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Abstract: In drilling engineering, the rate of penetration (ROP) is a prevalent indicator to evaluate the
energy efficiency of drilling operations. Nowadays, ROP prediction has become more critical since
the production from deeper hydrocarbon resources is unprecedentedly escalating. So far, a wealth
of theoretical and practical investigations has been conducted to develop ROP models; however,
the existing models have not been adequately updated with the new technological advancements
or geological restrictions. This research strives to integrate the latest advancements, restrictions,
and future requirements in ROP prediction. To do this, the existing empirical and data-driven
ROP models are elaborated and compared. From the conducted research, it was deduced that four
uncontrollable factors, including the rock permeability, wellbore inclination, temperature, and rock
hardness, have not been adequately considered in ROP models. Moreover, although data-driven ROP
models deliver more accurate results than the empirical models, the determination of the number and
type of the input parameters is still challenging. To tackle this issue, it is recommended to develop a
formation-based classification system of input parameters for future investigations. This inclusive
review can be adopted by the companies and engineers involved in drilling operations to update and
reform their drilling strategies.

Keywords: ROP; drilling optimization; wellbore inclination; artificial intelligence; hydrocarbon
reservoir; ANN; SVM; rock permeability; rock hardness; petroleum engineering

1. Introduction

How can drilling engineers predict the rate of penetration (ROP) more accurately? As
the need for the exploitation of deeper hydrocarbons is increasingly growing, are existing
ROP models still adequately reliable? What factors have been neglected in existing ROP
models? How can ROP models be improved? These questions are constantly exchanged
between drilling engineers as they are dealing with the minimizing of total budget and
time spent for drilling operations. To access the subsurface natural resources, e.g., oil, gas,
groundwater, minerals, etc., drilling is known as the most expensive option [1]. To reduce
the cost and time of drilling, usually, drilling engineers optimize the mechanical specific
energy (MSE) or the ROP. The MSE demonstrates the required energy for breaking the rock,
while the ROP indicates the pace of drilling operations [2]. In this review article, existing
ROP models are assessed, together with their shortcomings and future requirements.

From the mathematical perspective, the ROP is defined as the ratio of the rock’s drilled
length to the drilling time. The ROP can be affected by a wide spectrum of miscellaneous
factors [3]. Those factors are classified as the controllable and uncontrollable factors. The
adjustable factors, e.g., revolutions per minute (RPM), mud-flow rate (Q), torque (T), and
weight on bit (WOB), can be changed and controlled by the operators [4]. By contrast, some
other factors cannot be changed due to technological limitations, or geological conditions.
For instance, wellbore trajectory, pore pressure, rock strength, and equivalent circulation
density (ECD), are examples of uncontrollable factors [5].
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Since the ROP directly influences the entire drilling cost and time, many researchers
and companies have had special concerns to model this parameter. To tackle this, the
impact of the different contributing factors on the ROP have been investigated for decades;
however, ROP optimization is a sophisticated task as the relations between the ROP and
different contributing factors are often commonly complicated [6–12]. Therefore, several
attempts were made by different researchers to develop high-performance, predictive
models to achieve optimal results.

The initial concentration of those studies was on the development of empirical models
derived from the experimental tests. The first attempt to optimize drilling parameters was
performed by [13]. In that study, an experimental formula correlating the ROP with the bit
life was established. The factors of RPM, WOB, and drilling depth were included in the
corresponding ROP model.

Maurer was the next researcher who offered a mathematical relation to predict the
ROP for the roller-cone bits [14]. Galle and Wood used a number of graphs and diagrams
to develop a method for determining the best association of WOB and RPM for a special
kind of bit [15]. Bingham modified Maurer’s model, and proposed an experimental model;
however, the drilling depth was not considered in the model, and it was also restricted to
low values of RPM and WOB [16]. At the same time, Teale introduced an empirical correla-
tion linking the ROP to the MSE [17]. In that model, the ROP was used to determine the
necessary energy for drilling of a unit volume of rock. After Teale, Eckle performed several
micro-bit experiments, and investigated the impact of overbalance pressure reduction on
the ROP improvement [18].

One of the most significant investigations dates back to the empirical ROP model
suggested by Bourgoyne and Young [3]. In such a mathematical model, several drilling
parameters were included, and, therefore, it was widely applied as a practical optimiza-
tion method to adjust the real-time parameters of drilling operations [19]. The next two
models belonged to Warren who introduced his first model in [20], and, then, declared
a modification of the previous model in [21]. The first model, which was called the
“perfect-cleaning model”, included the rock strength, bit diameter, RPM, and WOB. The
second model, known as the “imperfect-cleaning model”, was based on the first model;
however, it included the cuttings removal term. In better words, mud properties, e.g.,
density and viscosity, and the effect of jet impact force were incorporated in ROP modeling.
Improvement and development of empirical ROP models was then followed by several
researchers [22–27].

Apart from the empirical models, some researchers strived to predict the ROP using
artificial intelligence (AI) algorithms. In fact, numerous data are collected daily during the
drilling activities. However, such data are full of uncertainties and hidden correlations
that can be well-handled by AI analytical tools [28]. Recently, ROP prediction by the AI
techniques is one of the most reliable methods delivering acceptable results [29–32]. Some
valuable works related to AI-based ROP models can be found in [33–43].

ROP models are also applicable in the mining industry. There have been many investi-
gations for ROP prediction in mines [44–53]. In the mining industry, drilling operations are
executed for implementation of coring boreholes or blasting holes. Comparing the oil/gas
wells with mining boreholes, it can be claimed that the ROP is more critical in oil/gas
drilling operations as the destination depth is far deeper than that of mining activities.
Apart from the mining and oil/gas industry, drilling operations are also an indispensable
part of some other engineering applications, such as water-well drilling [54,55], coal-bed
methane extraction, and extraterrestrial applications [56,57]. Thus, optimization of the ROP
is much-needed to guarantee the success and profitability of those drilling applications.

Drilling engineering is a multidisciplinary area in which several science branches,
including geology, petroleum engineering, mechanical engineering, metallurgy engineering,
electronics, robotics, computer engineering, etc., come together to make drilling operations
more energy-efficient, affordable, and time-efficient [58]. The objective of this research is
to integrate the previous and recent advancements in ROP prediction for recognition of
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current limitations and future requirements pertinent to different aspects of ROP modeling.
Therefore, in this study, from miscellaneous angles including the contributing factors, types
(empirical and AI-based) of models, and potential shortcomings, ROP models are assessed.

The current research reveals that uncontrollable factors have not been adequately
incorporated into the existing ROP models. To address this issue, four uncontrollable
factors, including rock permeability, wellbore inclination, temperature, and rock hardness,
are suggested to be added to future ROP models. The novelty of the current research lies in
the detection of such uncontrollable factors to improve ROP models. To find the relation
between those factors and ROP variation, both laboratory tests and AI approaches can be
utilized. Moreover, since the uncontrollable factors mostly originated from uncertainty in
the geological properties of the subsurface formations, development of a formation-based
classification system of input parameters is proposed. For instance, the rock abrasiveness
can be applied in sandstone ROP models, not for salt rocks. On the contrary, the rock
creep can be included in salt rocks ROP models, not for sandstone rocks. Through this,
for different formations, the minimum number of effective geological parameters can be
included in ROP models.

The structure of this research has been designed as follows: in Section 2, the different
contributing factors in ROP modeling are described. Then, in Section 3.1, the different
empirical ROP models are elaborated and compared with each other. Afterwards, in
Section 3.2, the focus shifts to AI-based studies performed for ROP prediction/optimization.
In that section, the type of input data, the merits, and demerits of those AI-based models
are also described and contrasted. Then, in Section 4, an inclusive discussion on the key
results and recognized shortcomings is presented. Finally, the article ends with a concise
conclusion depicting the main results, propositions, and implications of this research.

2. Contributing Factors on the ROP

To enhance and develop ROP models, it is necessary to investigate the factors affecting
this parameter. The most important contributing factors on the ROP can be divided into
two main groups: uncontrollable and controllable factors [33]. Figure 1 depicts these factors.
The main uncontrollable factors stem from the uncertainty in the formation characteristics.
No adequate attention has been given to these factors in available ROP models for oil/gas
drilling operations. However, in the mining industry, it seems that researchers have
incorporated more physical and mechanical properties of formations into ROP models. On
the opposite side, the number of controllable factors affecting the ROP are more than the
uncontrollable ones. Therefore, in the real field, the controllable factors are usually changed
to enhance the ROP. The main controllable factors included in the available oil/gas ROP
models are “rig operating conditions”, “drilling fluid properties”, and “bit hydraulics”. In
the mining industry, less investigation has been dedicated to the parameters of rig operating
conditions, including the WOB, RPM, bit type, and torque. Those factors are elaborated in
what follows.

2.1. Formation Characteristics

There are several formation characteristics influencing the bit-penetration rate. One of
the most determining characteristics is the shear strength of the rock. For a standard com-
pression test, the following formula can be utilized to calculate the rock shear strength [59]:

τ0 =
σ1

2
cos θ (1)

where τ0 (psi) represents the rock shear strength, σ1 (psi)represents the rock compressive
strength, and θ depicts the internal friction angle. There are several rock-failure criteria
to predict the rock shear strength. Some examples are the Hoek–Brown, Drucker–Prager,
Mohr–Coulomb, and Modified Lade. Those criteria are based on some assumptions which
may affect the predicted value of the shear strength of the rock.
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Moreover, the elemental composition of rocks has an impact on the ROP values. For
example, rocks containing a high percentage of hard minerals, e.g., SiO2 and Fe2O3, have
less drillability in comparison to the rocks containing clay minerals. Abrasiveness is another
important factor affecting the ROP. For instance, the common igneous rocks, such as granite
and diorite, are more abrasive than the sedimentary formations, such as sandstone and
shale. Such high abrasiveness gives rise to a premature, fast dulling of the bit’s teeth [59].

Rock permeability is another parameter that has a remarkable influence on the ROP.
In fact, permeability allows the drilling fluid to move into the subsurface layers, thereby
equalizing the pressure differential at the bottom-hole.

Poroelastic properties of rocks also play a significant role in the interaction between the
rock and the bit, thereby affecting the ROP [60]. Such poroelastic properties are derived from
the presence of pore pressure within the pores of rocks. The main poroelastic parameters
include the porosity, pore pressure, Biot’s coefficient, and Skempton’s coefficient [61].
During the drilling operations, the coupling between the pore pressure, mud flow, WOB,
and the in situ stresses cause deformations around the wellbore. Such coupling is of
paramount significance in terms of wellbore instability problems [62], lost circulation issues,
wellbore deviation from the planned trajectory, etc. It should be noted that the poroelastic
parameters are dependent on the temperature of the surrounding formations [63,64].
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2.2. Mud Properties

Muds play an integral role in every drilling operation. Some vital functions of mud
include the cuttings removal, prevention of pore fluid influx into the wellbore, and preserva-
tion of the wellbore stability. Therefore, providing an accurate drilling fluid system is quite
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crucial for successful drilling. To appropriately characterize the drilling fluid, calculation
of the fluid flow and its pressure within the wellbore is of paramount significance. The
science of wellbore fluid mechanics is applied to investigate the influence of mud character-
istics on the drilling operations. In other words, wellbore fluid mechanics describes the
dominant equations on the fluid flows in the wellbore to predict their performance during
the interaction with the surrounding formations, and pore fluids at different depth and
temperature conditions.

Regarding the mud, the chemical composition, viscosity, density, and solid content of
the mud are of paramount significance. For instance, when it comes to the chemical compo-
sition, water-based drilling fluids may interact with shale formations, thereby gradually
washing them. Consequently, such circumstances may bring about wellbore instability
issues. Concerning mud viscosity, it is a critically important fluid characteristic in the ROP
optimization. The mud viscosity is a determining factor in the cleaning and transportation
of the rock cuttings towards the ground surface.

Furthermore, the solid content along with the mud density regulate the differential
pressure in the bottom-hole. Drilling fluids with high density create a positive differential
pressure around the bit (overbalanced drilling). The correlation between the overbalanced
drilling and the ROP for different bit types has been shown in Figure 2. As it can be seen,
such correlation is a straight line when the values of log (R/R0) are presented as a function
of the overbalance pressure. The parameters of R and R0 represent the ROP and the initial
ROP, respectively. On the other hand, when the mud density is less than the formation
pressure, underbalanced drilling occurs. Based on this figure, when drilling is performed
under underbalanced conditions, the ROP values increase [59].
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Bourgoyne and Young offered the following relation between the overpressure (over-
balance) and the ROP (ft/h) [3]:

log10

(
ROP
ROP0

)
= −m

(
Pbh − Pf

)
(2)

where Pbh (psi) demonstrates the circulating bottomhole pressure Pf (psi) depicts the pore
fluid pressure ROP0 (ft/h) is the ROP at zero overbalance, and m is the tangent of the
straight line in Figure 2. The parameter of Pbh can be calculated as:

Pbh = 0.052ρcD (3)

where ρc (Ib/gal) represents the ECD, and D (ft) is the total depth. Moreover, the pore fluid
pressure is calculated as:

Pf = 0.052gpD (4)

where gp (Ib/gal) represents the gradient pore pressure. Equations (2) and (4) can be
rewritten as:

log10

(
ROP
ROP0

)
= −0.052mD

(
ρc − gp

)
(5)



Energies 2023, 16, 4289 6 of 23

log10

(
ROP
ROP0

)
= −a4D

(
ρc − gp

)
(6)

where a4 is the overbalance exponent. The above-mentioned equations are beneficial to
investigate the influence of the mud density on the ROP. Thus, Equation (6) is rewritten as:

ROP2

ROP1
= e2.304a4D(ρ1−ρ2) (7)

where, ROP1 and ROP2 represent the ROP values related to the ρ1 and ρ2 respectively. Note
that ρ1 (Ib/gal) is the initial mud weight while ρ2 (Ib/gal) is the secondary one [3].

2.3. Bit Operating Conditions

The parameters pertinent to the bit working conditions also affect the ROP values.
Such parameters include the bit type, bit tooth wear, RPM, WOB, and torque.

Regarding the bit wear, it is noticeable that, due to the tooth wear, most bits drill more
slowly as drilling time passes. Abrasion and chipping mechanisms decrease the tooth
length continuously. Hard facing erodes the tooth in a way that encourages self-sharpening
tooth wear. Although such action maintains the tooth sharpness, the shorter tooth length
is not compensated by this. The tooth of PDC bits and rolling-cutter bits constructed of
tungsten carbide fail via breaking rather than abrasion [2,15,65–67].

Another important factor in ROP optimization is the torque. It is stated that torque
becomes significantly more sensitive to the variations of WOB as the bit penetrates further
into the deeper hard rocks [68].

Regarding the RPM, Figure 3 illustrates the relation between the RPM and the ROP
(red curve). For the low values of RPM (segment ab), there is a direct, linear relationship
between the RPM and the ROP. The green dashed line illustrates such linear relation. Point
b is known as the foundering point. After point b, the rise in the RPM causes a nonlinear
increase in the ROP with a slower pace (segment bc). Such reduction is due to the inefficient
bottom-hole cleaning and mud characteristics, such as buoyancy factor [59].
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Regarding the WOB, Figure 4 depicts the change of the ROP versus the WOB (red
curve). Note that no tooth wear is assumed in this figure. Point a is known as the threshold
formation stress. Before point a is surpassed, no substantial penetration rate is obtained. For
the low values of bit weight (segment ab), the ROP builds up linearly with rising values. The
moment at which the rock-failure condition switches from scraping to shearing is known
as point b. After point b, as the WOB increases, the ROP heightens linearly (segment bc);
however, this segment has a steeper slope than the segment ab, thereby indicating a higher
drilling efficiency. Beyond point c, additional bit weight enhances the ROP marginally
(segment cd). Point d is the foundering point. After point d, in some instances, the ROP
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drops off at excessively large WOB values (segment de). The reason is that for the intensely
high WOBs, the bottom-hole cleaning and cutting removal mechanisms become inefficient
due to the large volume of rock cuttings produced in the bottom-hole. Such a situation also
prevents the mud from escaping from the nuzzles, thereby leading to further inefficient
bottom-hole cleaning [37,59].
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2.4. Bit Hydraulics

Optimization of bit hydraulics for acquisition of high ROP values has been the subject
of much debate [69,70]. Commonly, the mentioned factors include the Reynolds number,
mud-flow rate, impact force of the jet, nuzzle velocity, and bit hydraulic horsepower.
Many researchers believe that the bit’s foundering point is affected by the hydraulic
pressure attained at the bit. Eckel proposed the underlying relation based on the Reynolds
number [18]:

NRe = Ks
ρ f Qdnz

µa
(8)

where NRe stands for the Reynolds number function, Ks represents the scaling coefficient,
ρ f (Ib/gal) indicates the density of mud, Q (gal/min) represents the fluid-flow rate, dnz (in)
indicates the diameter of nozzle, and µa (cp)) represents the mud’s apparent viscosity at
104 s−1. Figure 5 displays the impact of the Reynolds number function and WOB on the
ROP [18]. For the whole range of the Reynolds numbers investigated, the penetration rate
rises as the Reynolds number function increases. As it can be observed, the corresponding
curve moves upward as the WOB is raised. It is noteworthy that Eckle did not investigate
the effect of the foundering point on the ROP.
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2.5. Personal Efficiency

Any drilling issue can result in extremely high overall well expenses; as a result,
ongoing training for all drilling crew is crucial to achieve high ROP values [37,71].

2.6. Rig Efficiency

Selection of a proper rig for the drilling operation is of paramount importance. The
selected rig can influence the whole drilling cost, time, and specified energy. Moreover,
appropriate maintenance is required to keep the rig in an operable condition. The sim-
plicity of the rig is also beneficial for the crew to take correct, rapid actions during the
drilling operation.

3. The ROP Models

A number of empirical and data-driven models have been established to predict or
optimize the ROP. The empirical models were mainly developed using real field drilling
data or laboratory tests. The linear regression technique was mostly used to formulate the
ROP relationship with other drilling parameters. On the opposite side, the data-driven
models forecast the ROP values using AI techniques [72]. Both types of ROP models are
elaborated in what follows.

3.1. Empirical ROP Models
3.1.1. Review on Empirical ROP Models

Maurer created the first empirical model for ROP prediction [14]. The main com-
ponents of that model were the rock strength, WOB, RPM, and drill bit diameter. The
following equation describes Maurer’s model:

ROP =
K
S2

(
WOB

dbit
− WOB0

dbit

)2
RPM (9)

In this equation, K shows the proportionality coefficient, WOB (Ib) represents the
weight on the bit, dbit (in) demonstrates the bit diameter, RPM (rev/min) is the rotational
speed of the bit, WOB0 (Ib) depicts the threshold weight on the bit, and S represents the
rock compressive strength.

Galle and Woods proposed the second ROP model [15]. The corresponding formula was:

ROP ∝

(
1

0, 928125h f
2 + 6h f + 1

)b7

(10)

In this equation, h f (in) depicts the fractional bit tooth dullness, and b7 shows an
exponent (suggested to be selected as 0.5).

Bingham proposed a different model to forecast the ROP [16]. The model was ex-
pressed as:

ROP = K
(

WOB
dbit

)b5

RPM (11)

where b5 is the WOB exponent. In addition, K included the rock strength from Maurer’s model.
One of the most practical empirical models to forecast the ROP was developed by

Bourgoyne and Young [3]. This ROP model was defined by the following equation:

ROP = f1 × f2 × f3 × f4 × f5 × f6 × f7 × f8 (12)

where
f1 = exp2.303×a1 (13)

f2 = exp2.303×a2×(10000−TVD) (14)
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f3 = exp2.303×a3×TVD0.69×(gp−9.0) (15)

f4 = exp2.303×a4×TVD×(gp−ECD) (16)

f5 =


(

WOB
dbit

)
−
(

WOB
dbit

)
t

4 −
(

WOB
dbit

)
t

a5

(17)

f6 =

(
RPM

60

)a6

(18)

f7 = exp−a7×h f (19)

f8 =

(
FJet

1000

)a8

(20)

In Equations (12)–(20), a1, a2, a3 . . . , and a8 are determined using real drilling data.
Moreover, TVD (ft) displays true vertical depth, gp (Ib/gal) indicates the gradient of pore
fluid pressure, (WOB/dbit)t stands for the parameter of the threshold WOB pertinent to one
inch of the bit diameter when the bit starts drilling (103 lbf/in), FJet (Ib) demonstrates the
fluid motion force beneath the bit, and (WOB/dbit) represents the WOB pertinent to one
inch of bit diameter. It is also important to note that Osgouei enhanced this model in 2007
by adding the hole-cleaning term for directional and horizontal wellbores [68]. Such an
improved model is applicable for both roller-cone bits and PDC bits [68].

Furthermore, the parameter of bit wear was presented by utilization of some specific
assumptions. The tooth wear can be calculated as [3]:

dh
dt

=
H3

τH
[
RPM
100

]
H1

×


(

WOB
dbit

)
max

− 4(
WOB
dbit

)
max − WOB

dbit

×
{

1 + H2
2

1 + H2h

}
(21)

where h (ft) is the depth and t (h) is time. The coefficients of H1, H2, and H3 are dependent
on the type of bit. Moreover, τH is a coefficient representing the abrasiveness of the rock.
To calculate the bearing wear, the following relationship was proposed:

dBbw
dt

=
1
τb

× RPM
100

× [
WOB
4dbit

]
b

(22)

where Bbw is the bearing wear proportion over the bearing’s entire lifetime, τb (h) is the
lifetime of the tooth under standard circumstances, and b is an empirical coefficient.

Reza and Alcocer in Ref. [66], used the Buckingham p-theorem to express a nonlinear
drilling model for deep-drilling operations. In their model, the ROP was expressed through
the following equation:

ROP
RPMdbd

= K[
RPMdbd

2

v
]a[

RPMdbd
3

Q
]b[

Edbd
WOB

]c[
∆pdbd
WOB

]d (23)

where K shows the proportionality constant, dbd (in) represents the diameter of bearing,
v (cp) represents the kinematic viscosity of the mud, Q (gal/min) demonstrates the mud-
flow rate, ∆p (psi) is the differential pressure between the mud pressure and pore pressure,
and E (psi) represents the formation hardness. It is noteworthy that the variables of K, a,
b, c, and d were calculated using regression analysis. Finally, the following ROP equation
was obtained:

ROP
RPMdbd

= 0.33[
RPMdbd

2

v
]−0.43[

RPMdbd
3

Q
]−0.68[

Edbd
WOB

]−0.91[
∆pdbd
WOB

]−0.15 (24)
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In addition, the general relationship for calculation of bit dulling was proposed as:

h f

RPMdbit
= 0.001[

Q
RPMdbit

3 ]
0.56[

WOB
Edbit

2 ]
0.26[

dbit
Q

]
−0.03

(25)

where h f is the fractional dullness of the bit tooth. On the other side, the general relationship
for bit-bearing life was expressed as:

Bbw
RPM

= 0.05[
Thtdbd

RPM WOB
]0.51[

v
RPMdbd

2 ]
0.26[

Q
RPMdbd

3 ]
−0.5

(26)

where T (◦F) is the temperature of the bottom-hole setting and ht (Btu/◦F) is the coefficient
of heat transfer.

The “perfect-cleaning model” was proposed by Warren [20]. The model had variables
of bit diameter, rock strength, RPM, and WOB. The corresponding formula was:

ROP = 1/(
aS2d3

bit
RPMbWOB2 +

b
RPMdbit

) (27)

where a and b represent two dimensionless coefficients and S (psi) represents the rock’s
strength. The applicability of this model was constrained as it did not consider the cuttings
removal. To address this issue, Warren proposed the “imperfect-cleaning model”. The
improved model included the cuttings removal which is influenced by the density and
viscosity of the mud, as well as the impact force of the jet. Consequently, this model became
more applicable than the former one. The model is represented by the following equation:

ROP = 1/(
aS2d3

bit
RPMbWOB2 +

b
RPMdbit

+
cdbitγ f µ

Fjet
) (28)

where c is a dimensionless constant, γ f stands for the fluid-specific gravity, and µ (cp)
indicates the viscosity of the drilling fluid. Moreover, Fjet (Ib) shows the impact of the jet
force.

Warren’s imperfect-cleaning model was modified by Hareland and Rampersad [24].
They incorporated the impact of bit wear in the above equation by proposing a wear
function, W f , as:

ROP = W f /[ fc(Pe)

(
aS2d3

bit
RPMbWOB2 +

b
RPMdbit

+
cdbitρ f µ

Fjet

)
] (29)

W f = 1 − ∆BG
8

(30)

where a, b, and c are dimensionless constants, fc(Pe) represents the chip hold-down function,
and ∆BG is the variation of the bit-tooth wear. The parameter of ∆BG is obtained through:

∆BG = Wc[
n

∑
i=1

WOBiRPMiSi
(

Arabr

)
i] (31)

where Wc represents the bit-wear constant. Moreover, Arabr indicates rock relative abrasive-
ness and S (psi) represents the rock confined compressive strength obtained through the
following relationship:

S = S0[1 + as Pe
bs ] (32)

where S0 (psi) represents the unconfined strength of rock. In addition, the constants of as
and bs (md) are dependent on the rock permeability.

Osgouei suggested the final prominent empirical model, in Ref. [68]. The Bourgoyne
and Young model served as the foundation of his model. Osgouei added three factors,



Energies 2023, 16, 4289 11 of 23

specifically, f9, f10, and f11, which represent the borehole cleaning terms in the horizontal,
directional, and vertical wellbores for both the roller-cone and the PDC bits. In fact, he
accounted for the impact of the hole-cleaning factor on the values of the ROP. The ROP
model improved by Osgouei is:

ROP = f1 × f2 × f3 × f4 × f5 × f6 × f7 × f8 × f9 × f10 (33)

where
f1 = ea1 (34)

f2 = ea2×(8800−TVD) (35)

f3 = ea3×TVD0.69×(gp−9) (36)

f4 = ea4×TVD×(gp−ECD) (37)

f5 =

 WOB
dbit

WOB
dbit

∣∣∣
t

a5

(38)

f6 =

(
RPM
RPMc

)a6

(39)

f7 = e−a7 h f (40)

f8 =

(
FJet

FJc

)a8

(41)

f9 =

(
Abed/Awell

0.2

)a9

(42)

f10 =

(
VActual
VCritical

)a10

(43)

f11 =

(
Cc

100

)a11

(44)

The constants of a1, a2, 3, . . . , and a11 are estimated through real drilling data. More-
over, RPMc (rev/min) stands for the critical rotary speed, which must be estimated by con-
sidering the characteristics of the drilling string, bit type, and field data. Additionally, the
parameter of FJc is dependent on the type of bit, the mud’s characteristics, and pump pres-
sure. In addition, hf displays the fractional tooth dullness. The parameter of VActual (ft/s)
denotes the volume of clippings, Vcritical (ft/s) is the critical volume of the cuttings removal,
and Cc is the constant of the cuttings concentration. The parameters of Abed (ft2) and
Awell(ft2) demonstrate the area of the cuttings bed and the wellbore, respectively.

3.1.2. Analysis of the Empirical ROP Models

The most well-known empirical ROP models were elaborated in the previous section.
As mentioned, different researchers had strived to improve ROP models by adding new
contributing factors to them. This is why empirical ROP models underwent continuous
improvements from the early Maurer model to Osgouei’s model. Table 1 summarizes the
different controllable and uncontrollable factors applied in those empirical ROP models.
Based on Table 1, the total frequency of those controllable and uncontrollable factors was
calculated (Figure 6). Furthermore, the frequency of each individual factor in ROP models
was quantified. The results are depicted in Figure 7.
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Table 1. Factors considered in existing empirical ROP models.

Reference
Controllable Factors Uncontrollable Factors

WOB RPM dbit hf FJet TVD µ B ρf Q Pm S Ab E Pp T Pe Cc Awell

Maurer, 1962 [14] × × × ×

Galle and Woods,
1963 [15] ×

Bingham, 1965 [16] × × × ×

Bourgoyne and
Young, 1974 [3] × × × × × × × × × × × ×

Warren (perfect
model), 1981 [6] × × × ×

Warren (imperfect
model), 1984 [7] × × × × × × ×

Reza and Alcocer,
1986 [64] × × × × × × × × × ×

Hareland and
Rampersad,
1994 [24]

× × × × × × × × × ×

Osgouei, 2007 [5] × × × × × × × × × × × × × × ×

WOB: weight on the bit, RPM: rotational speed, dbi: diameter of bit, h f : bit-tooth wear, FJet: fluid motion force
beneath the bit, TVD: true vertical depth, µ: mud viscosity, B: bearing wear, ρ f : mud density, Q: flow rate,
Pm: mud pressure, S: rock strength, Ab: rock abrasiveness, E: rock hardness, Pp: pore pressure, T: temperature,
Pe: rock permeability, CC : cutting properties, Awell : wellbore cross-sectional area.
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Figure 6. The percentage of controllable and uncontrollable factors in empirical ROP models.

Based on Figure 6, only 27% of the investigated factors belong to the uncontrollable
category. Hence, in comparison to the controllable factors, the uncontrollable factors are
required to be further included in future ROP models.

In addition, according to Figure 7, it can be seen that WOB and RPM are the control-
lable factors with highest frequency. Furthermore, rock strength (S) is the most frequent
uncontrollable factor applied in the models. By contrast, flow rate (Q), rock hardness (E),
cutting properties (Cc), temperature (T), and permeability (Pe) are the parameters with the
least repetition in the models. Amongst these parameters, only the flow rate is control-
lable while the rest are uncontrollable factors. Thus, the influence of these low-frequent
parameters needs to be further investigated in future studies.
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Apart from the contributing factors, the applicability of each ROP model is also of
paramount importance. Such applicability can be considered from the perspectives of bit
type and wellbore direction.

In drilling engineering, bits are commonly divided into two main groups: roller-cone
bits and fixed-cutter bits. Figure 8 illustrates those types of bits. The ROP can be remarkably
affected by the type of bit. For instance, the initial ROP of roller-cone bits is commonly the
highest, especially for bits with large offset and long teeth. These kinds of bits are suitable
for soft formations since the ROP decreases after the bit penetrates deeper rocks, especially
into the harder layers [37]. On the contrary, the fixed-cutter bits destroy the rocks through
a wedging-type fragmentation mechanism. Thus, the bottom-cutting angle and number of
blades have predominant effects on the ROP per each revolution.

The second applicability is wellbore direction. In the past, most of the wellbores were
drilled vertically; however, due to the emergence of new technologies, such as hydraulic
fracturing, the drilling companies tend to drill wellbores directionally. Such directional
wellbores access more hydrocarbon-bearing formations, thereby allowing the companies
to increase total oil and gas production. For instance, from 2010 to 2021, as a consequence
of widespread directional drilling in the US, the total number of completed wellbores
decreased by 66%, and average drilling length declined by 30%; however, the production
of crude oil increased by two times [73]. In 2021, only 19% of US wellbores were drilled
vertically, while 81% of the wellbores had directional trajectories.

Table 2 demonstrates the applicability of different ROP models in terms of bit type
and wellbore direction. According to this table, the majority of empirical ROP models have
been developed for roller-cone bits. Moreover, only two models, specifically, Reza and
Alcocer’s model and Osgouei’s model, can be applied for roller-cone bits and fixed-cutter
bits. Regarding the wellbore direction, only Osgouei’s model is applicable for both vertical
and directional wells. Therefore, any future investigation must consider the applicability of
the proposed ROP models for directional wellbores.
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Table 2. Applicability of empirical ROP models in terms of bit type and well direction.

Reference
Bit Type Well Direction

Roller-Cone Bit Fixed-Cutter Bit Vertical Directional

Maurer, 1962 [14] × ×
Galle and Woods, 1963 [15] × ×
Bingham, 1965 [16] × ×
Bourgoyne and Young, 1974 [3] × ×
Warren (perfect model), 1981 [6] × ×
Warren (imperfect model), 1984 [7] × ×
Reza and Alcocer, 1986 [64] × × ×
Hareland and Rampersad, 1994 [24] × ×
Osgouei, 2007 [5] × × × ×

3.1.3. Shortcomings and Limitations of Existing Empirical ROP Models

In the previous sections, different empirical ROP models, together with their required
factors, were elaborated. Moreover, the frequency of each influential factor in existing
ROP models was quantified (Figure 7). As mentioned earlier, four uncontrollable factors,
specifically, rock permeability (Pe), temperature (T), cuttings concentration coefficient (Cc),
and hardness (E), have not been sufficiently incorporated into the ROP models. Hence,
in the current section, a brief debate is given to clarify why and how those factors can be
deployed to improve future ROP models:

• Rock permeability represents the capacity of rock to allow fluid to move through the
rock pores. In nature, such fluid is water, brine, oil, etc. During drilling operations, the
bit cutters break the rock, and, simultaneously, the mud pressure prevents the pore
fluid from flowing into the well space. In a microscopic perspective, the bit pushes the
pore fluid back through two mechanisms [74]. In the first mechanism, the mud pushes
back the pore fluid directly, thereby driving it to flow backwards. This mechanism is
dominantly governed by the bit-rotation speed. In the second mechanism, the pores
are compressed by bit cutters, and, consequently, the pore fluid is squeezed away
from the bottom hole. This mechanism is mainly governed by rock diffusivity which
is directly related to the rock permeability. Therefore, since the rock permeability
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changes, the ROP is altered [74]. Thus, it is suggested that more investigations on
the relations between rock permeability and the ROP are conducted to improve the
previous empirical models or to develop new ones;

• The second less-frequent factor is the coefficient of cuttings concentration which can
be utilized as an indicator of the cuttings volume accumulated at the bottom hole.
This factor is especially determining in the ROP during drilling of directional wells.
As mentioned in the previous section, with the increasing demands for production
from unconventional reservoirs, directional (horizontal and inclined) drilling has
markedly increased; however, some features of past ROP models were considered
only for vertical wells. Thus, it is essential to account for those features in ROP models
developed for directional wellbores. The coefficient of cuttings concentration is such
an essential factor.

During the drilling of directional wells, cuttings may be excessively deposited on
the lower side of the wellbore. This leads to formidable changes, such as reduced weight
transmitted to the bit, and intense friction between the drill pipe and wellbore wall. To
consider this effect, the WOB must be modified in ROP models. For this purpose, the
following formula is suggested [75]:

WOBd = WOBs × e−µ×θ (45)

where WOBd (Ib) represents the modified WOB for directional drilling, µ indicates the
coefficient of sliding friction, WOBs (Ib) is the measured WOB at the surface, and θ (radian)
is the wellbore inclination angle. Generally, the WOBd is less than the WOBs. If this
difference is not applied for the ROP models developed for directional drilling, the accuracy
of the model may decline to a great extent.

• The third parameter is rock hardness. Rock hardness can be defined as the rock
resistance to drilling. In other words, rock hardness is reciprocal of drillability. Some
researchers have linked hardness with drilling speed; other researchers related the
hardness to the amount of energy required for cutting a unit volume of rock [76]. Rock
hardness is mainly dependent on the hardness of the minerals, grain size, grain shape,
grain distribution, and cementation material. The silica content of the rock greatly
affects the rock hardness. Although other resistive features, such as compressive
strength and rock abrasiveness, have been adopted more frequently in ROP models,
the inclusion of rock hardness into ROP models seems to be necessary;

• Temperature is another factor influencing the penetration rate. The bit brecks the
rock under a thermo–hydro–mechanical condition. During the drilling operation,
the bit penetrates the deeper formations with different thermal conditions. The heat
changes the poroelastic properties of the rocks as well as the characteristics of the
pore fluid [63,64]. One of those important poroelastic parameters is Biot’s coefficient.
When the temperature changes, Biot’s coefficient varies and has an impact on the
effective stress applied on the rock at the bottom hole. As a matter of consequence, the
rock compression or shear strength changes, thereby influencing the ROP. Hence, the
impact of temperature should be regarded in ROP models, especially using inclusion
of Biot’s coefficient as a temperature-dependent factor.

3.2. Data-Driven ROP Models

Empirical ROP models may deliver inaccurate results since they cannot take into
account all contributing factors [77–82]. Therefore, a number of researchers made efforts
to deploy AI techniques in ROP modeling works [83,84]. During drilling operations, a
significant amount of data is gathered daily. Because of this, some petroleum engineers
and researchers turned to AI methods to forecast the ROP. The AI algorithms allowed the
engineers to thoroughly evaluate the gathered data and produce valuable insights. Such AI
techniques are used in a variety of applications related to drilling issues [85–91].
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So far, several AI approaches have been utilized in ROP modeling. Table 3 summarizes
the outstanding data-driven ROP models established by different researchers. As it can
be seen, the majority of those studies have applied the ANN approach. Moreover, a wide
spectrum of input parameters has been deployed in AI-based models.

ANNs resemble how the brain uses its biological neurons to process information to
learn features [92,93]. Every ANN model possesses at least three structural layers: input
layer, hidden layer (intermediate), and output layer. The neurons are the fundamental
building blocks found within each layer. Fundamentally, for making connections between
the layers, firstly, the transferring functions are applied, and, then, suitable algorithms are
deployed to train the model [94]. The connections between the neurons are accompanied
by weights and biases [95]. The AAN algorithm has two main steps: training and testing.
The input parameters are transferred by the hidden layer to the output layer. Then, the
testing step is conducted to compare the predicted ROP values with the real field ROP
data. The main disadvantage of the ANN algorithm is that it creates “black box” models,
meaning that there is no way to express how the results were obtained. Another demerit
is that a large number of variables must be set in the neural network to prevent potential
overtraining [96].

The first ANN study for predicting the rate of penetration was provided by Bilgesu
et al. [97]. Then, Anemangely et al. devised two hybrid ANN models to develop an
applicable ROP model [33]. Another ANN-based model was developed by Elkatatny [34].
The results of such research were found to be highly accurate. Jahanbakshi developed an
ANN model to predict the ROP in oil and gas wells. The model was reported as a strongly
reliable estimator capable of predicting precise results. Furthermore, some researchers
applied other ANN architectures, such as back propagation neural networks (BPNN) [29]
and the extreme learning machine (ELM) [98,99], for ROP prediction. The ELM approach
was reported as a more accurate estimator in comparison to the ANN model [98,99].

As well as the ANN approach, the SVM algorithm has been successfully adopted
in ROP modeling tasks. SVM is a supervised machine-learning algorithm which uses
an ε-insensitive loss function. Bodaghi et al. compared the performance of SVM with
the BPNN algorithm in ROP prediction. It was found that the SVM model was more
accurate than the BPNN model [100]. Abdulmalek et al. used the SVM technique for
ROP prediction [37]. Furthermore, other SVM-based approaches, such as the least-squares
support-vector regression (LS-SVR) model, have been applied in ROP modeling. In another
research, Ahmed at al. compared the performance of ANN, ELM, SVM, and LS-SVR
algorithms in ROP prediction for two on-shore wells in the Niger Delta. It was reported
that the LS-SVR and SVM models showed better performance than the ANN and ELM
counterparts; however, the testing time required for the LS-SVR and SVM algorithms was
much higher than the ANN and ELM approaches [99].

Apart from the neural networks and SVM-based algorithms, some researchers have
utilized hybrid approaches to predict the ROP in their works. As a newly conducted
research, Sobhi attempted to establish an ROP predictive model based on the previous
empirical ROP models [35]. In such research, several algorithms (fminsearch, fsolve,
fminunc, lsqcurvefit, lsqnonlin ant colony optimization (ACO), and multiple regression)
and different objective functions were applied. Moreover, Mantha and Samuel combined
several AI methods with the statistical regression technique to estimate the ROP [36].
Furthermore, Hegde et al. applied some hybrid models for ROP modeling [38]. In addition,
Yavari et al. employed neuro-fuzzy technique to analyze ROP data [39]. In a recent study,
Gan et al. combined the SVM, mutual information analysis, and wavelet filtering to create
a hybrid ROP model [40].

Selecting an appropriate AI algorithm for the purpose of ROP prediction can be a
challenging task. In better words, there is no standard procedure or reference to choose the
best AI algorithm for ROP prediction. For instance, although the linear regression is com-
putationally simple, it is not reliable in case of the presence of delimited parameters [101].
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Other examples are decision trees, which exhibit noticeable accuracy even in the presence
of outliers and noise; however, their results may be affected by unwanted overfitting.

As shown in Table 3, the number and type of input parameters are very inconsistent
in different researches. Thus, even if the most optimal AI algorithm is selected, the determi-
nation of the optimal number of input parameters remains still challenging. Moreover, the
type of input parameters can remarkably affect the accuracy of the results predicted by the
applied AI technique [102]. It is noteworthy that the drilling operations are executed in ge-
ologically different formations, such as sandstone, shade, limestone, etc. Hence, the in situ
lithology can closely determine the selection of number and type of the input parameters.
As the geological parameters may exhibit intense fluctuations with depth, the presence of
outliers or noisy data is inevitable. Therefore, the capability of the selected AI algorithm in
prevention of such impacts must be taken into account. Generally, the statistical regression
techniques are more affected by noisy data compared to the neural networks. Nevertheless,
neural networks are more sensitive to noisy data when compared to SVM-based models.

Even more than this, the user-entered ratio of training data to the testing data may
affect the results [102]. The optimal ratio may be obtained by the trial-and-error process
which is time-consuming and inconsistent, depending on different cases.

Table 3. Some major studies related to ROP prediction by AI techniques.

Reference AI Technique Input Parameters

Bilgesu, 1997 [97] ANN drillability; formation abrasiveness; rotary time; bearing wear;
torque; tooth wear; WOB; pump rate; RPM.

Moran, 2010 [103] ANN formation strength; formation abrasiveness; bit weight; RPM;
drilling fluid weight; rock gense.

Jahanbakhshi, 2012 [29] ANN

mud type; pressure differential; hydraulic power of the bit;
hydraulics; bit wear; depth; RPM; pump pressure; WOB;
formation density; bit type; ECD; 10 min gel strength of drilling
fluid; wellbore diameter; early gel strength of drilling fluid;
drillability; drilling fluid’s yield point; permeability; drilling
fluid’s plastic viscosity; porosity.

Amar and Ibrahim, 2012 [79] ANN pore fluid pressure; RPM; depth; ECD; Reynolds number
function; tooth wear; WOB.

Alarfaj et al., 2012 [104] ANN Reynolds number; depth; WOB; RPM; tooth wear; gradient of
pore pressure; ECD.

Cui et al., 2014 [105] ANN
apparent viscosity; unconfined compressive strength; mud
density; RPM; bit geometry; WOB; bit type; gross hours drilled;
drillability constant.

Bodaghi, 2015 [100] SVM viscosity; mud weight; tooth wear; pump rate; bit geometry;
formation; deviation of well; RPM; depth.

Mantha and Samuel, 2016 [36] Hybrid system RPM; flow rate; WOB.

Shi et al., 2016 [99] ANN, ELM mud properties; formation; RPM; geomechanical
characteristics; WOB; hydraulics.

Amer, 2017 [106] ANN
WOB; mud weight; bit gense; mineralogy; IADC codes;
drill-pipe pressure; bit size; mud pump; bit condition; torque;
depth; RPM; TVD.

Abdulmalek et al., 2018 [37] SVM yield point; WOB; solid; RPM; funnel viscosity; flow rate;
plastic viscosity; standpipe pressure; mud density; torque.

Yavari et al., 2018 [39] Hybrid system WOB and RPM.

Anemangely, 2018 [33] Hybrid system RPM; WOB; shear wave slowness; compressional wave
slowness; flow rate.

Ahmed et al., 2018 [99] ANN, ELM, SVM, and LS-SVR depth; flow rate; WOB; RPM; torque; standpipe pressure; mud
weight; bit diameter.

Hegde et al., 2018 [38] Hybrid system RPM; UCS; flow rate; WOB.
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Table 3. Cont.

Reference AI Technique Input Parameters

Gan et al., 2019 [40] ANN seismic velocity; depth; torque; WOB; RPM; drillability; depth;
mud density.

Elkatatny, 2021 [107] Hybrid system UCS; WOB; drill-pipe pressure; RPM; flow rate; torque; mud
density; gamma ray; bit design; total flow area.

Lawal, 2021 [108] ANN density; porosity; point load index.

Mahdi, 2021 [98] ANN flow rate; WOB; RPM; bit diameter; standpipe pressure.

Sobhi et al., 2022 [35] Hybrid system depth; Reynolds number; WOB; tooth wear; ECD; RPM.

4. Discussion

Over the past few decades, drilling engineers have dealt with ROP prediction to
heighten drilling efficiency [109]. More complicated wells must be drilled since access to
hydrocarbon reservoirs is getting harder due to the deeper formations and increasing geo-
logically problematic conditions. In order to increase drilling efficiency, precise prediction
of the ROP has become more critical. This allows drilling engineers to accurately evaluate
associated expenditure, required time, and proper phasing of the drilling operations.

Since the relationships between the factors affecting the ROP are quite complicated, a
number of empirical and data-driven ROP predictive models have already been developed.
Each ROP model has its own advantages and disadvantages. Therefore, there is no unique
ROP model which is applicable for all circumstances. The empirical ROP models were
developed mainly based on field experience and observations. Hence, the working experi-
ence of researchers influenced the number and type of factors considered in the empirical
ROP models. On the opposite side, although powerful AI techniques, such as ANN and
SVM algorithms, formulate the ROP without prior assumptions, they are highly sensitive
to the number and type of input parameters. Thus, one potential solution is to develop
formation-classified ROP models in which the number and type of contributing factors are
determined for specific rock classes. In the oil and gas industry, the main rock types are
sedimentary formations, including sandstones, shales, limestones, dolomites, and evapo-
rated rocks [110]. If such formation-based ROP models are developed, the ROP values can
be accurately predicted using the minimum number of effective parameters. For instance,
rock abrasiveness can be classified as a highly influencing factor in ROP predictive models
for sandstones, but not for evaporative rocks. By contrast, rock creep is of paramount
importance in ROP models for evaporative rocks, but not for sandstone formations.

Drilling a directional well costs from 1.4 to 3 times more than a vertical well. Hence,
for directional drilling operations, the ROP prediction must be calculated more carefully.
Among the empirical ROP models, only Osguei’s [68] considered the effect of wellbore
inclination on the ROP. On the other hand, since the study refers to 15 years ago and drilling
technology has advanced remarkably since then, the inclusion of wellbore inclination in
current ROP models is of paramount urgency.

Future ROP models need further inclusion of uncontrollable factors, such as rock
permeability, wellbore inclination, temperature, and rock hardness. In addition to these
rock characteristics, the impact of discontinuities on the ROP can be further investigated.
Fowell and Mcfeat-Smith in Ref. [111] discovered that when joint spacing reduces, the
penetration rates rise. Moreover, Willbur in Ref. [112] proposed a classification to quantify
the drillability of different rocks based on the rock composition and the characteristics of
discontinuities. Also, Hoseinie et al. in Ref. [50] created a categorization system based
on the texture and grain size, Mohs hardness, UCS, joint spacing, joint filling, and joint
dipping to evaluate the drillability of different rock masses.

5. Conclusions

In this research, an inclusive survey on existing ROP models was conducted. The
focus was on the elaboration of up-to-date investigations, current shortcomings, and future
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requirements. To do this, firstly, the contributing factors on the ROP were explained. Then,
the different empirical and data-driven ROP models were elaborated, and their input
parameters, assumptions, applicabilities, and drawbacks were described. Assessment of
existing ROP models revealed that only 27% of the investigated contributing parameters
were uncontrollable factors. Those uncontrollable factors are mostly related to the geological
characteristics of the rocks. Furthermore, the frequency analysis of the input parameters
showed that four uncontrollable factors, including rock permeability, wellbore inclination,
rock hardness, and temperature, have not been adequately incorporated into the ROP
predictive models. Among these factors, the wellbore inclination is more critical as the
majority of the today’s wellbores are drilled directionally. Hence, the modification of
previous ROP models for inclined wellbores appears to be much needed. For this purpose,
different experimental and numerical modelings should be carried out to investigate the
ROP variations for inclined wellbores. In such inclined wellbores, the bottom-hole cleaning
parameters, such as the coefficient of cuttings concentration and modified directional WOB,
must be studied.

Generally, empirical ROP models are limited by different assumptions. Moreover, they
may need experimental coefficients which can affect the results. Comparing the empirical
and AI-based ROP models, it can be said that the application of data-driven models can
markedly enhance the accuracy of the predicted ROP values. These models consider
no operational assumption in their computational processes. Furthermore, numerous
controllable and uncontrollable variables can be imported to such models. However,
different AI techniques, such as ANN, SVM, decision tree, etc., may display different
accuracy levels, especially for different lithology conditions. As a matter of fact, lithology is
remarkably influential in the quality of the data gathered during the drilling operations; in
some lithology, the different geological parameters can be accompanied by different levels
of noisy data and outliers. Thus, the sensitivity of different AI algorithms to noisy data and
outliers must be considered during the development of data-driven ROP models.

The size and type of the input parameters can also impact the accuracy of data-driven
ROP models. To address this issue, it is suggested to develop a formation-based classifica-
tion system in which the type of the contributing factors is determined for drilling different
formations. Such formation-based classification systems have already been developed
for geomechanical investigations. For instance, the rock mass rating (RMR) system was
proposed by Bieniawski for the excavation of tunnels in different rocks [113]. Another
illustration is the Q-System developed by Bartun et al. for the design of underground
excavations [114]. Both RMR and the Q-System are in the form of tables in which different
geological conditions of rocks have been quantified. Therefore, drilling/geomechanics en-
gineers can convert the qualitative geological properties into quantitative numbers. Those
numbers are then used for classification of rocks.

The findings of this research are quite practical for the future investigations on ROP
prediction. Moreover, it benefits the companies and organizations dealing with drilling
operations in petroleum engineering, mining engineering, space engineering, and water-
well drilling.
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