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Abstract: Oxidizing stimulation of organic-rich shale reservoirs, as a supplement of hydraulic
fracturing, was proposed to enhance shale gas recovery. Previous publications revealed that the
interaction between organic-rich shale and oxidative fluids causes the components’ dissolution, which
induces lots of pores and microfractures, resulting in rock microfracturing without confined pressure
and associated increments of the matrix permeability, and improving unpropped fracture conductivity.
However, the enhancement of shale gas recovery with oxidative fluids still lacks an implementation
clue targeted for specific engineering problems. In recent years, water–rock interaction inducing
microfractures indicates a positive effect of retained fracturing fluid on the stimulation after the
fracturing operation, which sheds light in the enhancement of shale gas production by shut-in. The
objectives of this study are to provide a new perspective whereby the shut-in performance to enhance
shale gas recovery could be increased by the injection of oxidative fluids into the formation during
the fracturing operation. Firstly, the mechanisms of shut-in performance increased by oxidative
dissolution, which illustrate the increment of the density of fracture networks, the improvement of
fracture network conductivity, and the promotion of gas desorption and diffusivity, are demonstrated.
Then, the feasibility of using oxidative fluids to increase shut-in performance, which follows the
geological and engineering characteristics of organic-rich shale reservoirs, is evaluated. Finally,
according to the analysis of production performance for two typical types of shale gas wells, in which
one is a low gas production and a high fracturing fluid recovery (LGP-HFR) and the other is a high
gas production and a low fracturing fluid recovery (HGP-LFR), a shut-in strategy with oxidative
fluids to enhance shale gas recovery is developed. This indicates that the injection of oxidative fluids
during the fracturing operation may become a promising and cost-effective approach to enhance
shale gas recovery.

Keywords: organic-rich shale; formation damage; shut-in; oxidation; dissolution; water–rock interaction

1. Introduction

The gas production of shale gas reservoirs is enhanced with the implementation of
hydraulic fracturing technology. Unfortunately, the rapid decline of gas production in
the early stage followed by a low gas recovery is still widespread [1–3]. Normally, there
are three major viewpoints to explain this phenomenon according to previous studies.
For the first one, as it is known, shale gas in the matrix pore usually experiences multi-
scale transport processes which involve desorption, diffusion, and percolation before it
enters into the wellbore [4–7]. Especially, the desorption and diffusion efficiency of the
adsorbed gas or free gas in nanopores is so low that the gas transport capacity is extremely
hindered [8,9]. Hydraulic fracturing, which creates a complex fracture network, is beneficial
to improve the gas flow capacity in the shale reservoirs. However, it still fails to effectively
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improve the capacity of gas desorption and diffusion in the matrix nanopores, thus resulting
in the gas supply capacity from the matrix being far lower than the gas transport capacity
of the fracture network [10–14]. Secondly, hydraulic fracturing creates a complex fracture
system consisting of artificial fractures (primary fractures) and stress induced and/or
reactivated natural fractures (secondary fractures) [15–18]. The width of the secondary
fractures, ranging from 10−1 to 10−6 cm, is so small that the most commonly used proppants,
such as 40–70-mesh or 100-mesh sand, cannot enter efficiently [16–21]. These unpropped
fractures, which have a larger contact area with the matrix than the primary fractures,
play significant roles in shortening the distance of shale gas transport from the matrix to
the primary fracture [22–24]. Regrettably, the width or conductivity of the unpropped
fractures are usually decreased due to the stress dependence along with the gas production
and fracturing fluid filtration or flowback in these fractures [25–28]. Thirdly, over ten
thousand cubics of fracturing fluids is pumped into a shale gas well to create the required
fracture network for production. Nevertheless, over 70% of fracturing fluids are retained
in the formation after the flowback operations, which induces some formation damage
such as aqueous phase trapping (APT) or clay swelling, impairing the performance of the
fracturing stimulation [29–32]. Reducing the amount of the retained fluid and shortening
the water–rock interaction time through fast flowback operations after hydraulic fracturing
can facilitate the reduction of these formation damages [33–38]. Nowadays, considering
the irreplaceable hydraulic fracturing operation and followed inevitable fracturing fluid
retention, how to treat the aforementioned problems economically and environmentally
and further enhance shale gas recovery has become a research hotspot.

Field production data of shale gas wells showed that shut-in after the fracturing
operations significantly increases gas production and reduces water production in the
production process of the shale gas well, in which the gas production will increase with
shut-in time [39–43]. Firstly, the increment of gas production is attributed to the matrix
stimulation induced by water–rock interaction after the fracturing operation, which is
regarded as a beneficial supplement to the stimulation by hydraulic fracturing [43–49].
Secondly, imbibition and redistribution of the retained fracturing fluid, which contributes
to the removal of APT in the fracture network, has an important effect on the increment
of early gas production [50]. Specifically, the newly generated pores and fractures due to
the water–rock interaction promote the redistribution of fracturing fluid retained in the
fracture network [51]. Moreover, the displacement of absorbed methane molecules with
water molecules occurs during the fluid imbibition and redistribution [52,53], which plays
an important role in increasing gas production and slowing the decline rate of the gas
production [2,54–56]. Thirdly, the width of the unpropped fracture will gradually reduce,
even to a close with the production time, resulting in a production decline of the shale
gas well [23,57,58]. Interestingly, the fluids retained in these fractures might function as a
proppant to prevent them from closing if the gas can bubble or channel to the horizontal
borehole through the water phase in the fractures [59]. Moreover, to avoid or mitigate
formation damage due to the flowback operation [38], while alleviating the environmental
contaminants associated with flowback wastewater, a promising strategy of sequestering
the fracturing fluid permanently in a shale formation was proposed by Yang et al., 2019 [60].
Similarly, You et al. (2021) proposed the concept, feasibility, and significance of the zero
flowback rate (ZFR) of hydraulic fracturing fluid in shale gas reservoirs and illustrated
the effect of ZFR on formation damage control, the matrix permeability enhancement, cost
saving, and environmental maintenance [61]. To summarize, a proper combination of
fracturing fluid retention and a design of the shut-in strategy may have a good potential
for and impact on enhancing the production of shale gas wells.

Fracturing fluid retention in shale gas wells has pros and cons on gas production.
Only when the profit exceeds the loss can the shut-in performance occur. To strengthen
the benefit effects while lessening the negative effects, You et al., 2017 mentioned that the
fracturing fluid retention can create a favorable condition for formation stimulation and
proposed and demonstrated a new idea to enhance shale gas recovery through oxidation-
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induced rock bursts, which simply requires the injection of oxidation agents into the shale
gas reservoirs [14]. Since the idea of applying oxidizing stimulation into organic-rich shale
gas reservoirs was proposed, it has attracted wide attention and continuous research. Pre-
vious publications revealed that the interaction of shale and oxidative fluids can cause the
dissolution of organic matter (OM) and rock minerals, inducing pores and microfractures,
rock microfracturing without confined pressure, and an associated increment of the matrix
permeability and unpropped fracture conductivity [13,62–70]. However, the application
of oxidative fluids for the enhancement of shale gas recovery still lacks a comprehensive
implementation clue targeted for specific engineering problems. The objectives of this
study are to provide a new perspective whereby the shut-in operation to enhance shale
gas recovery could be enhanced through oxidative fluids during the fracturing operation.
Initially, the mechanisms of shut-in efficiency increased by oxidative dissolution are demon-
strated. Then, the feasibility of using oxidative fluids to increase shut-in performance is
evaluated. Finally, a shut-in implementation clue with the application of oxidative fluids to
enhance shale gas recovery is developed.

2. Mechanism of Shut-In Performance Increased by Oxidative Dissolution

The previous section indicated that shut-in performance depends on water–rock
interaction-induced microfractures, the auto-release of APT in the fracture network, and
the output of adsorbed gas. This section will reveal how the oxidative dissolution plays a
role in all these aspects that contribute to increasing shut-in performance. Therefore, the
positive effect of oxidative dissolution on the increment of the density of fracture networks,
the improvement of fracture network conductivity, and the promotion of gas desorption
and diffusivity are analyzed.

2.1. Increment of the Density of Fracture Networks

Shale matrix is crushed as much as possible to improve the density of fracture net-
works, which contributes to a high gas production and consequent high gas recovery [13,14].
Currently, in order to improve the density of the fracture network, a small amount of acidic
fluids usually was pumped into the formation prior to the fracturing operation, which
can decrease the fracture pressure of the rock through the dissolution of carbonate min-
erals or other rock cements [71–75]. This has proven to be a good process according to
the reported field data of shale gas wells from either the ones in north America, such as
Bakken and Engle Ford formation, or the ones from the Sichuan basin in China [76,77].
Fracture pressure, as an intrinsic property of rock formation, is controlled by the mineral
composition, the mineral content, and the layout of the rock. For example, in open hole
completion conditions, the calculation formulas of fracture pressure which induces ver-
tical or horizontal fractures are indicated as Equations (1)–(3). This shows that physical
properties of the rock such as porosity (∅c and ∅) and mechanical parameters such as the
Poisson ratio (v) and uniaxial tensile strength (σf ) dominate the reduction of the fracture
pressure [78]. Tugrul et al. (2004) experimentally measured the porosity of the rock and its
uniaxial tensile strength for sandstone, limestone, basalt, and granodiorite before and after
weathering oxidation, which showed that the value of uniaxial tensile strength displays an
exponential decline with the increasing total porosity [79]. On a macroscale, acidic fluids
impair the strength of cementation by reacting with the rock cements, which reduces the
cohesive force and internal friction angle of the rock. On the other hand, on a microscale,
the generation of macroscopic fractures usually is the result of a process whereby many
microfractures in the rock gradually open, expand, and connect due to loading stress and
then accumulate to a certain extent. Acidic dissolution may have a positive influence in
this process. On one side, acidic dissolution-induced pores and microfractures contribute
to increase the porosity of a rock, which causes the chemical damage of the rock, resulting
in the reduction of the uniaxial tensile strength [80,81]. Equation (4) shows a chemical
damage variable dependent on porosity (D∅), which reflects the chemical damage due to
the interaction between acidic fluids and shale [82,83]. On the other hand, Lin et al. (2016)
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found that elastic modulus and uniaxial compressive strength are negatively exponentially
correlated with the chemical damage variables for shale samples treated by acidic fluids,
respectively [84]. Thus, there is another chemical damage variable, named as DE, which
is dependent on the elastic modulus (Equation (5)). Further, the constitutive relation of
the rock chemical damage with the elastic modulus as a damage variable is shown as
Equation (6) [85].

Pbv =
3σh − σH + σf − 2ηPo

1 + φc − 2η
(1)

Pbh =
Pob + σf − 2ηPo

φc − 2η
(2)

η =
φ(1 − 2v)
2(−2v)

(3)

Dφ =
φw − φo

1 − φo
(4)

DE = 1 − Ew

Eo
(5)

σw = Eo(1 − DE)εw (6)

where,
Pbv stands for broken pressure for vertical fracture, MPa
Pbh stands for broken pressure for horizontal fracture, MPa
σh stands for minimum horizontal principal stress, MPa
σH stands for maximum horizontal principal stress, MPa
σf stands for uniaxial tensile strength, MPa
Pob stands for overlying formation pressure, MPa
Po stands for fluid pressure in pores, MPa
∅c stands for porosity of rock contact point
∅ stands for porosity
v stands for Poisson ratio
D∅ stands for chemical damage variable depended on porosity
DE stands for chemical damage variables depended on elastic modulus
∅w stands for porosity after chemical damage
∅o stands for porosity before chemical damage
Ew stands for elastic modulus after chemical damage, GPa
Eo stands for elastic modulus before chemical damage, GPa
σw stands for stress after chemical damage, MPa
εw stands for strain after chemical damage
Similarly, oxidative fluids may play the same role as acidic fluids in decreasing the

fracture pressure of rocks in organic-rich shale reservoirs. Previous publications have
revealed a change in components including OM, pyrite, and carbonated minerals during
the shale and oxidative fluids reaction [13]. The dissolution of carbonate minerals may be
caused by the hydrogen ion (H+) in the oxidant or the H+ generated in the process of the
oxidation reaction [13,69]. Especially, an acidic oxidant such as hydrogen peroxide (H2O2)
co-exists with acidic fluids such as hydrogen chloride (HCl). This means that oxidative
fluids containing acidic agents may have a stronger potential for the dissolution of shale
rocks. Meanwhile, oxidative dissolution-induced pores and microfractures of the organic-
rich shale sample from the Sichuan basin have been reported [13,69]. This study, repeated
previously, reported methods to compare the structure change of organic-rich shale samples
after the treatment of distilled water, acidic fluids, or oxidative fluids, respectively. An
observation of Figure 1 indicates that oxidative fluids not only induce a greater amount
of microfractures compared with distilled water but also result in more dissolution pores
and microfractures compared with acidic fluids. You et al. (2018) reported that a higher
concentration of oxidative fluids results in a greater increment of the porosity of shale plugs.
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They showed that the porosity of shale plugs treated by 15% wt. H2O2 for 72 h have an
increment of 36.4% compared to that of the untreated sample and an increment of 49.3%
compared to that of the sample treated with distilled water [70]. Oxidative dissolution
thereby shows a great potential for increasing shale porosity and hence decreasing fracture
pressure, according to Equations (1)–(4).
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Figure 1. Field-emission scanning electron microscopy (FESEM) images of organic-rich shale sam-
ple: (a–c) In-situ observation of shale sample from the Longmaxi formation in the Sichuan basin,
in which the untreated sample (a) is exposed to distilled water (b) and acidic fluids (c) for 120 h,
respectively (adapted from Chen et al. (2018) [86]). (d,e) Shale sample from the Longmaxi forma-
tion in the Sichuan basin is exposed to oxidative fluids (15% wt. H2O2) for 240 h (adapted from
Chen et al. (2017) [13]). (f) Source rock shale samples from the Middle East are exposed to oxidative
fluids containing 0.0087 M ammonium persulfate, 0.013 M sodium bromate, and 0.27 M potassium
chloride in 10 mL of water for 20 h at 100 ◦C (adapted from Hull et al. (2019) [66]). Note that
acidic fluids only caused the dissolution of the carbonate minerals, while oxidative fluids caused the
dissolution of pyrite and OM besides the carbonate minerals. Oxidative dissolution induced lots of
pores and microfractures.
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In order to further explore and prove the above viewpoint for oxidative fluids, organic-
rich shale plugs, which are treated by distilled water or oxidative fluids for 10 days,
respectively, were used to carry out the triaxial compression test. These plugs, obtained
from the Longmaxi formation in the Sichuan basin, which have been reported in our
previous publications [13,68–70], were drilled cores, paralleling the lamination at the same
location of a big shale block sample. Table 1 shows that the compressive strength of all
the plugs after the treatment of oxidative fluids displays a reduction of varying degrees,
contrasting to that of plugs treated by distilled water. Meanwhile, observations of all
the plugs experienced in the triaxial compression test find that oxidative fluids induce
a more severe fracturing of the rock with the same stress loading (Figure 2). Liu and
Sheng (2019) found that axial stress plays an important role in promoting water–rock
interaction, inducing shale rock fracturing, in which the macrofracture extends by linking
the microfractures due to the axial stress [87]. This indicates that oxidative fluids contribute
to accelerating and aggravating the generation and propagation of tensile fractures with
the axial stress loading.
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Table 1. Triaxial compression test of treated shale samples. Note that no naked visible microfractures
are observed from the surface of all the shale samples. Each group of samples (labelled as A and B),
obtained from the same long plug which was cut into half to ensure that two samples were being
compared, have similar physical properties.

Sample ID Diameter, mm Length, mm Experimental Fluids Confined Pressure,
MPa

Elastic Modulus,
MPa

Compressive
Strength, MPa Poisson Ratio

1-A 25 48.5 Distilled water 30 28,289 267 0.37
1-B 25 48.0 10 wt.% H2O2 30 19,756 213 0.35
2-A 25 49.0 Distilled water 30 26,627 238 0.30
2-B 25 47.0 5 wt.% NaClO 30 26,246 197 0.22
3-A 25 49.0

Distilled water
10 27,660 278 0.15

3-B 25 47.5 20 26,498 294 0.27
4-A 25 49.0 10 wt.% H2O2

10 28,372 266 0.24
4-B 25 48.0 20 25,633 267 0.28
5-A 25 48.5

5 wt.% NaClO
10 27,353 275 0.19

5-B 25 48.5 20 22,424 192 0.10

In the field, the pressure in the fracture network’s (fluid pressure) post-fracturing
operations will reduce with the filtration of the fracturing fluid into the matrix gradually.
When the fluid pressure in the fracture reaches the minimum horizontal principal stress
of the formation, the potential effect of shut-in on fracture initiation and propagation will
disappear completely [88]. In this period, if the fracturing fluid contains an oxidative agent
that is designed to decrease the fracture pressure of shale rock, current shut-in performance
focusing on the increment of the density of fracture networks is based on the effect of
oxidative dissolution (Figure 3).
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2.2. Improvement of Fracture Network Conductivity

A higher density of fracture networks leads to a more efficient gas transport from
the matrix to the wellbore, which is a sign of obtaining higher shale gas production.
Unfortunately, fracturing fluid retained in the fracture usually causes APT, which reduces
the fractures’ conductivity or relative permeability, which results in an artificial reduction
of the EFV. Moreover, Xu et al. 2017 reported that pressure depletion and fracture closure
during the flowback operation in early stages might lead to over 30% of the effective
fracture volume (EFV) loss, which is regarded as one of the important factors for a rapid
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decline in early gas production [26]. The conductivity of unpropped fractures could reduce
with the production time due to stress dependence, resulting in a further reduction of
EFV [19,27,28]. In the following subchapter the mechanism of the oxidative dissolution
solving two issues mentioned above is explored.

2.2.1. Auto Removal of APT in Fracture

In tight sand gas reservoirs, a high flowback efficiency of the fracturing fluid is a
guarantee to gain high gas production. Unfortunately, this approach does not work in
shale gas reservoirs due to the extremely low fluid recovery, owing to the unique geological
characteristics, such as strong water imbibition and retention capacity [35–37]. Shale
matrix pores, particularly the micropores, have a preference for water imbibition, according
to the experiment of spontaneous imbibition with displacing gas [89]. In the process
of water imbibition and redistribution, these pores can uptake water from other pores,
especially from the main flowing channels [90]. However, fracturing fluid imbibes and
diffuses through the shale matrix, and the associated clay swelling induces fractures in
this process, which are the primary auto-removal mechanism of APT with shut-in in shale
reservoirs [30,51,90,91]. Specifically, the fracture in shale rocks, which plays a significant
role in the increment of volume imbibed and the improvement of the imbibition rate
of fracturing fluids, promotes the redistribution of the fluid [39]. This implies that the
fluid retained in the fracture network imbibes and diffuses into a deeper matrix, then
accompanies the generation of induced fractures. This mechanism contributes to the
reduction of water saturation in the primary fracture, thus improving the primary fracture
conductivity, as shown in Figure 4.
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For the generation of induced fractures, the last section explored that oxidative dis-
solution induces fracture initiation and propagation with the help of fluid pressure in
the fracture during the shut-in period. Moreover, Figures 1 and 2 show that oxidative
fluids induce more microfractures compared with distilled water or conventional fracturing
fluid at a micro-scale. Similar results were obtained in the black shale plugs after their
exposure to distilled water and oxidative fluids, respectively [13]. This result indicates
that oxidative fluids spreading to the shale matrix have a great potential on the initiation
and growth of fractures. You et al. (2018) found that the curve of the imbibed volume vs.
time occurs a step increase with a sudden generation of fractures during the imbibition of
high concentration H2O2 in the organic-rich shale. For the low concentration of H2O2, an
increment of the imbibition potential owes to the oxidation-induced pore and fractures was
revealed, according to the typical Handy model [72]. Figure 5 shows that the generation of
induced fractures is beneficial to the water diffusion and redistribution from the primary
fracture to induced fractures. An observation of the shale samples can prove that oxidative
dissolution enhances the scope of water distribution in the same imbibition time, which
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is judged according to the footprint of the fluid and the distribution of the precipitations.
These precipitations are recognized as soluble salts which evolve from the fracture, indi-
rectly indicating that the generation of microfractures during the imbibition contributes
to the water redistribution. Moreover, the increment of the fracture surface area with the
generation of induced fractures also helps to infer that fluid imbibes and diffuses into the
matrix near the fractures [92,93]. As a result, the APT in the primary fractures can induce
auto-removal further with the effect of oxidative dissolution.
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Figure 5. Changes of shale samples’ surfaces during the imbibition of distilled water (a) and oxidizing
solution (b). Note that these samples are from the same big block shale sample, which is used for
the imbibition of distilled water first and then dried up at a low temperature for 48 h, before the
resumption of imbibition of the oxidative fluids (adapted from Cheng et al. (2020) [92]).

For the water uptake of the shale matrix, Cheng et al. (2020) found that some shale
samples, which cannot be induced fractures with the treatment of oxidative fluids, still
displayed an increment of imbibed volume of distilled water by 11.6–15.3% and an incre-
ment of the imbibition potential by 2.32–8.26% [92]. Furthermore, the oxidation-induced
pore and fracture (Figure 1), which increase the occupancy space of water, and the ad-
sorption effect of clay minerals on the water cannot be ignored [57]. Yang et al. (2016)
reported that the imbibition capacity of shale rocks is positively correlated with the
total clay content, especially the content of illite/smectite mixed-layer clay and smec-
tite [94]. Clay minerals with a large surface determine an enrichment of up to 85% of
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the OM in shale rocks, which generally exists in the form of the mineral-combined OM
(known as organo-clay complexes) [95–97]. Clay minerals with a large surface enrich the
OM (generally exist in the form of the mineral-combined OM) in shale rocks by up to
85%. The oxidative dissolution of OM can destroy the organo-clay complexes, which
increases the contact area of the clay and water and then changes the water distribution
in the matrix, reducing the free water amount in the matrix pore [98]. This may play a
role in the removal of the APT, which is not only in the fracture but also in the matrix
pores. Moreover, improvement of water uptake for the matrix will also be helpful for the
removal of APT in the fracture.

2.2.2. Non-Uniform Surface-Etching Profile

Acid treatment, as a beneficial stimulation in carbonate-rich shale reservoirs due to
an increase in the porosity and favorable etching pattern, plays a significant role in main-
taining the proppant-less fractures that are open and conductive even in the closure stress
regime [19,99]. Similarly, Hull et al. (2019) [66] postulated that the dissolution of OM by ox-
idative fluids has a huge potential for improving fracture face conductivity (permeability),
minimizing proppant embedment, and maintaining the long-term productivity of shale gas
wells (Figure 6). Cheng et al. (2021) revealed the effect of oxidative dissolution on increasing
the width of unpropped fractures by calculation, according to the dissolution volume of
shale components [71]. Figure 7 shows that oxidative dissolution induces a non-uniform
surface-etching profile on the fracture face. Meanwhile, the dissolution induces microfrac-
ture networks apart from dissolution pores (Figure 1). These two characteristics contribute
to the improvement of channels and the formation of surface asperities of the fracture,
allowing the maintenance of a relatively better fracture conductivity during the stress
loading (Figure 8). Cheng et al. (2021) reported that oxidative dissolution of shale compo-
nents can increase the fracture width while reducing the stress dependence of unpropped
fractures, contrasting with the adverse effects of distilled water [68]. Currently water-based
fracturing fluids, which enhance the stress dependence of fracture permeability, usually
reduce the conductivities of unpropped fractures on shale [32]. Consequently, oxidative
dissolution could be a promising technique to maintain and improve the conductivity of
unpropped fractures.
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Figure 7. In-situ scanning electron microscopy (SEM) observation of organic-rich shale before (a) and
after (b) the treatment of oxidative fluids. This clearly indicates the dissolution of the OM and pyrite.
However, other components, such as quartz, are stable (adapted from Hull et al. (2019) [66]).
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Figure 8. Schematic diagram of the surface change of a shale fracture before (a) and after treatment
(b) and its closure with the stress loading. Swelling of the clay minerals and fracture surface strength
softening triggered by distilled water results in an enhancement of stress dependence [100]. However,
oxidative fluids lead to the non-uniform surface-etching profile and induces pore and microfractures,
which has a positive effect on resisting fracture closure under effective stress loading.

2.3. Promotion of Gas Desorption and Diffusivity in the Matrix

Shale adsorbed gas, which is adsorbed in nano-scale organic and inorganic pores within
the matrix, can account for 20~85% of the total gas [101]. TOC content is the dominative factor
that affects the adsorption capacity of organic-rich carbonaceous rocks [102,103]. Figure 9
shows a positive linear correlation whereby the improvement of the adsorption capacity in
shale rocks with the TOC content increase [104]. Zhu et al. (2014) reported that shale samples
with higher TOC content have greater specific surface areas, which can provide more adsorp-
tion sites, thus increasing the adsorption capacity [105]. Xiong et al. (2017) found that the ad-
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sorption capacity decreases in the following order organic pore > clay mineral pore > quartz
pore, and the isosteric heat adsorption of methane decreases upon increasing the pore diameter
or decreasing the O/C ratio of OM [106]. Moreover, the adsorption capacity under the same
pore diameter decreases with the decreasing O/C ratio [107].
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Figure 9. Methane adsorption capacity of dry and moisture equilibrated shales samples at 30 C and
6 MPa as a function of TOC content (adapted from Ross and Bustin (2009) [104]).

The organic-rich shale–oxidative fluids interaction can effectively realize the removal
of the OM. Removal of OM by oxidative fluids according to an in-situ observation of an
FESEM image is revealed, as shown in Figure 7. Cheng et al. (2021) found that both H2O2
and NaClO have a good performance for the dissolution of organic-rich shale samples ob-
tained from the Longmaxi, Niutitang, and Yanchang formations in China, respectively [69].
Chen et al. (2017) reported that the removal efficiency of OM by H2O2 is up to 87.5% for
shale samples from the Longmaxi shale in the Sichuan basin [13]. Moreover, the increment
of water adsorbed due to the dissolution of OM contributes to the displacement of methane
mainly due to two aspects (Figure 9). One is that the water film bounded on the pore
surface changes the interaction characteristics for methane adsorption, and the other is
a reduction of the available surface area for methane adsorption because capillary water
blocks the pore space [52,53]. As a result, the dissolution of OM by oxidative fluids can
have a huge potential on the gas desorption.

Oxidative dissolution of shale components directly causes a change in the pore struc-
ture. (Figure 1). Kuila et al. (2014) found a significant reduction of the pore volume network
below a diameter of 5 nm due to the removal of OM from thermally mature organic-rich
mudrocks [108]. Li et al. (2016) found that after the treatment of H2O2, the increase of the
Barrett–Joyner–Halenda (BJH) pore volume and the Dubinin–Astakhov (D-A) micropore
volume of an organic-rich shale sample, which was obtained from the Yangchang formation
in China, both showed a positive correlation with a decrease of the TOC content [109].
Similarly, for shale samples obtained from the Longmaxi formation in the Sichuan basin,
Figure 10a shows a reduction in pore volume for fine mesopores (2–10 nm) and an increase
in pore volume at larger pore diameters (10–50 nm) in the process of the removal of OM by
H2O2. Meanwhile, Figure 10b shows that the greatest amount of pore volume ranges in the
pore-throat diameter from 100 to 500 nm with oxidation for 240 h, according to pore vol-
ume distributions calculated from the high-pressure mercury intrusion. Kuila et al. (2014)
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insisted that the difference in methane adsorption before and after OM removal roughly
correlates to the relative proportion of the nano-pore volume provided by OM and clay
textures [108], because the adsorbed gas usually corresponds exclusively to the network
of pores with a dimension of <5 nm [101]. Figure 11 shows that shale samples treated by
NaClO have a much lower methane adsorption than the natural samples by the methane
adsorption experiments with high pressure, which highlights that the presence of OM and
associated nanopores play a significant role in controlling methane adsorption.
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Figure 10. Pore size distribution of shale samples during the oxidative treatment by 15 wt.% H2O2 for
0 h, 5 h, 24 h, and 240 h: (a) pore size distribution of shale samples determined from low-pressure N2

adsorption; (b) pore volume distributions calculated from high-pressure mercury intrusion (adapted
from Chen et al. (2017) [13]).
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Figure 11. Comparison of supercritical methane adsorption (at 35 ◦C) between the untreated and
NaClO-treated (No OM) shale sample Sil1 and Hay3. This highlights the oxidative dissolution of OM
reducing the adsorbed methane capacity of the shale matrix. SSA means specific surface area of the
rock pore (adapted from Kuila et al. (2014) [108]).

The enlarging of nano-scale pore size by oxidative dissolution has an influence in
accelerating the gas diffusivity in the shale matrix. Yuan et al. (2014) stated that the
gas diffusion mechanisms in the shale matrix include Fick diffusion in macropores and
Knudsen diffusion in micropores, which shows that gas stored in macropores may be
produced quickly and early, while gas stored in the micropores may be produced slowly
and late. The diffusion coefficient, an important parameter defining gas diffusion capacity,
usually depends on the pore diameter of the shale matrix. Taking Longmaxi shale samples
as an example, by the calculation of the diffusion coefficient through the Bidisperse model,
the diffusion coefficient in macropores is between 2.38 × 10−9 and 9.96 × 10−9 m2/s, and
the diffusion coefficient in micropores is between 1.83 × 10−14 and 3.18 × 10−14 m2/s [53].
Furthermore, Chen et al. (2018) deeply analyzed the methane diffusion mechanisms in shale
and revealed the multiple diffusion behaviors of shale gas [110]. This indicates that gas
diffusion contributed by both Knudsen diffusion and surface diffusion will be promoted
with the pore diameter enlarged by oxidation dissolution. What is more, gas transport is in
forms of transition flow or slip flow because the viscous flow is dominant once the pore
diameter is larger than several hundred nanometers. This means that oxidative dissolution
can cause a phenomenon whereby partial gas transport in the shale matrix does not go
through diffusion and then directly flows into the fracture network.

3. Feasibility of Oxidative Fluids Injected to Increase Shut-In Performance

Multi-stage hydraulic fracturing of horizontal wells is successfully applied in the
commercial exploration for shale gas reservoirs. A large amount of fracturing fluid is
pumped into the formation for creating fracture networks while a small part of the fluid is
recovered from flowback operations. Currently, the fracturing operation is irreplaceable for
an efficient shale gas recovery, which inevitably results in large amounts of fracturing fluid
retention. Shut-in post-fracturing transfers the negative factor of fracturing fluid retention
into a positive one by changing the gas’s existence state and improving the gas’s transport
path, which may be effective in increasing shale gas production. Considering that the
retained fluid and shale interaction may occur anywhere with respect to the redistribution
of the fluid, fully taking advantage of the effects of retained fracturing fluids on post-



Energies 2023, 16, 4325 15 of 25

fracturing stimulation has aroused wide attention. Currently, considering that conventional
fracturing fluid contains 99% fresh water, improvement of fracturing fluid formulas may be
an important way to strengthen the water–rock interaction to increase shut-in performance.

Oxidation reaction, which can generate heat and gas and associated pressures, as
well as induce chemical dissolution, have been widely utilized in the petroleum industry
(Table 2). Oxidative dissolution by H2O2, potassium permanganate (KMnO4), chlorine
dioxide (ClO2), sodium hypochlorite (NaClO), and ammonium persulfate ((NH4)2S2O8)
were investigated for organic-rich rocks, such as coal and shale. This shows a huge potential
for the enhancement of primary flows in coal gas formation [111–115]. For organic-rich
shale reservoirs, oxidizer breakers such as ammonium persulfate ((NH4)2S2O8) are usually
pumped into the formation to realize gel breaking prior to the flowback operation in
order to facilitate the fracturing fluid to flow back and reduce formation damages such as
APT [116,117]. Therefore, the injection of oxidative fluids into conventional fracturing fluids
for increasing shut-in performance post-fracturing is feasible without the extra supplement
of equipment and associated costs.

Table 2. Commonly used oxidant in petroleum engineering collected from previous publications.

Stage Application Function and Mechanism Oxidants

Exploration
Kerogen analysis Selective oxidation Dissolution Ruthenium ion (Ru8+), Potassium

permanganate (KMnO4)

Clay mineral analysis Remove OM Dissolution H2O2

Exploitation

Drilling Drilling with superheated steam Generate high temperature H2O2

Completion
Eliminate the filter cake Dissolution Highly active oxidant like WF-O etc.

Broken down Dissolution and Bactericide Chlorine dioxide (ClO2), H2O2

Formation stimulation

Remove formation damage Generate high temperature H2O2

Fracturing

Generate high pressure H2O2

Dissolution ClO2

Gel breaking Ammonium persulfate
((NH4)2S2O8)

Enhance oil and gas
recovery

Water flooding Dissolution ClO2

Air flooding Generate high temperature Oxygen (O2)

Thermal oil recovery Generate high temperature H2O2

Environmental protection Wastewater treatment Dissolution and Bactericide
KMnO4, Ozone (O3), ClO2, Sodium
hypochlorite (NaClO), and Fenton

reaction (H2O2/Fe2+)

4. Implementation Clue for Oxidative Fluids Enhancing Organic-Rich Shale
Gas Recovery

In recent years, shale gas wells usually exhibit an interesting phenomenon whereby
low fracturing fluid recovery is associated with high gas production, while high fracturing
fluid recovery forecasts low gas production (Figure 12). The fracture network, as an
important sign that determines gas production, may also play a significant role in fluid
retention. The more complex a fracture network is for a shale gas well, the higher the
gas production will be and the lower the fluid recovery by flowback operations will
be (Figure 13). Oppositely, a simple fracture network especially dominated by artificial
fractures usually leads to unsatisfactory gas production, while allowing the fracturing fluid
retained in the fractures to flow back to ground efficiency due to a relatively low flowback
resistance [118].

In Figure 13, for shale gas wells with a high gas production and a low fracturing fluid
recovery (HGP-LFR), a complex fracture network has been created by hydraulic fracturing.
Unfortunately, a large amount of retained fracturing fluid results in some formation damage
such as APT in the fracture, impairing the stimulation efficiency by the fracturing operation.
Moreover, the stress dependence of unpropped fractures during production has an adverse
influence on the conductivity of the fracture network. Therefore, from the perspective of
formation damage control, the removal of APT and the reduction of stress dependence of
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unpropped fractures are the critical factors for this type of shale gas well to further enhance
gas recovery. For shale gas wells with a low gas production and a high fracturing fluid
recovery (LGP-HFR), which indicates that the density of fracture networks generated by
the fracturing operation is not so high, the increment of the density of fracture networks is
the primary goal.
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Figure 12. Comparison of flowback efficiency and cumulative gas recovery: (a) Shale gas wells from
the Horn River basin. Flowback efficiency and cumulative gas recovery were collected after 72 h of
opening the wells (after Ghanbari et al. (2013) [21]). (b) Three adjacent shale gas wells in the Sichuan
basin experienced the shut-in for 5 days and 15 days, and the production time is 120 days.

Most shale gas wells had a low flowback efficiency for fracturing fluids that ranged
from 5~50% of the amount of the injected fluid. Typically, less than 30% of fracturing fluids
are recovered during flowback from these wells. Unrecovered fracturing fluid is usually
trapped in the pores and microfractures or controlled by other mechanisms [30,31,39,119–121].
Cheng et al. (2020) reported that the imbibition capacity of the shale matrix can be improved
up to 11.6~15.3% due to oxidative dissolution [92]. These shale gas wells thereby are further
divided into three types to be discussed, as shown in Table 3.
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For LGP-HFR, shut-in performance is shown in the increment of the density of fracture
networks. Oxidative fluids are added to the pumped fracturing fluid to provide enough
oxidants. Shut-in immediately after the fracturing operation contributes to a full reaction
between the shale rock and the oxidant. The design of the shut-in time follows a rule that
a shale gas well is reopened once fluid pressure in the fracture drops to the minimum
horizontal principal stress of the formation, making full use of the effect of loading stress
on the generation and propagation of fractures, as described in Section 2.1.

For HGP-LFR, shut-in performance is shown to improve the conductivity of fracture
networks. If the flowback efficiency is over 10%, as in HGP-LFR (I), a fast flowback
operation in the early stage after the fracturing operation, considering the conventional
shut-in strategy, is necessary. This can reduce the water saturation in the fracture and
release the APT to some extent. Oxidative fluids are added to the fracturing fluid in the
early period of each fracturing stage, in order to ensure that the retained fracturing fluid
contains the oxidants after the flowback operations. Meanwhile, in order to avoid the waste
of oxidative fluids caused by the flowback operation, the amount of oxidative fluids injected
is calculated with the consideration of the flowback efficiency of adjacent wells. This not
only can realize the oxidative dissolution of OM in the fracture surface prior to the injection
of proppants but also makes full utilization of the effect of retained fluid on maintaining
the conductivity of unpropped fractures based on a non-uniform surface-etching profile,
as described in Section 2.2.2. If the flowback efficiency is less than 10%, as in HGP-LFR
(II), and even no fluid flowback occurs, formation damage control may be particularly
important in this case. In addition to the mechanism of oxidizing stimulation mentioned in
HGP-LFR (I), redistribution of fracturing fluids retained, which promotes auto removal
of APT, is another important mechanism, as described in Section 2.2.1. In this situation,
the injection of oxidative fluids and the associated shut-in strategy are the same as those
of LGP-HFR. The only difference between them is that no fracturing fluid flowback is
present when the shut-in ends for HGP-LFR (II). Furthermore, with the wide distribution of
oxidative fluids in the shale matrix, promotion of gas desorption and diffusion by oxidative
dissolution, as described in Section 2.2.1, may occur in both LGP-HFR and HGP-LFR.
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Table 3. Shut-in strategy with the application of oxidative fluids in shale gas well.

Type of Shale
Gas Wells

Flowback Efficiency of
Fracturing Fluid

Engineering Characteristics
of Shale Formations

Target of Oxidizing
Stimulation

Mechanism of Oxidizing
Stimulation

Application of Oxidative
Fluids Shut-in Strategy

LGP-HFR >30%

(1) Poor hydraulic
fracturing performance;
(2) Poor water
retention capacity.

Formation stimulation:
increase the density of
fracture networks.

(1) Reduce rock fracture
pressure, promoting fracture
initiation and propagation;
(2) Promote gas desorption
and diffusivity.

Injection of oxidative fluids
into all the pumped
fracturing fluids.

(1) Shut-in immediately after the
fracturing operation;
(2) Flowback operation once the
fluid pressure in the fracture drops
to the minimum horizontal principal
stress of the formation.

HGP-LFR (I) <30% and >10%

(1) Good hydraulic
fracturing performance;
(2) Good water
retention capacity. Formation damage control:

improve the conductivity
of fracture networks.

(1) Promote proppant migration
and distribution;
(2) Reduce stress dependence of
unpropped fractures;
(3) Promote auto removal of
aqueous phase trapping;
(4) Promote gas desorption
and diffusivity.

Injection of oxidative fluids
into the partially pumped
fracturing fluids.

Fast flowback and then production
after the fracturing operation
followed the conventional
shut-in strategy.

HGP-LFR (II) <10%

(1) Great hydraulic
fracturing performance;
(2) Great water
retention capacity.

Injection of oxidative fluids
into all the pumped
fracturing fluids.

(1) Shut-in immediately after the
fracturing operation;
(2) Well open and production once
the fluid pressure in the fracture
drops to the minimum horizontal
principal stress of the formation.
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5. Discussion

A properly shut-in strategy was designed for shale gas wells for the enhancement of
gas production. Currently, shut-in performance usually depends on the combined effects
of formation stimulation and damage control behind the fracturing operations. This is
attributed to the increment of the density of fracture networks, the improvement of fracture
network conductivity, and the promotion of gas desorption and diffusivity. In another
words, shut-in has a positive effect on further improving the shale gas transport path from
the matrix pore to the wellbore after hydraulic fracturing operations.

Oxidizing stimulation for organic-rich shale was originally proposed for further en-
hancing the methane production from the matrix in post-fractured shale gas wells, as
shown in Figure 14 [14]. Dissolution of shale rock components such as OM, pyrite and
associated, induced pores and microfractures with oxidative fluids, contributing to a higher
desorption or diffusion of adsorbed and free gas [13,63]. Furthermore, this study attempted
to demonstrate the mechanisms of oxidative dissolution increasing shut-in performance, to
evaluate the feasibility of using oxidative fluids, and finally, to develop an implementation
clue for enhancing organic-rich shale gas recovery. This indicates that the increment of shut-
in performance through oxidative dissolution is a new insight into enhancing organic-rich
shale gas recovery.
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in organic-rich shale reservoirs.

However, oxidizing stimulation is a new field much of whose theoretical knowledge
needs to be explored and established. On the one hand, although the mechanisms of oxida-
tive dissolution increasing shut-in performance are clear, associated laboratory experiments
and the simulation study at field-scale to verify its effectiveness are still lacking. For exam-
ple, taking into consideration the change in the chemical field, the temperature field, the
flow field, and the pressure field during the shale and oxidative fluids reaction, the effect
of multi-field coupling on oxidation-increase permeability of shale rocks still needs to be
evaluated. On the other hand, the injection of oxidative fluids into the formation possibly
induces some formation damages which have an adverse influence on the enhancement
of shale gas recovery. For example, the shale and oxidative fluids reaction produces some
precipitations such as Fe2O3, Fe(OH)3, FeCO3(siderite), CaSO4·2H2O (dihydrate gypsum),
etc., as well as solid particles of shale debris, which will block the pore or fracture, resulting
in a decrease of rock permeability [62,63,67,122,123]. In response, You et al. (2021a; 2021b)
proposed the evaluation of oxidation sensitivity for the oxidizing stimulation in organic-
rich shale, which can play a significant role in preventing damage and converting the harm
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into a benefit [67,123]. Moreover, oxidative dissolution-induced potential groundwater
pollution is another problem that should be taken into further consideration [62]. Therefore,
in order to establish and perfect the oxidating stimulation technology, there is still much
work to do in terms of the evaluation of the engineering adaptability of oxidative fluids,
enhancing organic-rich shale gas recovery, and the development of an oxidative fluid
satisfying the standard of engineering applications.

6. Conclusions

Oxidative fluids, which contribute to the increment of the density of fracture networks,
improve fracture network conductivity, promote gas desorption and diffusion, can play an
important role in the enhancement of shut-in performance compared with the conventional
fracturing fluid.

(1) Oxidative dissolution shows a potential to fully leverage the retained fracturing
fluid through the designed shut-in strategy, which aims to convert the detrimental frac-
turing fluid retention into a beneficial force to enhance the organic-rich shale gas recovery
with a lower cost.

(2) The application of oxidative fluids in shale gas wells to enhance organic-rich shale
gas recovery is a new domain. Much theoretical knowledge needs to be explored and
established. The evaluation of engineering adaptability of oxidative fluids for enhancing
organic-rich shale gas recovery and the development of oxidative fluids satisfying the
benchmark of engineering applications is necessary for the next stage.
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