models produce reasonable estimations, our models and
experimental setup can be improved. There are two main action paths to improve the
experimental setup:
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1. Improve measurements at CE1, to measure all customers at the end node as well as
the neutral conductor current;

2. Improve measurements at CM, to measure all cables, including neutral conductors.

In the installation setup, the electrical data for two out of three customers at CE1 are
measured. Since data from one customer are then missing, the model will not be able to
capture the effects of their power consumption on the nodal voltage. While the overall
daily pattern might be similar to that of the other customers, additional customer-specific
patterns over the day will not be captured. This could also explain the potential presence
of high-frequency residuals for the grey-box model in Figure 8, meaning that there are
high-frequency patterns that the model might miss because the data are not available.
This could be solved by measuring all customers at CE1. Furthermore, the voltage drop
along the neutral conductor was a significant input in the GAM model. However, we
could only model the neutral conductor between T1 and CM, since neutral phase data
were only available at T1. Using inputs from only CE1 provided the best results from the
grey-box model and, therefore, the impact of the neutral conductor voltage drop could not
be explored. In a future installation setup, measurements for the neutral conductor should
be provided for all devices. Unpredicted harmonics and voltage unbalance could result
in neutral conductor currents affecting the line-to-ground voltage drop and thereby the
model output. It is further suggested to measure the current and voltage of all cables and
the neutral conductor at CM, instead of measuring only the cable toward CE1 (see Figure 2).
It would then be possible to use the measurements at CM to directly estimate the end node
voltages with the GAM model. It should, however, be noted that the first improvement still
has the advantage of knowing one end node’s voltage with very high certainty and better
explainabilty in extending the model structure to other radial feeders. A good practice
could be to install both setup improvements and evaluate which one provides better model
performance during a longer period of time.

With the short computation time, the models are also suitable for daily updates
(optimizing model parameters) using smart meter data. As the workflow in Figure 1 along
with the final models suggest, only one device is required for real-time operation and
monitoring, whereas the offline model parameter optimization could be done at a preferred
frequency when entire data sets are collected.

7. Conclusions

In this work, a data-driven nodal voltage estimation method for the real-time monitor-
ing of radial LV grids has been developed. The method uses input from only one device at
the end of a feeder and is designed to provide phase voltages. Such estimations are useful
for distribution system operation as these grids are typically characterized by low or zero
observability in the presence of voltage and current unbalance. With increasing volatility
in consumption and production patterns, grid parameters, e.g., voltage and current, will
show volatile behavior, especially if implementing flexibility services at this topological
level in the grid. Therefore, real-time observability is of increasing importance for DSOs to
avoid system failure and replace grid equipment in time.

The presented workflow uses both grey-box and GAM modeling techniques. Both
methods have been proven to give reasonable estimations on both the training data set
(13 days) and the test data set (31 days), with RMSEs of 0.0004–0.002 per unit (p.u.) for the
studied nodes (for comparison, the voltage stability limits are 1± 0.1 p.u.). The grey-box
model provides explainability in describing the voltage drop along parts of a feeder, which
could be used as input to the computationally lighter GAM model. The method also provides
confidence intervals, which give the DSO the opportunity to apply risk-informed strategies.

The proposed method has a low computational burden, which makes it useful for on-
line monitoring algorithms, as opposed to other techniques relying on large data flows and
high-bandwidth communication infrastructures. The computational time for optimizing
the grey-box model parameters was 13.7 s, while the time required to optimize the GAM
models was less than 2 s for each model.
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Furthermore, the method was derived using data from a real-world radial LV grid.
Working with real-world data and data-driven methods, such as the methods described in
this paper, jointly offers a considerable contribution toward the application of observability
models in DSO grids, as it reflects the real system with unavoidable disturbances, not
captured through simulations in ideal conditions.

Future Work

From analyzing and using the data in the model’s development, useful insights
have been gained and a few improvements to the experimental setup can be suggested.
The improvements involve more comprehensive measurements at the end node used for
model building, as well as at the middle node (CM). It is suggested that both improvements
are implemented and the resulting models evaluated to obtain better model performance,
and it is recommended further to install the setup in different LV grids to evaluate the
scalability of the method.
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