
Citation: Huang, K.-H.; Chao, K.-H.;

Kuo, Y.-P.; Chen, H.-H. Maximum

Power Point Tracking of Photovoltaic

Module Arrays Based on a Modified

Gray Wolf Optimization Algorithm.

Energies 2023, 16, 4329. https://

doi.org/10.3390/en16114329

Academic Editor: Guojiang Xiong

Received: 4 April 2023

Revised: 10 May 2023

Accepted: 23 May 2023

Published: 25 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Maximum Power Point Tracking of Photovoltaic Module Arrays
Based on a Modified Gray Wolf Optimization Algorithm
Kuo-Hua Huang, Kuei-Hsiang Chao * , Ying-Piao Kuo and Hong-Han Chen

Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan;
huangkh@ncut.edu.tw (K.-H.H.); kuoyp@ncut.edu.tw (Y.-P.K.); danjor0709@gmail.com (H.-H.C.)
* Correspondence: chaokh@ncut.edu.tw; Tel.: +886-4-2392-4505 (ext. 7272); Fax: +886-4-2392-2156

Abstract: In this study, a modified gray wolf optimization algorithm (GWOA) was proposed to
facilitate the maximum power point tracking (MPPT) of photovoltaic module arrays (PMAs). To
increase the voltage conversion ratio and achieve a voltage boost through reduced duty cycles, a
high-voltage step-up converter with a coupled inductor was used to replace the conventional energy
storage inductor. To achieve global MPPT, the iteration parameters of the proposed GWOA were
adjusted according to the slope of the PMA power–voltage (P–V) curve. According to the simulation
results, the modified GWOA is more effective in MPPT than the perturbation and observation
algorithm and conventional GWOA when multiple peaks appear in the P–V curve of a shaded
PMA. In addition, the modified GWOA exhibits an improved tracking speed response and steady-
state response.

Keywords: gray wolf optimization algorithm; photovoltaic module array; global maximum power
point tracking; partial shading; coupled inductor; high-voltage step-up converter

1. Introduction

Countries worldwide have continued to promote renewable energy sources, among
which photovoltaic power generation is regarded as one of the most crucial technologies.
Changes in irradiation intensity and temperature result in nonlinear variations in the
power–voltage (P–V) curves of photovoltaic module arrays (PMAs). Therefore, to maintain
the operation of PMAs at the maximum power point (MPP) under all conditions, the
maximum power point tracking (MPPT) technique must be used. Among the conven-
tional MPPT methods commonly used in practice are perturbation and observation (P&O),
power feedback, voltage feedback, and incremental conductance [1,2]. P&O algorithms
are particularly advantageous because of their simple structure and limited measurement
parameters. However, these algorithms are relatively inaccurate, and their solutions tend
to oscillate near the MPP. Conventional P&O algorithms can track MPPs only when the
PMA P–V curve exhibits a single peak. When a PMA malfunctions or becomes shaded, its
P–V curve generates multiple peaks, which trap the algorithm in a local maximum and
prevent it from identifying the global maximum.

Many researchers have proposed various smart MPPT methods to address multipeak
P–V curves [3] generated by partially shaded PMAs [4–15]. Among the commonly used
smart MPPT methods are ant colony optimization [5,6], artificial bee colony algorithms [7,8],
particle swarm optimization [9,10], genetic algorithms [11], teaching–learning-based op-
timization [12], and cuckoo search-learning-based optimization [13–15]. Ant colony opti-
mization is a probabilistic technique used for identifying optimization paths. It involves a
simple framework and entails the configuration of certain parameters at the cost of a slow
search process [5,6]. Although artificial bee colony algorithms require few parameters and
converge rapidly, their tracking speed and stability are affected by the number of scout bees
and may result in an excessively long tracking speed response [7,8]. Compared with other
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methods, particle swarm optimization requires a small number of evolutionary swarms.
However, it easily falls into local maxima, thereby producing inaccurate results [9,10]. In
genetic algorithms, parameters are encoded and converted into genetic formats to iden-
tify optimal solutions through evolutionary calculations [11]. These algorithms address
multiple points in a space instead of focusing on a single point to avoid being trapped in a
local maximum. Therefore, genetic algorithms are effective in identifying optimal solutions
while maintaining a low convergence rate. However, when genetic algorithms are used
independently, the computation required for a large population may result in an exces-
sively long tracking time. Similar to particle swarm optimization, teaching–learning-based
optimization uses a scatter search and memory-based approach [12]. This technique can be
used to perform continuous and complex searches and entails the configuration of only
a few parameters. Because its principle is easy to understand, teaching–learning-based
optimization has been extensively used in system optimization. However, because each
learner has variable performance, the limited range of parameters (i.e., teaching factors)
may result in the use of inappropriate parameters, thereby causing poor learning outcomes
and an excessively long tracking response. Cuckoo search-learning-based optimization
is a swarm intelligence algorithm proposed by Yang and Deb et al. in 2009 [13–15]. This
algorithm is based on the brood parasitism of cuckoo birds and the Levy flight behavior of
certain animal species. A Levy flight is a random walk process in which random numbers
are generated through a Levy distribution. The random walk process is used to select
nests, update the nest location, and solve optimization problems by identifying the global
optimal nest location. In conventional cuckoo search-learning-based optimization, the step
length is fixed within the upper and lower limits of the step factor to track the global MPP.
Consequently, this technique requires an extended amount of time to complete the tracking
process. In addition, the solution tends to oscillate near the global MPP, which prevents the
technique from improving the transient and steady-state response of the MPP tracker.

Other researchers have explored the integration of smart algorithms and conventional
MPPT techniques [16,17] by combining particle swarm optimization with genetic algo-
rithms and P&O algorithms. However, although this approach can help identify the global
optimal solution, its tracking speed response requires further improvement. Bayesian opti-
mization algorithm (BOA) is an optimization algorithm based on Bayes’ theorem [18]. This
algorithm generally requires a lot of computational resources and time because it requires
a lot of function evaluation and Bayesian inference while also being highly sensitive to
the initial values, so it requires an appropriate selection of the initial values to find the
optimum solution. The algorithm is difficult to use and adjust because it needs to adjust
several parameters, such as the compute kernel and the prior probability. In addition,
the Bayesian optimization algorithm also has special requirements for the target function,
which must be both continuous and differentiable, and the convergence rate is slow when
dealing with non-smooth or multi-peaked functions.

In this study, a modified gray wolf optimization algorithm (GWOA) based on con-
ventional GWOA [19–23] was proposed to track the MPP of PMAs. Even when multiple
peaks appear on the P–V curve of a malfunctioning or shaded PMA, the proposed algo-
rithm can rapidly track the global MPP. Compared with conventional P&O algorithms and
GWOAs, the proposed modified algorithm offers a faster tracking speed response and
steady-state response.

2. Properties of PMAs

In photovoltaic power generation systems, PMAs comprise multiple modules con-
nected in parallel and series. In these systems, environmental conditions such as shading
by tall trees, buildings, clouds, dust, and dirt reduce the output power of PMAs and cause
their P–V curves to generate multiple peaks. In this study, to examine the characteristics
of shaded PMAs, a PMA composed of three parallel strings, with each string containing
four SWM-20W photovoltaic power generation modules (Dongguan, China) connected in
series, was examined. Table 1 lists the electrical specifications of the SWM-20W module [18].
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Figure 1 depicts the current–voltage (I–V) and power–voltage (P–V) curves of the PMA
simulated using MATLAB at different levels of irradiation intensity at 25 ◦C. Figure 2 shows
the I–V and P–V curves when a single module in two different strings was affected by
varying levels of shading. Under these conditions, the P–V curve exhibited multiple peaks.
Figure 3 depicts the architecture of the MPPT controller based on the modified GWOA.
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Table 1. Electrical specifications of the SWM-20W module [24].

Parameter Value

Maximum output power (Pmax) 20 W
MPP current (IMPP) 1.10 A
MPP voltage (VMPP) 18.18 V

Short-circuit current (ISC) 1.15 A
Open-circuit voltage (VOC) 22.32 V
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3. GWOA

In 2014, Seyrdali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis proposed
the GWOA [19–23]. This algorithm mimics the social hierarchy and hunting behavior of
gray wolves in nature. The hunting process is divided into three stages: surrounding,
following, and prey hunting. When iterations of the hunting process are completed by gray
wolf populations of different hierarchical levels, the wolves in the highest hierarchical level
are continuously updated to identify the global optimal solution.

3.1. Conventional GWOA

The following are the computational steps of the conventional GWOA.

Step 1: The number of wolves nT and the maximum iteration number imax are configured,
and the optimization parameters B, K, and α and the fitness value of each wolf are
initialized.

Step 2: The locations of the top three wolves with the largest fitness values are set as Ya,
Yb, and Yc, with Ya, which denotes the location of the top wolf, being the current
optimal solution.

Step 3: Equation (1) is used to calculate the random distance between the location Y(i) of
each remaining wolf n and the locations of the top three wolves (i.e., Ya, Yb, and Yc),
and Equations (2) and (3) are then used to update the location (i.e., fitness value) of
each wolf n: 

da(i) = |K ·Ya(i)−Y(i)|
db(i) = |K ·Yb(i)−Y(i)|
dc(i) = |K ·Yc(i)−Y(i)|

(1)


Y1(i + 1) = Ya(i)− B · da(i)
Y2(i + 1) = Yb(i)− B · db(i)
Y3(i + 1) = Yc(i)− B · dc(i)

(2)
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Ym(i + 1) = [Y1(i + 1) + Y2(i + 1) + Y3(i + 1)]/3 (3)

where B and K are iteration parameters; da(i), db(i), and dc(i) are the random
distances between the locations of the top three wolves (a, b, and c) and the location
of each remaining wolf n; Y(i) is the current location of each wolf n; Y1(i + 1),
Y2(i + 1), and Y3(i + 1) represent the updated location of each wolf n relative to
the locations of the top three wolves; and Ym(i + 1) is the mean of the updated
location (i.e., the new fitness value) of each wolf n.

Step 4: Equations (4) and (5) are used to update the parameters B, K, and α:

B = 2α · r1 − α (4)

K = 2 · r2 (5)

where α decreases linearly from 2 to 0 as the number of iterations increases, and r1
and r2 are random values in the closed interval [0, 1].

Step 5: When the iteration number reaches the preset maximum iteration number, the
iteration process is terminated to record the top three fitness values (Ya, Yb, and Yc),
and the optimal fitness value Ya is output. If the preset conditions are not met, then
the calculation process is repeated from Step 2.

3.2. Modified GWOA

As a result of its multiple strengths, including its straightforward principle, high
search speed, high search accuracy, and ease of implementation, the GWOA is regarded
as a highly valuable technique. However, this smart algorithm is still relatively new, and
its research is still in its infancy. Therefore, the theoretical foundation and evolution of
the GWOA require further investigation. In this study, to enhance the functionality of the
GWOA, a modified GWOA was proposed by relying on Equation (6) to adjust α. This
approach facilitates the use of large step lengths in early iterations to identify the optimal
solution. Subsequently, the criteria listed in Table 2 were used to slightly adjust α with
respect to changes in the slope of the P–V curve, thereby avoiding local maxima and
identifying the global optimal solution. According to Table 2, α must be adjusted only
when ∆P > 0 because an adjustment to α increases the output power of the PMA under
this condition such that the adjustment in the following iteration would accelerate the
MPPT. Figure 4 presents the trend of α with respect to the number of iterations and slope
of the P–V curve. Figure 5 depicts the relationship between the slope s of the P–V curve
and changes in the PMA output power ∆P. Figure 6 shows a flowchart of the modified
GWOA’s iteration process.

∆α = αo −
[

αo ×
(

i
imax

)2
]

(6)

where imax is the maximum iteration number (which was set to 50 in this study), i is the
current iteration number, and αo is the initial iteration parameter (which was set to 2 in
this study).

The conventional GWOA and the proposed modified GWOA are set with the number
of gray wolves nT = 5, the maximum iteration of imax = 50, and the iteration parameters
B, K, and α. The iterative equations are shown in Equations (4)–(6), respectively. The
maximum output power of the photovoltaic module array varies under different sunlight,
temperature, and shading conditions. As a result, the number of iterations needed to
track the global maximum power point will be different, and the global maximum power
point is not known in advance. Therefore, in this paper, the total number of iterations of
the algorithm is set to a larger number of iterations, imax = 50, to ensure that all methods
can track the maximum power point and compare the tracking performance under a fair
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number of iterations. In addition, since the actual application is an online continuous
tracking process, the set number of iterations does not affect the tracking performance.

Table 2. Criteria for adjusting α and the slope of the P–V curve.

No

Criterion
s , P(t+1)−P(t)

V(t+1)−V(t)
∆P = P(t + 1)− P(t)

∆P > 0

1 s > 2 α = ∆α + 0.05
2 2 ≥ s > 1.5 α = ∆α + 0.03
3 1.5 ≥ s > 1 α = ∆α− 0.01
4 1 ≥ s > 0.5 α = ∆α− 0.03
5 0.5 ≥ s > 0 α = ∆α− 0.05
6 s = 0 α = ∆α
7 0 > s ≥ −0.5 α = ∆α− 0.05
8 −0.5 > s ≥ −1 α = ∆α− 0.03
9 −1 > s ≥ −1.5 α = ∆α− 0.01
10 −1.5 > s ≥ −2 α = ∆α + 0.03
11 s < −2 α = ∆α + 0.05
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4. High-Voltage Step-Up Converter

Figure 7 shows the circuit framework of the proposed high-voltage step-up converter.
Its energy storage inductor is replaced by a coupled inductor, whose turns ratio increases
the voltage conversion ratio. The proposed converter features a simple circuit framework
and is easy to operate.
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4.1. Circuit Analysis of the High-Voltage Step-Up Converter

The proposed converter operates in two modes, depending on whether the switch is on
or off. When the switch is on, the duty cycle D of the converter in period T is expressed as

D ∆
=

ton

T
=

ton

ton + to f f
(7)

where ton is the amount of time during which the switch is on within a period, and toff is
the amount of time during which the switch is off within a period.

(1) Switch on (0 ≤ ton ≤ DT)

When switch S1 is on, diode D1 is deactivated. The equivalent circuit of the converter
is presented in Figure 8. Equation (8) defines the turns ratio N of the coupled inductor,
Equations (9) and (10) define the inductance voltage vLm1 and vLm2, respectively, and
Equation (11) defines the voltage vL at the two ends of the coupled inductor:

N ∆
=

N2

N1
(8)

vLm1 = VS (9)

vLm2 = VS
N2

N1
= VSN (10)

vL , vLm1 + vLm2 = (1 + N)VS (11)
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(2) Switch off (DT ≤ to f f ≤ T)

When switch S1 is off, diode D1 is activated. The equivalent circuit of the converter is
presented in Figure 9. Equation (12) defines the voltage vL at the two ends of the coupled
inductor:

vL = vLm1 + vLm2 = VS −VH (12)
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According to the volt–second balance law, Equation (13) is derived from Equations (11)
and (12) and rearranged to Equation (14) to define the relationship between the output
voltage VH and input voltage VS:

(1 + N)VSDT + (VS −VH)(1− D)T = 0 (13)

VH
VS

=
(1 + ND)

(1− D)
(14)

The relationship between the voltage gain and duty cycle is depicted in Figure 10. At
the same duty cycle, the turns ratio of the coupled inductor increases the voltage conversion
ratio of the step-up converter.
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4.2. Design of Converter Elements

Table 3 lists the electrical specifications of the proposed high-voltage step-up converter.
The design of each converter element is described as follows.

Table 3. Electrical specifications of the proposed high-voltage step-up converter.

Parameter Value

Low-voltage side direct input voltage (VS) VS = 70 V ± 10%
High-voltage side direct output voltage (VH) VH = 400 V

Switching frequency (f ) f = 25 kHz
Coupled inductor turns ratio (N) N = N2

N1
= 2

Rated output power (P) P = 300 W

If each element is assumed to be ideal, then the input power Pin of the converter must
be equal to the output power Pout:

VS ILm1 =
VH

2

R
(15)

Equations (14) and (15) are used to derive the mean excitation current passing through
the primary side of the coupled inductor, as expressed in

ILm1 =
VH

2

VSR
=

VH
2

VS
2

VS
R

=

(
1 + ND
1− D

)2 VS
R

(16)

where
(

1+ND
1−D

)
is the voltage conversion ratio of the converter.

When the main switch S1 is on, vLm1 is expressed as

vLm1 = VS = Lm1
diLm1

dt
(17)

According to Equation (17), when the inductor current linearly increases and the
conduction time is less than ton(= DT), the increase in the inductor current ∆iLm1(closed) is
expressed as

∆iLm1(closed)
=

VS
Lm1

DT (18)
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Therefore, the maximum and minimum inductor current values iLm1 are calculated as
follows [25]:

ILm1(max) = ILm1 +
∆iLm1

2
= VS

[(
1 + ND
1− D

)2 1
R
+

D
2Lm1 f

]
(19)

ILm1(min) = ILm1 −
∆iLm1

2
= VS

[(
1 + ND
1− D

)2 1
R
− D

2Lm1 f

]
(20)

To ensure that the inductor current is in the continuous conduction mode (CCM), the
minimum inductor current ILm1(min) must be greater than 0. Therefore, Equation (20) is
rearranged as follows:

VS

[(
1 + ND
1− D

)2 1
R
− D

2Lm1 f

]
≥ 0 (21)

After Equation (21) is rearranged, the minimum excitation inductance on the primary
side of the coupled inductor should meet the criterion of

Lm1(min) ≥
D
2 f

(1− D)2R

(1 + ND)2 (22)

Because the framework of the coupled inductor is similar to that of an autotransformer,
the maximum value of ILm2 is calculated as follows [25]:

ILm2(max) =
−ILm1(max)

1 + N
(23)

4.3. Design of the Main Inductor Element

In this study, to ensure that the proposed high-voltage step-up converter operated
in the CCM at full load (300 W), the rated load resistance of the converter was set to
R = 533.3 Ω at a load voltage VH and rated output power of 400 V and 300 W, respectively.
According to Equation (22), when dLm1

dD = 0, the largest inductance occurred when the duty
cycle was 0.186. Therefore, according to Equation (22), Lm1 was 698 µH. However, to ensure
that the converter operated in the CCM, Lm1 was multiplied by 1.25. Therefore, Lm1 was
set to 872 µH.

5. Simulation Results

MATLAB was used to simulate the MPPT of the PMA. The conventional P&O al-
gorithm, conventional GWOA, and modified GWOA were used to track the MPP under
different shading conditions, and the results were used to verify the effectiveness of the
modified GWOA. PSIM was used to simulate the circuit of the proposed high-voltage step-
up converter. Figure 11 depicts the steady-state response waveforms of the output voltage
VH , input voltage VS, and duty cycle D with the converter operating at a load of PL = 300 W.
When the duty cycle was approximately 0.64, the input voltage of 70 V increased to the
output voltage of 400 V. Therefore, the converter exhibited a high step-up ratio.
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5.1. Simulation of the Modified GWOA

Table 4 presents the five cases of shading combinations used in this study. The number
of peaks appearing on the P–V curve differs between the number of shaded modules and
the percentage of the shaded area.

Table 4. Five cases of shading conditions.

Case Module Connection and Shading Condition Number of P–V
Curve Peaks

1

Three parallel strings, with each string comprising four
modules connected in series:
(0% shading + 0% shading + 0% shading + 0% shading)//
(0% shading + 0% shading + 0% shading + 0% shading)//
(0% shading + 0% shading + 0% shading + 0% shading)

One

2

Three parallel strings, with each string comprising four
modules connected in series:
(0% shading + 0% shading + 0% shading + 50% shading)//
(0% shading + 0% shading + 0% shading + 0% shading)//
(0% shading + 0% shading + 0% shading + 0% shading)

Two
(MPP was on the right

peak)

3

Three parallel strings, with each string comprising four
modules connected in series:
(0% shading + 0% shading + 30% shading + 90% shading)//
(0% shading + 0% shading + 0% shading + 0% shading)//
(0% shading + 0% shading + 0% shading + 0% shading)

Three
(MPP was on the

middle peak)

4

Three parallel strings, with each string comprising four
modules connected in series:
(0% shading + 30% shading + 50% shading + 70% shading)//
(0% shading + 0% shading + 0% shading + 0% shading)//
(0% shading + 0% shading + 0% shading + 0% shading)

Four
(MPP was on the
rightmost peak)

5

Three parallel strings, with each string comprising four
modules connected in series:
(0% shading + 10% shading + 80% shading + 90% shading)//
(0% shading + 10% shading + 80% shading + 90% shading)//
(0% shading + 10% shading + 80% shading + 90% shading)

Four
(MPP was on the

second peak from the
left)
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The parameters of both the conventional GWOA and the proposed modified GWOA
are the same (i.e., α = α0 = 2), the number of iterations is also set to 50, and the num-
ber of gray wolves is also set to 5. The only difference is that the proposed modified
GWOA adopted Equation (6) and Table 2 to dynamically adjust the α parameter, while the
conventional GWOA fixes the value of the α parameter to α = α0 = 2.

5.1.1. Case 1

Figure 12 presents the P–V curve of Case 1, in which none of the modules was shaded.
The maximum output power was 239.12 W. Figure 13 shows the MPPT results obtained
using the conventional P&O algorithm, conventional GWOA, and modified GWOA. When
only one peak appeared on the P–V curve, the three algorithms successfully tracked the
MPP. However, compared with the other two algorithms, the modified GWOA exhibited a
faster tracking speed response and steady-state response.
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5.1.2. Case 2

Figure 14 presents the P–V curve of Case 2, in which a single module in the PMA was
under 50% shading. Two peaks appeared on the curve, with the actual MPP located on the
right peak. The maximum output power was 201.67 W. Figure 15 shows the MPPT results
obtained using the conventional P&O algorithm, conventional GWOA, and modified
GWOA. When two peaks appeared on the P–V curve, the conventional P&O algorithm
and conventional GWOA became trapped in the local maxima for a short period, which
compromised their tracking speed response. By contrast, the modified GWOA rapidly
avoided the local maximum trap and thereby exhibited a fast tracking speed response.
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5.1.3. Case 3

Figure 16 presents the P–V curve of Case 3, in which one module was under 30%
shading and another module was under 90% shading. Three peaks appeared on the
curve, with the actual MPP located on the middle peak. The maximum output power
was 178.93 W. Figure 17 shows the MPPT results obtained using the conventional P&O
algorithm, conventional GWOA, and modified GWOA. Although the conventional P&O
algorithm and conventional GWOA tracked the MPP, their tracking speed response and
steady-state response were slower than those of the modified GWOA.
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5.1.4. Case 4

Figure 18 presents the P–V curve of Case 4, in which three modules were under 30%,
50%, and 70% shading, respectively. Four peaks appeared on the curve, with the actual
MPP located on the rightmost peak. The maximum output power was 184.72 W. Figure 19
shows the MPPT results obtained using the conventional P&O algorithm, conventional
GWOA, and modified GWOA. Both the conventional P&O algorithm and the conventional
GWOA were easily trapped in the local maxima, with the former being unable to identify
the global maximum. By contrast, the tracking ability of the modified GWOA remained
unaffected when four peaks appeared on the curve.

1 
 

 

Figure 18. P–V curve of Case 4.
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5.1.5. Case 5

Figure 20 presents the P–V curve of Case 5, in which three modules were under
10%, 80%, and 90% shading, respectively. Four peaks appeared on the curve, with the
maximum MPP located on the second peak from the left. The maximum output power
was 106.63 W. Figure 21 shows the MPPT results obtained using the conventional P&O
algorithm, conventional GWOA, and modified GWOA. The modified GWOA not only
accurately tracked the actual MPP but also exhibited a faster tracking speed response than
those of the other two algorithms.
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5.2. Comparison of Different Tracking Algorithms in Each Case

The conventional P&O algorithm, conventional GWOA, and modified GWOA were
used to track the MPPs of the five cases. Each case was simulated 20 times. Table 5
presents the mean number of iterations required to track the MPP. Compared with the P&O
algorithm and conventional GWOA, the modified GWOA required a smaller number of
iterations to track the MPP.

Table 5. MPPT results of the five cases.

Case Number of Peaks on the
P–V Curve

Mean Iteration Number

Conventional
P&O Algorithm

Conventional
GWOA

Modified
GWOA

1 One 11.4 8.6 7.5

2 Two
(MPP on the right peak) 17.2 12.5 9.6

3 Three
(MPP on the middle peak) 21.2 13.5 11.6

4 Four
(MPP on the rightmost peak) Failed 20.8 15.2

5
Four

(MPP on the second peak
from the left)

25.6 17.5 15.6

Take Case 1 as an example: from Figure 22, wherein the simulation results of maximum
power point tracking adopted the conventional perturb and observe (P&O) method, the
conventional GWOA, and the modified GWOA. If the area from the starting point of
tracking to the global maximum power point (such as the black dashed line) is taken as
the ideal output energy of the photovoltaic module array during the tracking process and
the tracking curve of each method to the global maximum power point of the whole area
is taken as the actual output energy, the ratio of the two is used to calculate the tracking
efficiency. The tracking efficiency of the five cases adopting different methods is then listed
in Table 6 for comparison. From Table 6, it can be observed that the tracking efficiency
of the modified GWOA is the best among the three methods in different cases, while all
of them were above 94.62%. In Case 4, the tracking efficiency was even as low as 36.73%
because the conventional P&O method could not track the global maximum power point
even after 50 iterations.

Table 6. Tracking efficiency comparison of the five cases.

Case Number of Peaks on the
P–V Curve

Tracking Efficiency (%)

Conventional
P&O Algorithm

Conventional
GWOA

Modified
GWOA

1 One 76.46% 91.69% 98.15%

2 Two
(MPP on the right peak) 68.84% 97.26% 98.48%

3 Three
(MPP on the middle peak) 72.34% 97.41% 98.41%

4 Four
(MPP on the rightmost peak) 36.73% 90.74% 94.85%

5
Four

(MPP on the second peak
from the left)

58.53% 88.43% 94.62%

The Introduction section has already described intelligent algorithms such as ant
colony optimization (ACO) [5,6], artificial bee colony (ABC) algorithms [7,8], particle swarm
optimization (PSO) [9,10], genetic algorithms (GAs) [11], teaching–learning-based optimiza-
tion (TLBO) [12], cuckoo search-learning-based optimization algorithm (CSLBOA) [13–15],
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as well as Bayesian optimization algorithm (BOA) [18]. Although they all have the ability
to find the best solution in the global MPPT, one of the deficiencies identified is that their
tracking response speed is still not fast enough. The main contribution of this paper is
that when there are multiple peaks in the P–V characteristic curves due to shading of the
photovoltaic module arrays, the maximum power point can be successfully tracked, and the
proposed improved GWOA has better tracking speed response and stability than conven-
tional intelligent algorithms. The five selected cases have been tested for different shading
conditions with different peak numbers of P–V characteristics and tracking performance at
different locations, and all of them exhibit better tracking performance, which should be
representative and sufficient to prove the contributions of this proposed algorithm.
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6. Conclusions

In this study, we proposed a modified GWOA by adjusting its iteration parameters
to perform MPPT in PMAs. We used an MPP tracker composed of a high-voltage step-up
converter. Overall, the proposed algorithm enables the online automatic adjustment of
iteration parameters depending on the number of iterations and the slope of the P–V curve.
According to our simulation results, when multiple peaks are present on the P–V curve
of a PMA under different shading conditions, the modified GWOA remains unaffected
and does not fall into the local maximum trap. It also exhibits a faster tracking speed
response and steady-state response than those of the conventional P&O algorithm and
conventional GWOA.
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