
Citation: Yang, S.-F.; Choi, S.-W.; Lee,

E.-B. A Prediction Model for Spot

LNG Prices Based on Machine

Learning Algorithms to Reduce

Fluctuation Risks in Purchasing

Prices. Energies 2023, 16, 4271.

https://doi.org/10.3390/en16114271

Academic Editor: Donato Morea

Received: 8 March 2023

Revised: 20 May 2023

Accepted: 20 May 2023

Published: 23 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

A Prediction Model for Spot LNG Prices Based on Machine
Learning Algorithms to Reduce Fluctuation Risks in
Purchasing Prices
Sun-Feel Yang 1,2, So-Won Choi 1 and Eul-Bum Lee 1,3,*

1 Graduate Institute of Ferrous and Energy Materials Technology, Pohang University of Science and
Technology (POSTECH), Pohang 37673, Republic of Korea; sunfeel@postech.ac.kr (S.-F.Y.);
smilesowon@postech.ac.kr (S.-W.C.)

2 Korea Gas Corporation, 120, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
3 Department of Industrial and Management Engineering, Pohang University of Science and

Technology (POSTECH), Pohang 37673, Republic of Korea
* Correspondence: dreblee@postech.ac.kr; Tel.: +82-54-279-0136

Abstract: The ongoing Russia–Ukraine conflict has exacerbated the global crisis of natural gas supply,
particularly in Europe. During the winter season, major importers of liquefied natural gas (LNG),
such as South Korea and Japan, were directly affected by fluctuating spot LNG prices. This study
aimed to use machine learning (ML) to predict the Japan Korea Marker (JKM), a spot LNG price index,
to reduce price fluctuation risks for LNG importers such as the Korean Gas Corporation (KOGAS).
Hence, price prediction models were developed based on long short-term memory (LSTM), artificial
neural network (ANN), and support vector machine (SVM) algorithms, which were used for time
series data prediction. Eighty-seven variables were collected for JKM prediction, of which eight
were selected for modeling. Four scenarios (scenarios A, B, C, and D) were devised and tested to
analyze the effect of each variable on the performance of the models. Among the eight variables,
JKM, national balancing point (NBP), and Brent price indexes demonstrated the largest effects on
the performance of the ML models. In contrast, the variable of LNG import volume in China had
the least effect. The LSTM model showed a mean absolute error (MAE) of 0.195, making it the
best-performing algorithm. However, the LSTM model demonstrated a decreased in performance
of at least 57% during the COVID-19 period, which raises concerns regarding the reliability of the
test results obtained during that time. The study compared the ML models’ prediction performances
with those of the traditional statistical model, autoregressive integrated moving averages (ARIMA),
to verify their effectiveness. The comparison results showed that the LSTM model’s performance
deviated by an MAE of 15–22%, which can be attributed to the constraints of the small dataset size
and conceptual structural differences between the ML and ARIMA models. However, if a sufficiently
large dataset can be secured for training, the ML model is expected to perform better than the
ARIMA. Additionally, separate tests were conducted to predict the trends of JKM fluctuations and
comprehensively validate the practicality of the ML models. Based on the test results, LSTM model,
identified as the optimal ML algorithm, achieved a performance of 53% during the regular period
and 57% d during the abnormal period (i.e., COVID-19). Subject matter experts agreed that the
performance of the ML models could be improved through additional studies, ultimately reducing
the risk of price fluctuations when purchasing spot LNG.

Keywords: gas price prediction; volatility of gas supply; Japan Korea Marker (JKM); machine
learning; time-series data; COVID-19 period; Russia–Ukraine conflict

1. Introduction

Section 1 describes the liquefied natural gas (LNG) market’s characteristics and trends.
In addition, the objectives of this study are elaborated.
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1.1. LNG Market Characteristics and Trends

Natural gas is a combustible gas obtained from natural sources and consists of hy-
drocarbons. Although natural gas (NG) components vary depending on the region and
production processes, the main component is methane, which constitutes approximately
90% of NG. Generally, NG produced from gas fields undergoes a refining process to adjust
its calorific value, physicochemical properties, and increase its final value as fuel. Liq-
uefied natural gas undergoes a separate liquefaction process to cool the refined gas to
below −165 ◦C. The volume of LNG is reduced to 1/600th of NG, which makes it easier to
transport LNG carriers over long distances [1].

In 2021, global LNG trading volume amounted to 379 million tons. Australia is
currently the world’s largest LNG exporter, producing approximately 80 million tons of
LNG annually. Australia is followed by Qatar and the United States as the world’s second
and third largest LNG exporters, respectively. The Asia–Pacific region is a major LNG
consumer, importing and consuming approximately 72% of the global production. China
and Japan are the world’s first and second largest LNG importers, importing approximately
81 million tons and 75 million tons annually, respectively. Korea is the third largest LNG
importer, importing approximately 45 million tons annually [2]. Russia was the fourth-
largest exporter of LNG in 2021, and currently holds a prominent position as a significant
supplier of LNG in the global gas market [2]. However, in 2022, Russia’s LNG export
capacity dropped to sixth place [3]. This decline can be attributed to disruptions in the
supply of Russian gas resulting from the ongoing conflict between Russia and Ukraine.
In the event of disruptions to the supply of Russian gas or sustained boycotts by gas-
consuming countries of Russian gas, the international gas market will likely be adversely
affected. Figure 1 shows a graph of the global LNG export and import trends, as illustrated
with publicly open data from BP [2].
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LNG is typically traded internationally through long-term forward contracts of 10 years
or more due to the nature of LNG projects. Traditional LNG projects are large-scale projects
that include the entire supply chain, including gas field exploration and development, con-
struction of LNG liquefaction plants, and upstream to downstream processes. Integrated
LNG projects require substantial investments, which differ depending on the characteristics
and implementation period of a project. Typically, an investment of up to USD 1200/ton
per annum is required [4]. In general, project sponsors borrow approximately 60–70% of the
total investment cost from lenders through project financing (PF). The equity capital ratio
of project sponsors is approximately 30–40% [5]. Under this PF structure, lenders request
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long-term forward contracts (LTFCs) to secure future cash flows as collateral security for
their loans.

Therefore, LNG trading is globally dominated by LTFCs with contract terms exceeding
10 years. These LTFCs are typically established through commercial negotiations between
sellers and buyers and have durations of at least a year. Productions outside of long-term
contracts are made through short-term contracts of less than three years and spot markets,
and the volumes are considerably limited compared to those of LTFCs. From the time of the
construction of the first commercial LNG plant in Cleveland, Ohio, USA in 1941 [6], most
LNG trading has been in the form of LTFCs, with limited activity in short-term contracts
and spot LNG trading markets. However, starting in 2012, short-term and spot LNG
volumes have steadily increased and currently amount to approximately 25% of the global
traded volume [7]. Thus, their influence and importance is emphasized in international
energy markets, where uncertainty has recently increased due to rapid climate change and
ongoing conflicts.

Meanwhile, physical LNG is contractually traded with through bilateral negotiations
between a seller and buyer without going through an exchange. Spot LNG is also traded in
this form, and transaction information is not disclosed to the market. In particular, sales or
purchase price information determines the competitiveness of LNG players and is treated
as a major trade secret. Disclosing this information to parties other than those involved in
the transaction is strictly prohibited.

In contrast, commodity exchanges are typically used to trade a specific commodity of
equal quality in large quantities with trades made in the form of futures. Major exchanges
that trade energy commodities (such as crude oil and NG) include the Chicago Mercantile
Exchange (CME), New York Mercantile Exchange (NYMEX), and the Intercontinental
Exchange (ICE) [8]. Most energy products worldwide are traded on open platforms, and
their prices are determined based on supply and demand. Information about transactions
on the platforms is generally open and easily accessible.

Recently, the Russian invasion of Ukraine and the resulting reduction in gas supplies
to continental Europe have created unprecedented uncertainty in energy markets. This
situation has also placed extraordinary pressure on the gas and energy markets [9]. Europe
relies on Russian gas imports for more than 45% of its NG demand. Consequently, the
prolonged conflict in Ukraine has fueled uncertainty regarding NG supply and demand
in the UK, leading to a significant increase in NG prices in the European market. As of
6 October 2022, the National Balancing Point (NBP), Europe’s leading NG price index, was
36.40 USD/Metric Million British Thermal Unit (MMBtu) and the Title Transfer Facility
(TTF) was 52.34 USD/MMBtu [10].

Due to its political and geographical characteristics, Korea relies on LNG imports for
nearly all domestic NG consumption. Therefore, the country is facing a supply burden
owing to the rise in NG prices caused by recent international changes, as well as increased
demand in winter. In particular, NG power plants are responsible for meeting peak
demands in Korea’s power supply system. Accordingly, to respond to growing electricity
demand during specific periods (e.g., winter), it is essential to purchase spot LNG. Korea
procures over 90% of its LNG imports through long-term contracts and less than 10% of its
remaining volume through spot LNG purchases. However, the recent unusual temperature
changes have an effect on spot LNG purchases, resulting in instances where such purchases
exceed 10% of the total supply.

In summary, the global LNG market is complex and constantly evolving, shaped by
various factors such as geopolitical tensions, climate change, and supply and demand
dynamics. The increasing importance of short-term and spot LNG trading has highlighted
the need for efficient risk management strategies in the LNG industry.

1.2. Problem Statement and Research Objectives

In Europe and North America, where pipeline systems are well-developed, the main
market is based on NG rather than LNG. Therefore, the European and North American
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markets have developed and established their own price indexes (including NBP and
Henry Hub (HH)) that serve as references for NG transactions. In contrast, in the Asia-
Pacific region, the development of intercontinental pipeline systems for supplying NG is
insufficient due to regional political and security considerations [11]. With the exception of
China, the major Asia–Pacific LNG consumers including Korea, Japan, and Taiwan have
been unable to secure gas supply sources by constructing pipeline systems throughout
the region, as has been done in Europe and North America. Therefore, they rely on LNG
imports for most of their gas supply [12]. Consequently, the region has not developed
its own NG price indexes. With market characteristics such as the LTFC method in LNG
trading, the Asia-Pacific region has used variable prices in the form of price formulas, with
crude oil price indexes serving as linked variables. Examples of these include Japanese
customs cleared (JCC) crude oil and Indonesian crude price (ICP), rather than NG indexes.

Unlike LNG trading through LTFCs, spot LNG is traded in units of LNG carriers. A
fixed price (unit: $/MMBtu) is set based on the price per calorific value of LNG. Although
the spot LNG market has grown to approximately 25% of the global trading volume over
the last decade, the product supply flowing into the spot market is undeniably insufficient.
Starting from February 2009, Standard and Poor’s global commodity insights named the
spot LNG traded in Asia as the “Japan Korea Marker (JKM)” and began evaluating daily
spot LNG prices [13]. The fact that a spot LNG price index was first announced in 2009 indi-
cates the spot LNG market’s inactivity. Spot LNG exhibits relatively large price fluctuations
depending on changes in demand and supply, owing to fundamental limitations caused
by supply liquidity constraints. Figure 2 shows a graph of the fluctuations in JKM, HH,
and NBP, which are major NG price indexes, over the past 10 years [14–16]. Until the early
2000s, these three indexes exhibited a decoupling trend with repeated fluctuations, with
JKM experiencing the most prominent range of fluctuations. From 2014, JKM experienced
a significant decline and then merged with NBP and HH again; however, its volatility
remained relatively high. In contrast, HH exhibited slight fluctuations and the most stable
trend. Therefore, based on the trends of the past 10 years, JKM is highly volatile compared
to other NG indexes, and this volatility persists to date.
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Under these market conditions, LNG buyers address their peak demands through
spot LNG purchases. Buyers forecast annual, quarterly, and monthly demand, taking
into account their country’s temperature and planned maintenance schedules for base–
load power generation. To secure the required quantities, which are calculated through
sophisticated demand forecasting, buyers establish and implement procurement plans
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reflecting market conditions. Practitioners typically make spot LNG purchases using
qualitative criteria based on domain knowledge and market conditions. However, the
lack of objective quantitative criteria can delay decision making, thereby exposing them
to price fluctuation risks. Developing quantitative criteria to support decision-making for
spot LNG purchases is expected to reduce exposure to purchase price fluctuation risks and
ultimately lower NG purchase costs.

This study aimed to develop a spot LNG price prediction model based on machine
learning (ML) algorithms to reduce purchase price fluctuation risks for spot LNG imports
into South Korea. The following are the categories of key features used to predict the JKM
spot LNG price index:

• international NG prices
• international crude oil prices
• LNG import volumes by country
• average temperatures of key Asian countries
• LNG export volumes by country

Long short-term memory (LSTM), artificial neural network (ANN), and support vector
machine (SVM) algorithms, which are mainly used in time series prediction modeling,
were used to develop ML-based prediction models. This study is the first to develop a JKM
prediction model and compare its performance with that of the autoregressive integrated
moving average (ARIMA), a traditional statistical prediction technique. Furthermore, to
test the developed model’s price prediction performance, the authors divided the dataset
into before and after the COVID-19 outbreak to measure its performance for both periods
to reflect realistic circumstances in the research results. Finally, this study introduced a
new method for interpreting prediction results and presented a practical application for
the developed ML model. Forecasting spot LNG price trends based on the results of this
study is expected to reduce the price fluctuation risks associated with spot LNG imports
into Korea and ultimately reduce NG prices.

This paper consists of 10 sections. Section 1 describes the LNG market’s characteristics
and trends, as well as the study’s necessity and purpose. Section 2 analyzes research
conducted on crude oil and NG price prediction using ML techniques, as well as stud-
ies applying ML prediction techniques to stocks, virtual currencies, and exchange rates.
Additionally, it examines prior research using traditional prediction techniques for time
series data. Section 3 describes this study’s scope and framework. Section 4 presents an
overview of the methods and modeling and explains the collection of data used in JKM
prediction, feature selection, preprocessing, and modeling. Sections 5–8, which are the most
important parts of this paper, analyze the training and testing process and present the re-
sults of predicting JKM through a scenario analysis using the developed ML models.
Section 9 summarizes the results of this study and their major implications. Finally,
Section 10 analyzes the limitations of this study and concludes the article with suggestions
for future research to improve the performance of the models.

2. Literature Review

Section 2 analyzes research on crude oil and NG price prediction using ML techniques,
as well as studies applying ML prediction techniques to stocks, virtual currencies, and
real estate prices. In addition, it explains previous research using traditional prediction
techniques for time series data. Through the literature review, the authors identified the
ML algorithms commonly used to predict time-series data and defined the limitations of
previous research and the necessity of this research.

2.1. Energy Prices Prediction Using ML Algorithms

The authors reviewed previous literature on predicting energy prices, such as crude
oil and NG, using ML techniques. To predict crude oil prices, Gao and Lei presented a
stream learning method and a new ML paradigm and developed a model that can be
continuously updated using new oil price data [17]. Su et al. applied ANN, SVM, gradi-
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ent boosting machines (GBM), and Gaussian process regression (GPR) techniques to HH
spot price prediction, an NG price index in North America. According to their results,
the ANN method yielded a better predictive performance than other ML algorithms [18].
Xian et al. studied crude oil price prediction using an SVM, ANN, and hybrid EMD–SVM.
The results showed that the proposed hybrid EMD–SVM model yielded excellent perfor-
mance compared to prediction models using individual algorithms, and that the predictive
performance for oil prices was substantially improved using the hybrid model [19]. Gupta
and Nigam studied crude oil price prediction using an ANN algorithm and identified the
optimal lag and number of delay effects of the ANN algorithm. Consequently, unstable
patterns of crude oil prices were continuously captured, which significantly enhanced the
model’s predictive performance [20]. To explore the optimal prediction model for Korean
LNG import prices, Seo applied various econometric models, including autoregressive
integrated moving average with exogenous variables (ARIMAX), vector error correction
model (VECM), the ML algorithm LSTM, and a hybrid model that combined the two
models. According to the tests on each model, VECM–LSTM was selected as the optimal
model, with high prediction accuracy and interpretability [21]. Mouchtaris et al. used SVM,
regression trees, linear regression, GPR, and an ensemble of tree ML models to predict
the spot prices of NG after 1, 3, 5, and 10 days. According to the results, the SVM model
yielded the best predictive performance [22]. Fetih and Balkaya investigated the history of
crude oil price predictions and the application of artificial intelligence (AI) techniques. They
concluded that ANN algorithms were the most suitable for complex and sensitive oil price
prediction, considering their hierarchical structure that can relate the target variables and
numerous parameters in detail. Furthermore, they found that the prediction results could
be improved by applying text mining in combination with other methods [23]. Kaymak and
Kaymak conducted research on enhancing the predictive performance of oil prices during
COVID-19 by improving models using ANN and SVM algorithms. They proposed a novel
method that combined fuzzy time series and the greatest integer function with existing
ANN and SVM models. The researchers found that the proposed model outperformed
existing models that used the two algorithms alone [24]. Tschora et al. (2022) investigated
the latest ML techniques to accurately predict day-ahead electricity prices in Europe, where
electricity price volatility is high due to various energy production sources and storage
difficulties. They added previously unused new features, such as price histories of multiple
neighboring countries, to the datasets, which dramatically increased the model’s perfor-
mance. DNN and SVR were found to extract meaningful information from the features
and cope with market changes such as gas price prediction [25]. Tan et al. proposed a new
hybrid deep learning-based model called convolutional neural network (CNN) + stacked
sparse denoising auto-encoders (AE) to address the technical difficulties in accurate price
prediction due to the nonlinearity, randomness, and volatility of electricity prices. The
study experimented with the Australian national electricity market as a case study and
showed outstanding prediction performance for price spikes. Additionally, the proposed
model can save training time for neural networks in the prediction process [26]. Qin et al.
compared popular single-model and multiple-model ML methods used for crude oil price
prediction by applying online data from Google Trends to enhance the prediction ability.
The experimental results indicated that introducing Google Trends can improve prediction
performance, and the multiple-model approach indicated higher prediction accuracy [27].

2.2. ML Applications for Price Prediction Based on Time Series Data

The authors reviewed the previous literature on price predictions of other goods
using ML techniques. Researchers have conducted price prediction studies on various
commodities and goods such as stocks, options, cryptocurrencies (e.g., Bitcoin), and real
estate prices. Ramakrishnan et al. used SVM, neural networks, and random forest (RF)
ML techniques to analyze the impact of the prices of four commodities (crude oil, palm
oil, rubber, and gold) on the Malaysian exchange rate. They found that the RF technique
was superior in terms of accuracy and performance, and that the price of the four com-



Energies 2023, 16, 4271 7 of 39

modities was a strong dynamic parameter influencing the Malaysian exchange rate [28].
Fu et al. studied exchange rate predictions for four currencies (USD, EUR, JPY, and GBP)
using an evolutionary SVM (E-SVM). Furthermore, they developed two regression models
based on the E-SVM algorithm and evaluated their exchange rate predictive performance.
The results showed that E-SVM outperformed all other benchmark models in terms of
the prediction level accuracy, prediction direction accuracy, and statistical accuracy [29].
Vijh et al. applied ML techniques to predict the stock closing prices and next-day stock
prices of five companies (Nike, JP Morgan, Goldman Sachs, Johnson & Johnson, and
Pfizer) using ANN and RF ML models. They used six variables comprising historical
time-series data to train ML models. The analysis results showed that the ANN model
outperformed the RF model [30]. Truong et al. compared the performances of traditional
and advanced ML models in predicting housing prices in Beijing by applying RF, extreme
gradient boosting, a light gradient boosting machine, hybrid regression, stacked gener-
alization algorithms, and 19 variables. Based on the analysis results, they suggested the
need for additional research on hybrid models to supplement the different strengths and
weaknesses of each model [31]. Kim et al. conducted a study to predict Ethereum prices, a
major cryptocurrency, using ML techniques based on blockchain information. According
to an analysis using ANN and SVM models, ANN outperformed SVM. Moreover, the
most suitable independent variables for predicting Ethereum prices were macroeconomic
factors, Ethereum-specific blockchain information, and Bitcoin cryptocurrency blockchain
information [32]. Choi et al. developed an engineering machine learning automation
platform (EMAP) that applies AI and big data technology to predict risk at different stages
in the life cycle of oil and gas engineering projects. Among EMAPs, M2 is a design cost
estimation module modeled using Decision Tree, Random Forest, Gradient Boosting, and
XGBoost algorithms. As a result of the evaluation, Random Forest was found to be the best
model [33]. Kurani et al. evaluated the applicability of these algorithms to stock predictions
by conducting a study on stock price prediction using ANN and SVM models. The results
showed that both algorithms solved common constraints in stock prediction, such as time
windows, data constraints, and cold starts. Furthermore, the hybrid model further im-
proved the predictive performance [34]. Chhajer et al. conducted case studies by applying
AI and ML to stock market predictions. They classified cases of stock market predictions
using ANN, SVM, and LSTM algorithms. Based on the analysis results, it was concluded
that ML models can efficiently process historical data, trend lines, and charts, making them
suitable for predicting future market trends. They also demonstrated that the ANN, SVM,
and LSTM algorithms were the best in the field [35]. Xiong and Qing proposed a new
hybrid forecasting framework that combines VMD with time series prediction to improve
the forecasting accuracy of day-ahead electricity prices. The new framework introduced
an adaptive copula-based mutual information feature extraction (ACBFS) method based
on conditional mutual information (MI). It is also a day-ahead electricity price forecast-
ing (EPF) model that combines variational mode decomposition (VMD) with a Bayesian
optimization and hyperband (BOHB)-improved LSTM neural network [36]. Iftikhar et al.
compared several decomposition techniques for various time series models to forecast time
series properties that are difficult to model. They proposed a new prediction methodology
after comprehensively analyzing monthly electricity consumption predictions. This study
employed data on Pakistan’s monthly electricity consumption from 1990 to 2020 and found
that the proposed method outperformed the benchmark seasonal trend decomposition
(DSTL) [37].

2.3. Comparison of Traditional and ML Methods

The authors reviewed previous literature comparing the performance of traditional
and ML methods for predicting time series data. Gosasang et al. conducted research on
predicting the volume of container throughput in the Bangkok port using a multilayer
perceptron (MLP) and linear regression. They found that MLP is superior in terms of
accuracy and performance [38]. Siami-Namini and Namin compared the performances of
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ARIMA and LSTM models for time-series data. For financial time series data, the LSTM
model had a root mean square error (RMSE) score of 87% lower than that of ARIMA, and for
economic data, it scored 84% lower and revealed that the ARIMA model underperformed
the LSTM [39]. Makridakis et al. studied concerns regarding statistical and ML prediction
methods and suggested directions for moving forward. They found that conventional
statistical methods were more accurate than ML. The ML performance has a significant
effect on the length (size) of the dataset used, and the longer the length, the better the
training of the ML model is optimized [40]. Sagheer applied deep LSTM (DLSTM), a
deep gated recurrent unit (DGRU), and ARIMA models to predict the production data
of real oilfields. A comparison of the performance of each model revealed that DLSTM
outperformed the statistical model ARIMA on nonlinear prediction problems [41]. Guo
conducted oil price research using deep learning and ARIMA models. The convolution
neural network model is fast in training and has the performance accuracy of the LSTM
and gated recurrent unit (GRU). They proposed combining neural network models and
traditional seasonality models to improve performance [42]. Calkoe et al. applied ML and
traditional methods for sand beach predictions. Despite exhibiting comparable performance
to traditional methods described in the research, the performance of ML algorithms is
heavily reliant on the quality of data.. ML has an efficient advantage in terms of computing
time [43]. Poggi et al. compared traditional inferential statistical methods and newer
deep learning techniques for forecasting electricity prices in the German market during
highly volatile periods, such as 2020 to mid-2022. While this study did not report that any
particular model was superior, it suggested that combining statistical and neural network
(NN) models can be used an alternative approach [44].

2.4. Limitation of Previous Research

Owing to advancements in information technology, AI has been used in various
industries. Among AI technologies, ML techniques are actively incorporated and utilized
in diverse fields and items, from predicting energy prices (crude oil, NG), financial goods
prices (stocks, options, cryptocurrencies), and weather (rainfall and snowfall) to battery
life. However, energy price studies that apply ML techniques are lacking. In particular,
there is a lack of research on the application of ML technology to the NG industry sector,
and no research exists on spot LNG price prediction. Moreover, the studies do not properly
reflect the unique circumstances in which uncertainty considerably increased due to the
COVID-19 pandemic. In addition, in the case of the ML model, it was found that the dataset
length used for the ML model had the largest effects on the ML performance, and that the
ML model could perform better than the traditional method when it could not use a dataset
of sufficient length.

Accordingly, this study developed a prediction model for JKM: a spot LNG price
index using LSTM, ANN, and SVM algorithms, which are primarily used in prediction
research based on time-series data. The authors validated the developed ML models by
comparing them with ARIMA, a traditional statistical model, and measured their predictive
performance during the COVID-19 period to reflect realistic circumstances in the research
results. Additionally, the authors compared the ML technique with existing practices to
secure legitimacy and examine its practical applicability.

3. Research Scope and Framework

Section 3 describes the scope and framework of this study. It presents the core objective
and methods used in the study.

3.1. Scope of Work

This study aims to develop a spot LNG price prediction model based on ML algorithms
to reduce the purchase price fluctuation risk for spot LNG imports into Korea. The scope of
this study is as follows:
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First, the authors developed a JKM prediction model using ML algorithms such as
LSTM, ANN, and SVM, which are commonly used for time-series data prediction. The
authors then used the developed ML models to predict JKM after N + 1, 5, and 10 d
and measured the mean absolute error (MAE), mean absolute percentage error (MAPE),
and RMSE scores, which are regression model performance indicators, to determine their
prediction accuracy. The authors also validated the developed ML models by comparing
their performances with that of ARIMA, a traditional statistical model. Second, in this
study, the independent variables used in the training of the ML prediction model were
limited to the following eight factors:

• JKM, spot LNG price index
• NBP and NG price index in Europe
• HH and NG price index in North America
• Brent: Major crude oil price index.
• LNG import Volumes of Korea
• China’s LNG import volumes
• LNG import Volumes of Japan
• Average temperatures in Seoul, Korea

Third, the data collected and processed for this study were unstructured numerical
data derived from daily published price information. Taking into account the nature of
statistical numerical data, the authors collected monthly data on LNG imports for each
country. The import volume information for each country was pre-processed and converted
into a daily sequential term.

Fourth, unstructured text information, such as headlines from daily newspapers
related to the LNG business, was excluded from the data collection for JKM prediction.
Finally, the authors developed a JKM prediction model to support quick and accurate
decision-making in spot LNG purchases.

3.2. Research Framework

This study was conducted following the procedure described below. Section 4 explains
the collection of the background dataset that served as the basic data for the spot LNG
price prediction model, preprocessing, feature selection, and splitting of the dataset to
train and test the ML models. Spot LNG-related energy price index information (JKM,
Brent, HH, and NBP) was extracted using the KOGAS data package system (KDPS). Data
on the daily average temperatures of the capital cities of Korea, China, and Japan, which
are major LNG importers in the Asia–Pacific region, were collected from the Open MET
Data Portal (OMDP) of the Korea Meteorological Administration (KMA). The authors
organized the collected data in Microsoft Excel to facilitate uploading and loading process
while developing the ML model code. This step also involved explaining the feature
selection process, which included a workshop with subject matter experts (SMEs) and the
preprocessing step to construct datasets for training and testing the ML models using the
raw data. The preprocessed dataset was divided into normal and subsequent abnormal
periods, serving as the training and test sets for the ML models.

Sections 5–8 provide an explanation of the training, testing, and validation processes
for the ML models used in spot LNG price prediction. To train the ML models, the authors
established and analyzed four scenarios with dimensions of 1, 2, 7, and 8. Initially, the
authors varied the combinations of independent variables to match the conditions of the
ARIMA model as closely as possible, based on each test result. Subsequently, three addi-
tional scenarios were analyzed. Three algorithms (LSTM, SVM, and ANN) were employed
to develop the prediction models using ML techniques. The performance indicators of
regression models (MAE, MAPE, and RMSE) were used to assess the accuracy of price
predictions made by the ML models. Finally, the models were validated by comparing their
performance with that of the traditional statistical prediction model, ARIMA. As a result,
the authors derived an optimal prediction model based on ML algorithm.
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Section 9 presents the conclusions and limitations of this study and future research
directions. Figure 3 illustrates the process of developing the spot price prediction models
described above.

Energies 2023, 16, x FOR PEER REVIEW 10 of 40 
 

 

authors varied the combinations of independent variables to match the conditions of the 
ARIMA model as closely as possible, based on each test result. Subsequently, three addi-
tional scenarios were analyzed. Three algorithms (LSTM, SVM, and ANN) were employed 
to develop the prediction models using ML techniques. The performance indicators of 
regression models (MAE, MAPE, and RMSE) were used to assess the accuracy of price 
predictions made by the ML models. Finally, the models were validated by comparing 
their performance with that of the traditional statistical prediction model, ARIMA. As a 
result, the authors derived an optimal prediction model based on ML algorithm. 

Section 9 presents the conclusions and limitations of this study and future research 
directions. Figure 3 illustrates the process of developing the spot price prediction models 
described above. 

 
Figure 3. The model development process. 

4. Methods and Modeling 
Section 4 presents an overview of the methods and modeling and explains the collec-

tion of data used in JKM prediction, feature selection, preprocessing, and modeling. 

4.1. Data Collection and Categorization 
The background dataset used for this study was extracted through KDPS, and the 

temperature data were collected through the OMDP of KMA [45]. The collection period 
for extracting the raw data was set to 12 years, from 2010 to 2021. 

Figure 3. The model development process.

4. Methods and Modeling

Section 4 presents an overview of the methods and modeling and explains the collec-
tion of data used in JKM prediction, feature selection, preprocessing, and modeling.

4.1. Data Collection and Categorization

The background dataset used for this study was extracted through KDPS, and the
temperature data were collected through the OMDP of KMA [45]. The collection period for
extracting the raw data was set to 12 years, from 2010 to 2021.

During the data collection, we initially considered including financial market indexes,
such as exchange and interest rates, as a major category of the basic data. However,
upon incorporating these variables into the predictive models developed in this study, we
found that they did not significantly improve the models’ predictive power. Consequently,
we opted to focus on collecting basic data primarily from the following five categories
commonly used in short-term natural gas market forecasting within the industry, excluding
the aforementioned financial market indexes.

First, the raw data collected for the 87 variables were classified into five categories.
Table 1 lists the categories. The classification criteria and details are as follows:
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Table 1. The categories of the raw dataset.

No Category Details

A International Natural Gas Prices JKM, NBP, TTF, HH
B International Crude Oil Prices Brent, WTI, JCC
C LNG Import Volume by Country Korea, Japan, China, Taiwan, India, etc.
D Average Temperature of Asia Key Country Korea, Japan, China, Taiwan, India

E LNG Export Volume by Country Qatar, Australia, North America,
Malaysia, etc.

Category A, a group of international NG price indexes, was extracted through the
KDPS. The collection period for extracting the raw data was set to 12 years, from 2010 to
2021. The most important information in this study included data on JKM and the spot
LNG price index set as the prediction targets. JKM is announced in LNG Daily, a newspaper
published by Platts under S & P Global. A spot LNG price index for the Asia–Pacific region,
JKM, was announced in 2009 based on spot LNG transaction information in Korea, China,
Japan, and Taiwan, which are major LNG importers [13]. For spot LNG trading in the same
region, sellers and buyers generally check the day’s JKM price, predict demand according
to power generation, climate change, and energy market conditions related to each country,
and negotiate the purchase price considering the demand and supply of spot LNG in the
market. Because JKM information is the most crucial data used in this study, its importance
can be regarded as very high. The gas market price indexes of each region influence spot
LNG prices. Major international NG price indexes include NBP and TTF, which represent
the European NG market, and HH, the benchmark price of the North American NG market.
Depending on the prices in Europe and North America, the volume of spot LNG traded
in the Asia–Pacific region may divert to either market. Considering that the supply and
demand conditions of each market organically influence each other, this is classified as
basic information for predicting JKM.

Category B, a group of international crude oil prices, was extracted from the KDPS.
The collection period for extracting the raw data was set to 12 years, from 2010 to 2021.
As of 2021, approximately 63% of LNG transactions worldwide have been in the form of
LTFCs [46]. Owing to the nature of this contract type, signing an LTFC at a fixed price
exposes both the buyer and seller to excessive risk. Therefore, rather than fixed prices, the
LNG industry trades based on a floating price structure in the form of a formula linked to
crude oil price. Because fluctuations in international crude oil prices significantly influence
LNG prices, international crude oil price information was collected in the form of important
background data.

Category C, a group of LNG import volumes by country, was extracted using the KDPS.
The collection period for extracting the raw data was set to 12 years, from 2010 to 2021. The
import volume data of LNG importers worldwide are objective information through which
each country’s LNG demand and consumption patterns can be estimated. LNG is typically
traded in the over-the-counter (OTC) market, that is, trades are made directly between
the seller and buyer without going through an exchange [47]. Spot LNG is traded in this
manner. LNG buyers and sellers are concerned about a decrease in their bargaining power
for purchasing prices owing to position exposure; hence, the leakage of buyers’ demand
information and sellers’ supply information is strictly controlled, making it difficult to
access this information. As an alternative, this study collected data on country-specific
LNG import volumes, which provide objective statistical information, and analyzed their
impact on JKM. In particular, the authors determined that there would be a meaningful
link between the LNG import volume information of major countries in the Asia–Pacific
region and the prices of spot LNG traded in the region.

Category D, a group of the average temperatures of major LNG importing countries in
the Asia–Pacific region, was extracted through the KMA’s OMDP [48]. The collection period
for extracting the raw data was set to 12 years, from 2010 to 2021. The country-specific LNG
import volume, classified into the primary data group above, was determined by changes in



Energies 2023, 16, 4271 12 of 39

supply and demand conditions due to temperature changes in each country. Therefore, the
average temperature data of major countries in the Asia–Pacific region, the core of the LNG
market, were classified as significant in this study. The average temperature information
was collected for each country’s capital city, which is densely populated, assuming that it
represents changes in demand in each country. This information was collected through the
KMA’s OMDP separately from previous data.

Category E, a group of LNG export volumes by country, was extracted using the KDPS.
The collection period for extracting the raw data was set to 12 years, from 2010 to 2021.
These data can be used as basic information to represent global LNG supply. Similar to the
above-mentioned LNG import volume information, it is impossible for LNG players other
than actual LNG producers to immediately check or collect information on the detailed
production profiles of specific liquefaction plants or planned and unplanned maintenance
schedules in liquefaction plants. These events ultimately impact production volume and
can significantly influence commodity prices in markets with liquidity constraints, such
as spot LNG markets. Indeed, the spot LNG price traded during a specific period often
increases when an unplanned shutdown of a specific LNG plant occurs. Moreover, by
excluding these uncontrollable circumstances, the spot LNG price fluctuates significantly
when the purchase volume of a specific country, buyer, or seller grows rapidly, or the
supply volume decreases. Accordingly, the authors determined that changes in LNG
supply could be reasonably estimated using each country’s LNG production information
based on statistical data. Therefore, they collected and classified this information.

4.2. Feature Selection for Modeling

Feature selection refers to the process of obtaining a subset from an original feature
set according to a certain feature selection criterion that selects the relevant features of the
dataset [49]. It plays a role in compressing the data-processing scale, where redundant
and irrelevant features are removed. Good feature selection results can improve learning
accuracy, reduce learning time, and simplify learning results [50]. It is challenging to
quantify the influence of the collected data on spot LNG prices. Consequently, the authors
conducted a workshop to gather insights from SMEs in the NG industry and selected the
features based on their inputs. The expertise of the SMEs, derived from industry practices
and their extensive work experience in related fields, greatly influenced the selection of
features that impact spot LNG prices. The workshop included two SMEs with over 20 years
of experience in the NG industry and five SMEs with over 10 years of experience. Based on
the workshop results, the authors initially identified features estimated to have the most
significant impact on JKM. From this initial group, features that had a suitable form for
predicting JKM using ML models were selected. As a result, eight independent variables
were chosen from these five categories.

First, three variables, JKM, HH, and NBP, were selected from category A: international
NG prices. JKM is the spot LNG price index of the Asia–Pacific region, and was the
prediction target in this study. HH and NBP are the representative NG price indexes for the
North American and European markets, respectively. According to the Asian spot LNG
market price, the LNG volume produced or re-loaded in the area is diverted to Asia, and
spot prices influence each other. Therefore, they were selected as significant variables.

Second, the Brent variable was selected from category B, which represents international
crude oil prices, for several reasons. Owing to the development of pipeline infrastructure
systems in each region, NG is more actively traded than LNG and has formed a mature and
transparent market. Therefore, trading is conducted using its own price index developed
for each trading region. Conversely, LNG does not have its own price index and is traded
based on a formula linked to crude oil prices. Considering that the first commercial LNG
was produced in 1940, price structures linked to the JCC or ICP have been most commonly
used in the Asia–Pacific region. From the early- and mid-2000s, the Brent price, which is
relatively advantageous for hedging, was used for LNG trading. Compared to the JCC or
ICP, Brent has an abundant volume and a mature trading market, which facilitates hedging.
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Consequently, many LNG players have recently preferred to use the Brent price index.
Reflecting this trend, the authors selected it as an important factor that influences spot
LNG prices.

Third, the LNG import volumes of three Asian countries were selected as variables
from category C. China, Japan, and Korea are the world’s first, second, and third largest
importers respectively. This selection was made based on the understanding that the
volumes of these major LNG importers worldwide have a significant influence on spot
LNG prices.

Fourth, the average temperature of Seoul, the capital of Korea, was selected as a
variable from category D. Furthermore, the authors collected the average temperature data
of the capital cities of China and Japan, the largest and second-largest LNG importers,
through the KMA WDSP. However, due to inconsistent data intervals and many missing
values, it was necessary to impute the data. This process significantly distorted the data.
Therefore, the authors excluded these variables from the final selection.

Fifth, the export volume data of LNG producers were excluded from the final vari-
able selection for category E. Initially the authors collected this data with the intention
of objectively evaluating LNG supply based on the changes in export volume of LNG
producers. However, the SMEs pointed out it was nearly impossible to track how much
of each producer’s export volume specifically flowed into the Asia–Pacific region. As
a result, the authors took their opinions into account and decided to exclude the data.
Another reason for excluding the data was the issue of data distortion caused by correcting
missing values. The LNG export and import volume data are based on statistical data,
with the smallest units being on a monthly basis. In contrast, JKM (the prediction target)
is collected on a daily basis, requiring the transformation of missing value into a daily
sequence term. Although missing values can be corrected through rational estimation (such
as linear interpolation), the authors believed that this process would unavoidably introduce
data distortion due to increase in processed data values. Additionally, the authors hypothe-
sized that increasing the number of variables with these characteristics would significantly
impact the final results analyzed in this study. Therefore, no additional variables were
included in this category. Table 2 provides a list of the eight variables selected through the
aforementioned feature selection process.

Table 2. The list of selected variables.

No Category No Selected Variables

A International Natural Gas Prices
1 Japan Korea Marker (JKM)
2 Henry Hub Futures (HH)
3 National Balancing Point (NBP)

B International Crude Oil Prices 4 Brent Futures (Brent)

C LNG Import Volume by Country

5 LNG Import Volume of Korea
(Korea Import Vol.)

6 LNG Import Volume of Japan
(Japan Import Vol.)

7 LNG Import Volume of China
(China Import Vol.)

D Average Temperature of Asia
Key Country 8 Average Temperature of Seoul

(Average Temp.)

E LNG Export Volume by Country - None Selected

4.3. Data Preprocessing

Important information must be extracted from the data to develop a prediction model
for specific data. For this purpose, data preprocessing is performed, wherein the researchers
process the analysis data using their own knowledge [51]. This process varies depending
on the characteristics of the data, and there is no single standardized procedure or correct
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answer. Therefore, a suitable pre-processing method must be selected based on this study’s
requirements. In this study, the data collected and selected to predict spot LNG prices
consisted of time-series data, and the programming language used for preprocessing was
Python. Pandas and NumPy libraries provided by Python were used to create a data
frame in the form of a two-dimensional array, which was collected to train and test the
ML models. The dataset of variables finally selected and used for modeling was in the
form of a Microsoft Excel sheet. The file was loaded using Python 3.7, after which a
two-dimensional data frame of the dependent and independent variables was created.
First, missing data were identified by inspecting the information in the data frame, and
then the values were imputed. Second, the data format was converted to create an input
for the model. To match the data input format of the time-series prediction model, the
existing data were reconstructed into a three-dimensional format of “window sample
number, time step, features”. The data were also converted into lookback (past steps) and
look forward (future steps) formats for the input of the LSTM model. Finally, the data
were standardized to complete preprocessing. As the variables used for spot LNG price
prediction had low multicollinearity, the authors did not conduct a correlation analysis
between the variables. The datasets collected and used in this study comprised daily and
monthly numerical information based on public announcements and statistical data; hence,
it was not necessary to eliminate noise. Moreover, denoising was not included in the
preprocessing because it could damage the original data and cause distortion.

4.3.1. Missing Value Imputation

As the name implies, a missing value is one that does not exist [52]. Missing values
in data reduce analysis efficiency, introduce complexity in data processing and analysis,
and cause bias due to the difference between missing values and complete data. Therefore,
missing values make data analysis more difficult [53]. In most cases, simple techniques
are applied to handle missing data, which sometimes produce biased results. In contrast,
imputation techniques can be applied to produce valid results without complicating the
analysis [54]. For the energy price indexes used in this study, considering that announce-
ments are not made on non-business days (such as national holidays), there is no price
information for these days. Such missing values are generally eliminated if they do not
significantly influence the dataset composition. However, removing missing values from
time series data can cause statistical distortions in the mean, variance, and other parameters
at the corresponding time points, thereby affecting the data analysis results.

Accordingly, to conduct smooth time-series data analysis, it is important to replace
these missing values and convert the sequence term. The energy price indexes used in this
study (JKM, Brent, NBP, and HH) have missing values by nature, considering that they are
announced only on business days. Moreover, although the LNG import volume data for
major Asian countries do not contain missing values, they are in the form of monthly data
based on statistics. Therefore, they must be converted to daily data, the same unit as JKM,
which is the prediction target of the ML prediction models.

Techniques to replace missing values in time-series data include forward-fill, which
replaces a missing value with the previously observed value; backfill, which replaces a value
with the next observed value; and the moving average/median method, which replaces
a value with the average value/median of the previous n time windows. If a missing
value is in a section where the preceding and following pattern changes is replaced with
the above methods, the replaced value may differ from the actual value, thereby causing
problems in the analysis. In such cases, the missing values can be handled using linear
interpolation. Linear interpolation involves utilizing data already obtained statistically to
infer the value between time t and t + 1. Considering the characteristics of each dataset
with missing values, the authors applied linear interpolation to all missing values. For
price indexes, it is common to use the value announced on the previous business day for
the missing value on an unannounced day. Replacing missing values with the backfill
method may cause distortion when using unannounced values in the future. Although



Energies 2023, 16, 4271 15 of 39

using linear interpolation can cause errors by applying assumed values based on increasing
or decreasing trends, this effect was ignored, considering that there were very few missing
values in the obtained dataset. Therefore, linear interpolation was applied to all missing
values in this study to improve preprocessing efficiency. However, the values for 1 January
2010, the starting point of the data used in this study, were replaced using the backfill
method. Next, it was necessary to convert the LNG import volume data from monthly
to daily. The import volume in a certain month may increase, decrease, or (in very few
cases) remain unchanged in the next month. Based on the assumption that these numerical
changes were linear, the authors converted the monthly figures into daily data through
linear interpolation.

The present study sought to simplify country-specific patterns of LNG imports based
on monthly data and eliminate potential noise that could arise during the conversion to
daily data. Linear interpolation was identified as a suitable method to minimize distortion
of the existing data while also offering the advantage of being easily verifiable by others.
As such, linear interpolation was applied uniformly to preprocess tasks such as converting
monthly data into daily data and correcting data gaps. This ensured that the resulting data
were both accurate and reliable for subsequent analysis. There were no missing values in
the daily temperature data for Seoul, the capital city of Korea.

4.3.2. Reshape and Standardization of Input Data

The data were converted to lookback (past steps) and look forward (future steps)
formats for the input of neural network algorithm-based models, such as LSTM and
ANN. In other words, to match the data input format of the LSTM model, the data were
reconstructed into a three-dimensional format of “data size, time step, features”. “Time
steps” indicates the number of columns in one data and “features” indicates the number of
lows to input at once [55]. Reshaping the input data in this manner is essential for training
the LSTM model.

Most ML algorithms yield a better performance when the input variable data are
scaled. The most common scaling methods for numerical data prior to modeling are
normalization and standardization. Normalization involves individually adjusting the
size of each input variable to the most accurate floating-point value range, that is, zero to
one [56]. Standardization adjusts the scale of each input variable by subtracting the mean
and dividing the result by the standard deviation [56]. Therefore, it shifts the distribution
such that the mean and standard deviation are zero and one, respectively. Data scaling is a
recommended preprocessing step for ML algorithm models to improve the performance of
predictive model algorithms. The scaling method for the input variable data varies with the
details of the problem and the characteristics of each variable [56]. This study standardized
the data using StandardScaler from the scikit-learn library.

4.3.3. Split of Training and Test Dataset

Based on the ML models using various algorithms, it is necessary to appropriately
classify the dataset according to the purpose of selecting the optimal model and verifying
its performance. In a data-rich situation, the best approach is to randomly classify the
preprocessed data into training, validation, and test sets. The training set was used to fit
the model, the validation set was used to measure performance (estimate prediction error)
for selecting the optimal model, and the test set was used to measure the generalization
error of the selected optimal model [57].

The background dataset used for this study was extracted using KDPS. The collection
period for extracting the raw data was set to 12 years, from 2010 to 2021. As the first
step in classifying the dataset, considering the impact of COVID-19, data from 2010–2019
and 2020–2021 were divided into normal and abnormal periods, respectively. The normal
period data were then classified into training and test sets at an 8:2 ratio to train and test the
ML prediction models. Abnormal period data can be judged as outliers and excluded from
the dataset classification. However, the authors separately prepared data for COVID-19 to
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further validate each model’s predictive power under rapidly changing market conditions.
A separate validation set was not considered due to the limited size of the collected dataset.

The JKM index, which is the prediction target of ML models, was first introduced to
the market in 2009. At this time, owing to the low reliability of the index, it had problems
including abnormal fluctuations and insufficient data. Therefore, 2009 was excluded from
this study’s dataset. Eight variables were used to train the prediction models, and the
dataset considering these variables had approximately 35,000 points. Unlike mechanical
sensor data collected in minutes or seconds, most variables used in this study were NG-
related energy price indexes. This type of information is published daily as numerical
figures. Therefore, despite collecting a dataset spanning nearly 10 years, each variable
row has only approximately 3500 points. This dataset was too small to train prediction
models based on ML algorithms. Ultimately, this impeded the training performance of the
prediction models developed in this study. Table 3 shows the collection period of the entire
dataset and the size of the samples used in this study.

Table 3. The information of the dataset.

Object Collecting Period (from, to) Sample Size

Training Dataset 2010~2017 (8 y) 23,376
Test Dataset 2018~2019 (2 y) 5840

COVID-19 Dataset 2020~2021 (2 y) 5848

4.4. Modeling Overview

The concept of modeling refers to the search for and selection of an ML algorithm
suitable for specified research objectives by considering the characteristics of the prepro-
cessed dataset. It also includes the entire process of training and evaluating the model
using training and test datasets and selecting the best-performing model [58]. Considering
that the background dataset used in this study was time-series data, it was mostly based
on daily numeric information. Through a literature review, the authors determined the ML
algorithms that are mainly used to predict crude oil prices. Researchers have primarily
conducted prediction studies using neural network-based models (ANN, recurrent neural
network (RNN), SVM, LSTM) or regression-type algorithms. Accordingly, considering the
dataset type and algorithms mainly used to predict energy prices, the authors selected
LSTM, ANN, and SVM as algorithms to develop the prediction models. LSTM is the most
frequently used algorithm for predicting time series [59]. LSTM comprises three steps: the
forget gate, the input gate, and the output gate. Each gate outputs values between zero and
one using a sigmoid function [60]. The forget gate determines how much of the previous
information to discard based on the previous cell state and the current input. In the input
gate, a sigmoid function determines the amount of new information, and a tanh function
limits the range of values for the new information. Finally, in the output gate, the decision
is made regarding how much of the existing cell state to include in the hidden state and
output. The determined new information and output are used to determine the new cell
state. When new input arrives, the LSTM operates again, along with the previous cell
state. This structure of LSTM addresses the drawback of traditional RNNs, which suffer
from a decline in learning capability with longer input data, known as the problem of long
dependency [61]. Thus, the authors excluded RNN from the algorithms used in this study.

An ANN, which is a representative neural network algorithm, was selected as an
alternative [62]. ANN is an ML algorithm inspired by the structure of the human brain
and consists of an input, hidden, and output layer [63]. The input layer receives input data
from external sources; typically, all nodes are directly connected to the external inputs. The
hidden layers receive input data from the input layer, analyze the relationships between
the input and output layers, extract features from the input data, and pass the processed
data to the output layer. The output layer, which receives the transmitted data, produces
the final results, and the output data type determines the number of nodes in the output
layer. With its multilayer structure and connections between neurons, ANN can learn and
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represent complex patterns in high-dimensional data [63]. Additionally, it is capable of
efficiently processing large-scale data.

Furthermore, because the authors planned to conduct a prediction study using mul-
tidimensional independent variables, multi-support vector regression (multi-SVR) was
finally selected [64]. SVM is an algorithm used for data classification or prediction by
maximizing the margin between data points. It works by mapping the given data into
a higher-dimensional space and finding the optimal hyperplane [65]. The hyperplane is
defined by the support vectors, which are the data points closest to the hyperplane. The
support vectors play a critical role in the training and prediction of the model. Additionally,
maximizing the margin in SVM improves generalization ability and helps reduce overfitting.

To develop the ML models, the authors referred to the basic code of each algorithm
published in the open AI community (such as GitHub, Hugging Face, and Kaggle). Addi-
tionally, the programming code was developed and modified to reflect the study objectives
and characteristics of the background dataset. The purpose of this study was to measure the
performance of three ML models and determine the optimal model. The study also aimed
to validate the effectiveness of the developed models through performance comparisons
between the optimal ML model and the conventional economic model, and to determine
its practical applicability. ARIMA, which is primarily used for predicting time-series data,
was selected as the economic model to verify the performance. ARIMA is a time series
forecasting model that combines Autoregressive (AR), Integrated (I), and Moving Average
(MA) models [66]. It predicts future values of a time series based on its past values and the
patterns observed in the data. ARIMA has three key components: autoregression, moving
average, and integration. It is defined by three parameters: p, d, and q, representing the
order of the AR, differencing, and MA components, respectively. ARIMA is widely used
in various fields and can provide accurate predictions when the underlying assumptions
are met.

Regression model performance indicators, including MAE, MAPE, RMSE, and MSE,
were used to measure and evaluate the performance of the developed ML prediction models.
These conceptual indicators evaluate accuracy by calculating the difference (error) between
the model’s predicted and actual values used in the test. The authors selected the MAE,
MAPE, and RMSE indicators and measured each model’s prediction accuracy to evaluate
their performance, making it possible to derive the best-performing ML model objectively.

Eight variables were used in this study, including the prediction target JKM, to train
the three developed ML models. The independent variables applied to model training
were each divided into four dimensional scenarios (one-dimensional, two-dimensional,
seven-dimensional, and eight-dimensional) to verify the performance of the developed ML
prediction models and analyze the influence of the independent variables on the predictive
performance of each model. The developed prediction models were trained based on
the conditions of each scenario to optimize the hyperparameters. The test dataset was
then used to measure the performance of the trained ML prediction models. The test
results for each model were calculated based on the evaluation indicator scores, and their
performances were compared and analyzed. Figure 4 shows a schematic of the modeling
process for the entire study described above.

Four scenarios (A, B, C, and D) were devised and tested to analyze the effect of
each selected variable on the model performance. Sections 5–8 describe the analysis of
each scenario.

• Scenario A: Application of a one-dimensional variable to verify the effectiveness of
the ML models.

• Scenario B: Application of eight-dimensional variables to test the performance of
ML models.

• Scenario C: Application of seven-dimensional variables to analyze the effect of JKM
on the performance of the ML models.

• Scenario D: Application of two-dimensional variables to analyze the effect of each
variable on model performance.
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Table 4 summarizes the specifications of the environment and PC on which the spot
LNG price prediction models were developed.

Table 4. Data analytics environment.

Category Specification

Application Google Colaboratory
Language Python 3.7.15

Operating Systems Windows 10 Education ver.
CPU Intel® Core™ i5-10400 CPU @ 2.90 Ghz
RAM 8.00 GB
GPU NVIDIA GeForce GT 1030

GPU RAM 6.00 GB

5. Scenario A: Application of One-Dimensional Independent Variable

Section 5 presents an analysis of Scenario A to verify the effectiveness of ML models.
Scenario A describes the application of a one-dimensional variable to the training and
testing of the ML models. The predictive performances of the models were measured
during normal and COVID-19 periods.

5.1. Training of ML Models

The preprocessed training dataset was used to train the developed ML models to
predict the JKM and ARIMA models. First, the hyperparameters used to construct the ML
model or minimize the loss function, such as the penalty parameter in SVM or the learning
rate for ANN training, were optimized by iteratively training the ML models [67]. Three
hyperparameters were adjusted for models using neural network-based algorithms such as
LSTM and ANN: epoch, batch size, and learning rate. The developed prediction models
were trained by iterating the same process based on the given variables. The number
of iterations were determined by number (value) of epochs [68]. Next, the number of
samples to be used in the network before updating the weights was set. The batch size
setting determined the number of training samples used per epoch [68]. The learning
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rate indicated the rate at which the model parameters were adjusted for each batch and
epoch [68]. Smaller learning rates result in slower training speeds, whereas larger learning
rates may cause unpredictable behaviors during training. An inappropriate learning rate
can cause the loss function value to fall below that of other existing solutions. Therefore, it
is crucial to set a suitable initial value to update the learning rate [69]. Here, the authors
tuned the hyperparameters using iterative model training based on the default values of
each algorithm. Table 5 presents the final selected parameter values.

Table 5. Hyper parameters of LSTM and ANN models.

Hyperparameters Value

Epoch 200
Batch size 32

Learning rate 0.001

The SVM algorithm-based model was developed using multi-SVR to incorporate
multivariate independent variables. Since this model does not utilize epochs, there was
no need to set that hyperparameter. However, it was necessary to determine the look-
back and look-forward values, which are essential for predicting time series data. As
the authors aimed to predict the JKM, spot LNG price, in the short term, they tested the
predictive performance of the ML models for the next day, after five days, and after ten days.
Therefore, the settings ‘look-back = 15′ and ‘look-forward = 1, 5, and 10′ were uniformly
applied to the models.

The ARIMA model has a univariate variable structure; therefore, the JKM factor func-
tions as both a dependent and independent variable in this model, making it unnecessary
to divide the dataset into training, test, and COVID-19 test datasets, as was done for the ML
models. However, to more intuitively compare ARIMA with the ML models, the authors
identically split the dataset for the ARIMA model.

In Scenario A, reflecting the structural characteristics of the ARIMA model, whose
performance was compared to that of the ML models for verification, only one JKM factor
was applied as a univariate independent variable in the ML prediction models, after which
training was conducted. Therefore, if the developed ML models show similar or higher
capabilities than the ARIMA model’s verified performance, the soundness of the ML
models can be verified. Furthermore, the criteria for assessing the influence of each variable
used to train the ML models on prediction accuracy can be established.

5.2. Training Results

As a result of Scenario A training, all of the ML models produced performances similar
to that of the ARIMA model. Nevertheless, for further predicted time points, the scores of
the evaluation indicators increased, while the performance of the ML models decreased.
A constant pattern of scores was recorded regardless of the ML model type. The ARIMA
model showed an MAE of 0.014, MAPE of 0.046, and RMSE of 0.001, making it the best-
performing model. However, the performance scores increased for further predicted time
points. Table 6 and Figure 5 show the training evaluation indicator scores for each model.
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Table 6. The training results of scenario A.

Training
Result

1 Day 5 Days 10 Days

MAE Rank MAE Rank MAE Rank

LSTM 0.023 3 0.038 4 0.053 4
ANN 0.017 2 0.034 2 0.051 3
SVM 0.028 4 0.037 3 0.049 1

ARIMA 0.014 1 0.032 1 0.050 2

- MAPE Rank MAPE Rank MAPE Rank

LSTM 0.087 3 0.218 3 0.329 3
ANN 0.074 2 0.212 2 0.325 1
SVM 0.114 4 0.237 4 0.327 2

ARIMA 0.046 1 0.204 1 0.330 4

- RMSE Rank RMSE Rank RMSE Rank

LSTM 0.001 3 0.003 4 0.006 3
ANN 0.001 2 0.002 1 0.005 2
SVM 0.001 4 0.003 3 0.005 1

ARIMA 0.001 1 0.003 2 0.006 4
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5.3. Test and Validation

To evaluate the performance of each model, the authors used information collected
over two years (2018–2019) to evaluate the normal period predictive accuracy of the ML
algorithm-based prediction models trained by applying JKM as a one-dimensional indepen-
dent variable. According to the test results, the ML models yielded prediction accuracies
similar to those of the training results. Regarding the overall performance indicators MAE,
MAPE, and RMSE, although the ML models slightly underperformed compared with the
ARIMA model, their performance levels were nearly identical. The overall performance of
the ML models was relatively weak; however, they outperformed the ARIMA model at
certain time points and in some performance indicators. Notably, the performance indicator
scores of both the ML and ARIMA models exhibited an almost constant pattern, thereby
indicating that the performance according to the type of ML algorithm was nearly identical.

Through Scenario A testing, which involved using 15 days of previous JKM data as
input, the authors confirmed that the performances of the ML models developed to predict
JKM were nearly identical to that of the ARIMA model. This generated a new value for
each time point and repeated the process of predicting values for 1, 5, and 10 days into the
future. Therefore, theoretically, this structure inevitably derived predicted values that were
nearly identical to actual values. Given that the developed ML prediction models produced
similar performances to the ARIMA model, they can be judged as sound. Validating the
soundness of the ML models is highly significant in this study, as this lays the foundation
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for conducting additional scenarios. The ARIMA model showed an MAE of 0.020, MAPE
of 0.121, and RMSE of 0.001, making it the best-performing model. The performance scores
increased for further predicted time points for both the ML and ARIMA models. Table 7
and Figure 6 show the performance indicator scores for each model.

Table 7. The test results of scenario A.

Test
Result

1 Day 5 Days 10 Days

MAE Rank MAE Rank MAE Rank

LSTM 0.035 3 0.058 4 0.081 4
ANN 0.025 2 0.051 2 0.077 3
SVM 0.039 4 0.055 3 0.075 2

ARIMA 0.020 1 0.047 1 0.074 1

- MAPE Rank MAPE Rank MAPE Rank

LSTM 0.248 3 0.443 2 0.840 4
ANN 0.164 2 0.418 1 0.738 1
SVM 0.336 4 0.490 4 0.823 2

ARIMA 0.121 1 0.487 3 0.830 3

- RMSE Rank RMSE Rank RMSE Rank

LSTM 0.003 3 0.007 4 0.013 2
ANN 0.002 2 0.006 1 0.013 3
SVM 0.003 4 0.006 2 0.011 1

ARIMA 0.001 1 0.007 3 0.015 4
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5.4. Abnormal Period Analysis

The COVID-19 period data, which were prepared separately to compare the predictive
power for the abnormal period, comprised two years of information (2020–2021), which
were the same duration as the existing test dataset. The prepared COVID-19 data were
used to perform the test. When measuring the predictive power for the abnormal period
wherein market uncertainty was observed, the SVM model performed significantly better
than the other models. Notwithstanding the accuracy of the predicted values, it failed to
estimate the rising and falling trends of the actual values. In contrast, in the abnormal
test, the performances of the neural network algorithm-based LSTM and ANN models
were nearly identical to the normal test results. However, the prediction accuracy is likely
to degrade for time points with sharply increasing prices. Table 8 and Figure 7 show the
results of the abnormal (COVID-19, denoted as “COVID” in tables for simplicity) tests.
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Table 8. The COVID test results of scenario A.

COVID
Result

1 Day 5 Days 10 Days

MAE Rank MAE Rank MAE Rank

LSTM 0.339 2 0.406 2 0.487 2
ANN 0.396 3 0.472 3 0.557 3
SVM 0.954 4 0.957 4 0.956 4

ARIMA 0.107 1 0.217 1 0.308 1

- MAPE Rank MAPE Rank MAPE Rank

LSTM 0.319 3 0.540 2 0.805 2
ANN 0.285 2 0.547 3 0.766 1
SVM 0.470 4 0.604 4 0.828 3

ARIMA 0.186 1 0.532 1 0.969 4

- RMSE Rank RMSE Rank RMSE Rank

LSTM 0.578 2 0.722 2 0.958 1
ANN 0.869 3 1.087 3 1.329 3
SVM 3.880 4 3.867 4 3.858 4

ARIMA 0.165 1 0.608 1 1.045 2
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6. Scenario B: The Application of Eight-Dimensional Independent Variables

Section 6 describes the analysis of Scenario B to test the performance of the ML models.
Scenario B is an application of eight-dimensional variables to the training and testing of
the ML models. It measured the models’ predictive performances during normal and
COVID-19 periods.

6.1. Training of ML Models

In Scenario A, the authors verified the soundness of the ML prediction models. The
authors additionally analyzed the influence of the independent variables on the predictive
performance of the ML models. In Scenario B, an eight-dimensional analysis was performed
wherein the models were trained by applying JKM as a univariate independent variable
and applying all the other seven variables.

6.2. Training Results

According to the model training results, the prediction accuracy of each ML model
declined compared to those under Scenario A, although the disparity with Scenario A
varied for each model. Moreover, in the Scenario B training results, the ML models
underperformed compared with the ARIMA model, although the performance gap between
the LSTM and SVM models and the ARIMA model decreased as the prediction period
increased. Furthermore, the ML models outperformed the ARIMA model in some sections



Energies 2023, 16, 4271 23 of 39

(10 d). A remarkable finding from the training results is that, compared with the other
models, the SVM model exhibited consistent performance regardless of the predicted
time point. Conversely, the ANN model output much lower predictive performance
indicator scores than under Scenario A. Overall, the LSTM, ANN, and ARIMA models
exhibited lower accuracy as the predicted time points increased. Among them, the LSTM
model achieved an MAE of 0.040, MAPE of 0.157, and RMSE of 0.003, making it the best-
performing model compared to the ARIMA model. It is important to note that the ARIMA
model had the same analysis conditions; accordingly, the performance values are identical
to those in Scenario A. Appendix A, Table A1 and Figure A1 show each model’s training
scores by their evaluation indicators.

6.3. Test and Validation

Scenario B analysis was conducted by applying normal-period data to previously
trained ML prediction models. According to the test results, the LSTM model produced
the highest performance of the three ML models, followed in order by the ANN and SVM
models. The SVM model showed stable performance regardless of the changes in the
predicted time point. However, there was a large difference in the absolute prediction error
compared with the other models, and its overall performance was the lowest. Furthermore,
the ANN model produced lower performance for furthering predicted time points. The
LSTM and ARIMA models exhibited relatively stable performances compared with the
other models.

After applying the eight-dimensional variables, the MAE, MAPE, and RMSE scores,
which are the performance indicators of each model, substantially increased compared
with those under Scenario A, thereby indicating that the performance of all ML models
decreased by a certain level. As the performance of the ML models declined, the gap in
performance with the ARIMA model widened. Therefore, the seven additional variables
applied in Scenario B negatively impacted the predictive performance of each ML model.
Appendix A, Table A2, and Figure A2 show the evaluation indicator scores of each model
calculated using the Scenario B test. For reference, the ARIMA model had the same analysis
conditions; hence, the performance values were identical to those of Scenario A.

6.4. Abnormal Period Analysis

Upon comparing the predictive power of each model during the abnormal period,
it was found that all models recorded relatively equal scores, regardless of the predicted
time point. However, the absolute value of the prediction error differed in magnitude for
each model. By analyzing the graphs of the predicted and actual values of each model, the
authors confirmed that the prediction models had many practical limitations. Appendix A,
Table A3, and Figure A3 show the performance indicator scores for each model during the
abnormal period.

7. Scenario C: The Applications of 7 Dimensional Independent Variables

Section 7 presents an analysis of the effect of Scenario C on the JKM prediction
performance of the ML models. Scenario C is an application of seven-dimensional variables
to the training and testing of ML models. It measured the models’ predictive performances
during normal and COVID-19 periods.

7.1. Training of ML Models

In Scenario C, seven variables were applied as multivariate independent variables
to training the three ML models developed for the JKM prediction. Here, the JKM factor,
which was applied as an independent variable in Scenarios A and B, was excluded from
the variables.
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7.2. Training Results

As a result of training, the ARIMA model produced the most accurate predictive
performance, followed by the SVM and LSTM models. The ANN model showed the
least accurate predictive results. The LSTM and SVM models showed relatively constant
performance regardless of the predicted time point. Additionally, the performance of ANN
and ARIMA model deteriorated as the prediction time point increased. The SVM showed
an MAE of 0.082, MAPE of 0.204, and RMSE of 0.011, making it the best-performing model
next to the ARIMA model. For reference, the ARIMA model had the same analysis condi-
tions; thus, the performance values were identical to those under the previous scenarios.
Appendix B, Table A4, and Figure A4 show the training results of each model.

7.3. Test and Validation

According to Scenario C testing, the LSTM model demonstrated the highest perfor-
mance of the three ML models, followed in order by the ANN and SVM models. However,
the ARIMA model achieved a substantially higher performance compared to the ML predic-
tion models. Although the SVM and ARIMA models exhibited slightly lower performance
for longer predicted time points, the accuracy of the ANN model notably improved for
relatively distant predicted time points. The LSTM model showed an MAE of 0.395, MAPE
of 3.323, and RMSE of 0.234, making it the best-performing model compared to the ARIMA
model. For reference, the ARIMA model had the same analysis conditions, resulting in
identical performance values as those in the previous scenarios. Appendix B, Table A5, and
Figure A5 present the evaluation scores of each model.

7.4. Abnormal Period Analysis

The LSTM and ANN models exhibited nearly identical predictive performances for
the abnormal period. Aside from outliers, where the market price spiked, the two models
showed relatively accurate predictions of an upward price trend. However, the performance
of the ANN model declined considerably compared with that in the normal period, making
it difficult to identify upward or downward price trends. Based on the error between the
predicted and actual values of each model, it was difficult to trust the predictive power
of the ML models during the abnormal period. Appendix B, Table A6 and Figure A6
show the performance indicator scores of each ML model and the ARIMA model in the
abnormal period.

8. Scenario D: Applications of Two-Dimensional Independent Variables

Section 8 presents an analysis of the effect of each variable on the models’ performances
under Scenario D, which was an application of seven-dimensional variables to the training
and testing of the ML models. It measured the models’ predictive performances during the
normal and COVID-19 periods.

8.1. Training of ML Models

Based on the results of Scenario A, when JKM was applied as a univariate inde-
pendent variable, the ML-based prediction models showed a similar performance to the
ARIMA model. Furthermore, the results of Scenarios B and C demonstrated that applying
multidimensional independent variables, including JKM, could sometimes degrade the
performance of the ML models. Based on the analysis of the other scenarios results, in
Scenario D, the authors analyzed each variable’s impact on JKM prediction. JKM, a uni-
variate independent variable that produced the best performance, was applied as the basic
training condition, whereas the other seven variables were applied one at a time to train the
models. To efficiently conduct and analyze Scenario D, the authors conducted an analysis
of the LSTM model, which exhibited the best average performance in Scenarios B and C.
Table 9 summarizes each of the two-dimensional variable combinations used to train the
LSTM model.
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Table 9. Combinations of variables.

Scenario No. of LSTM Combination of Variables

LSTM 1 JKM + Average Temperature of Seoul
LSTM 2 JKM + LNG Import Volume of Japan
LSTM 3 JKM + LNG Import Volume of Korea
LSTM 4 JKM + LNG Import Volume of China
LSTM 5 JKM + Brent
LSTM 6 JKM + HH
LSTM 7 JKM + NBP

8.2. Training Results

As a result of Scenario D training, the LSTM model exhibited very similar predictive
performance for each two-dimensional variable combination, although there were differ-
ences for each variable. The LSTM model showed an MAE of 0.022, MAPE of 0.111, and
RMSE of 0.001, making it the best-performing model compared to the ARIMA model. For
reference, the ARIMA model had the same analysis conditions; therefore, the performance
values were identical to those under the previous scenarios. Appendix C, Table A7, and
Figure A7 show the evaluation indicator scores for each two-dimensional variable combi-
nation of the LSTM model.

8.3. Test and Validation

Based on the normal period testing, the LSTM model showed nearly identical perfor-
mance, regardless of the two-dimensional variable combination. Of the variable combi-
nations, the JKM model trained with JKM and Chinese LNG import volumes produced
the lowest test performance, thereby showing a relatively large performance gap with the
ARIMA model and LSTM model trainings with other two-dimensional variable combina-
tions. This indicates that the Chinese LNG import volume had the least impact on JKM
prediction. Meanwhile, the two-dimensional combinations of the remaining variables (NBP,
Brent, and HH) showed nearly identical performances to that of the ARIMA model. How-
ever, the performance of the ARIMA model declined for further predicted time points. The
LSTM model was relatively advantageous regarding the performance difference depending
on the predicted time point. In the normal period, NBP had the greatest impact on JKM
prediction, followed by Brent and HH. Appendix C, Table A8, and Figure A8 show the test
results obtained by applying two-dimensional variables.

8.4. Abnormal Period Analysis

Based on the abnormal period test results, the performance of the ARIMA model was
pre-eminent. Although the ARIMA model significantly outperformed the LSTM model
in terms of short-term predictive power, its performance quickly declined over further
predicted time points. This trend was more pronounced in the abnormal period. Meanwhile,
the combination of the JKM and Brent variables, which produced high performance in
the normal period, showed a marked performance decline in the COVID-19 test period.
The NBP had the greatest impact on JKM prediction, followed in order by Japan’s LNG
import volume and average temperature in Seoul. In conclusion, in Scenario D, the authors
determined the priority of the variables that influenced the fluctuations in JKM spot LNG
price. Appendix C, Table A9, and Figure A9 show the evaluation indicator scores for the
abnormal period.

9. Conclusions

Section 9 summarizes the results of the research and reviews its practical applicability.

9.1. Summary

In this study, the authors developed prediction models using three ML algorithms
(LSTM, ANN, and SVM) to predict JKM, which is a spot LNG price index. Furthermore,
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the authors validated the ML prediction models by comparing their performance with that
of ARIMA, a traditional statistical prediction model. The authors varied the dimensions of
independent variables applied to train the ML models, analyzed them under four scenarios,
and measured the performance of each model. Based on the performance measurements of
each ML model, although results differed based on each scenario’s application conditions
and predicted time points, the LSTM algorithm-based model produced the best overall
performance and was selected as the optimal model. Compared with other ML models,
the LSTM model showed a balanced predictive performance and maintained a stable
performance regardless of the predicted time point. While the LSTM model recorded
similar MAE, MAPE, and RMSE scores to those of the ANN model, it was superior because
it exhibited an overall balanced performance.

Regarding the characteristics of each algorithm, based on the training results, the
neural-network-based LSTM and ANN models recorded relatively poor fitting scores
compared with the SVM model. However, when test data were applied, they outperformed
the SVM model and maintained a constant performance difference based on the predicted
time point. In contrast, the regression-based SVM (multi-SVR) model produced excellent
fitting results through iterative training. However, when the actual test dataset was applied,
its overall performance declined significantly. This trend was observed in the analyses of all
the scenarios. Furthermore, the SVM model’s predictive performance during the abnormal
period was considerably lower than those of the LSTM and ANN models. In conclusion,
the models applying neural network-based algorithms maintained constant performance
even for a new dataset or abnormal period and had relatively strong performances. In
contrast, the model that applied a regression-based algorithm showed large differences in
performance for new data and the abnormal period, with high uncertainty owing to the
inherent characteristics of the algorithm.

From the performance comparison between the ML models and the traditional sta-
tistical model, ARIMA, it was confirmed that the ARIMA model had considerably better
predictive power. As shown in a graph of the ARIMA test results, there was almost no
error between the predicted and actual values. The ARIMA model generated a new value
for each time point based on the data for the previous 15 days of JKM, which was set as
the prediction target, and predicted the values for 1, 5, and 10 days in the future. This is
an intuitive result, considering the fundamental operating principle of the ARIMA model,
which has a structure that is much closer to the concept of fitting than to that of prediction.

9.2. Discussion

The authors developed a JKM prediction model for the Spot LNG price index and
derived an optimal algorithm through this research. The originality of the research topic
can be highly evaluated as it set the Spot LNG price, which has never been adopted as
a prediction target before. In addition, this research had three main distinctive features
compared to previous studies. First, four models were developed to systematically analyze
the impact of the independent variables used in the research process on the model’s pre-
diction performance, and a total of 32 cases were analyzed. Second, the author developed
multiple ML-based prediction models and not only derived the optimal model, but also
verified the objectivity and limitations of the developed prediction model performance
through performance comparisons with the traditional statistical ARIMA model. Third,
the authors also aimed to compare and measure the performance of the developed model
by classifying it before and after COVID-19, reflecting recent political and economic issues.
This effort was made to reflect the current readership’s situation as much as possible by
evaluating the prediction performance during a time of exceptional market volatility.

The practical application potential of the research results can be positively evaluated by
the pure LNG buyers, who generally aim to procure volume to fill shortages calculated by
forecasting demand. Because the spot LNG volume that LNG buyers must secure is usually
fixed, they only consider when to purchase this volume. Determining the optimal purchase
time and making prompt decisions have the most critical impact on the final purchased



Energies 2023, 16, 4271 27 of 39

spot LNG price. Ultimately, the model would be highly applicable if it could accurately
predict upward or downward price trends compared to the current point in time rather
than accurately predicting future price levels. In practice, when making purchases, the
absolute error between the predicted and actual values exhibited relatively low importance;
hence, the models’ performances were reevaluated by estimating how accurately they
predicted upward and downward trends.

The authors analyzed the test results of the LSTM model with eight-dimensional
independent variables that produced the highest performance through a dichotomous
accuracy test regarding rising or falling price trends. The model showed a prediction
accuracy of approximately 53% and 57% for the normal and abnormal periods, respec-
tively, indicating that the model maintained consistent trend prediction performance even
for the abnormal period with uncertain market conditions. This level of performance
was confirmed to be similar to that of Company A in Korea, which applied ML predic-
tion to iron ore price forecasting and recorded a predictive accuracy of approximately
50–60%. However, because the absolute accuracy value was only slightly higher than 50%,
the direct application of the model in practice had limitations. However, modifying and sup-
plementing the model to improve its predictive performance increases its practical value;
therefore, the implications of this study’s findings can be considered highly significant.

Based on the analysis results, the authors surveyed SMEs with at least ten years of
experience in the LNG import/distribution business industry regarding current work
practices and the model’s practical applicability. Practitioners in the LNG industry do
not predict spot LNG prices. As discussed above, the forecasting accuracy is low because
spot LNG prices are highly volatile. It is difficult to obtain work efficiency gains relative
to the time spent forecasting the prices. However, changes in spot LNG prices are also
qualitatively analyzed by considering current market conditions (each country’s LNG
supply and demand conditions, nuclear plant operation rates, etc.), short-term climate
change trends, and unexpected events in the LNG market. This analysis determines
when to purchase spot LNG by accurately predicting the market trends. SMEs generally
agree that this qualitative analysis does not consider market fluctuations, resulting in
delayed purchasing decisions. The authors received positive responses that under these
circumstances, an objective tool to quantitatively determine spot LNG price trends could be
applied as a criterion to support spot LNG purchasing decisions. However, SMEs agreed
with the precondition that it is necessary to increase trend prediction performance by
improving and supplementing the ML prediction model developed in this study.

Considering the quantitative evaluation results obtained from the performance indica-
tor scores of the ML models, it would be difficult to immediately apply the models to the
LNG trading business in practice, given that the absolute value of the error between the
actual and predicted values was significant. This can be interpreted as a limitation from the
perspective of LNG traders, whose highest priority is to generate profit through market
margins. The LNG traders seek to perform arbitrage through price differences between
LNG distribution markets by securing spot LNG at competitive prices or price differences
caused by cyclical demand patterns (climate and season). Therefore, the absolute prediction
accuracy of the model is directly linked to profitability, making it challenging to apply the
model in practice to price fluctuation risk reduction.

Several studies have been conducted to predict energy prices in situations where
global uncertainty is maximized, such as the COVID pandemic and the subsequent Rus-
sia–Ukraine conflict. In particular, various advanced techniques have been applied to
investigate the impact of current situations on crude oil price volatility, including empirical
mode decomposition (EMD) [70], geometric Brownian motion (GBM) [71], a mixture of
GBM and a Poisson process [72], and a fractional integration method [73]. In the future,
the development of energy price prediction systems, including those for crude oil and NG,
is expected to incorporate not only the JKM prediction model proposed in this study but
also the four methodologies mentioned earlier. These approaches are anticipated to be
applicable for forecasting uncertainties, including extreme events.
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9.3. Contributions

In recent years, many countries have considered environmental problems a vital issue.
NG is recognized for its value as a bridge fuel in the transition from fossil fuels to renewable
energy. Moreover, the recent conflict in Ukraine has highlighted the importance of NG
in world energy security. Korea is the world’s third-largest LNG importer, importing
approximately 45 million tons of LNG per year. This imported LNG is vaporized and
supplied to power plants, industries, and households, and has been established as a major
energy source for power generation and heating. In particular, Korea’s LNG power plants
serve to reduce the peak demand. Therefore, accurately forecasting the demand and
securing a stable NG supply is crucial. The most intuitive solution to satisfy the constantly
fluctuating peak demand is to purchase spot LNG. However, our main concern is to help
determine when to purchase spot LNG by predicting upward and downward price trends
rather than accurately predicting the spot LNG price itself. Instead of focusing on price
prediction accuracy when evaluating the developed ML model, supplementing this study
to improve the model’s predictive power for rising or falling price trends can become a
helpful tool for facilitating purchase decisions for spot LNG.

The quantitative forecasting tool of JKM can also contribute to government policy
formulation. Although this study presents a forecasting model at a level that suggests the
possibility of applying JKM forecasting in practice, it is important to note that if the accuracy
of the JKM prediction model increases, it can enable timely response to the government’s
natural gas demand through accurate international gas price predictions. Furthermore, it is
expected to contribute to the government’s gas tariff policy formulation, which adheres to
the price smoothing principle: the price determination rule for Korea’s urban gas.

10. Limitations and Further Works

Section 10 provides a thoughtful analysis of the limitations of this study and suggests
future directions for improving the model’s performance. This study highlights several
challenges in predicting the price of a specific good, such as spot LNG, which is a small
component of a complex economic system comprising numerous factors with intricate
interactions. Despite these challenges, this study has successfully identified limitations that
can be addressed to improve the model’s performance.

The first limitation is the fundamental difficulty of predicting the spot LNG price
due to the interactions of diverse economic, political, and physical variables. However,
the findings of this study suggest that increasing the number of variables used for ML
model training does not always lead to improved predictive performance. The second
is the lack of background data to predict spot LNG prices, owing to the market’s closed
nature and liquidity constraints. While the study has collected data spanning nearly ten
years, the limited number of data points for each variable row ultimately impedes sufficient
training of ML models, thereby degrading their performance. However, it is expected that
as the spot LNG market matures and sufficient data is accumulated, the potential of the
practical application will increase through the improved performance of the predictive
models. The third limitation is the lack of uniform programming code for the ML models.
Despite applying three different ML algorithms and modifying an overall programming
code to complete model development, the authors encountered challenges in unifying the
sophistication level and operating structure of all models used in the study, which affected
the performance of each model. The fourth limitation is that this study did not apply
advanced ML models or hybrid models combining different algorithms to maximize the
strengths of each. In addition, the study did not construct a dynamic system to utilize the
developed models continuously, which constitutes a fundamental limitation for practical
applications. Finally, it is necessary to introduce the concept of continuously inflowing the
latest data into the prediction model’s database in order to optimize the model developed
in this study. Through this, it is expected that the predictive model will be able to actively
conduct additional learning and improve its performance, thereby maximizing its utility.
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In summary, while this study identified limitations in the model, it also suggested
future directions for improving model performance and predicting the spot LNG price
more accurately. With continued efforts to address these limitations, there is potential for
significant progress in this field.
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Appendix A. Scenario B

Table A1. The training results of scenario B—details.

Training
Result

1 Day 5 Days 10 Days

MAE Rank MAE Rank MAE Rank

LSTM 0.040 2 0.043 2 0.058 3
ANN 0.051 3 0.066 4 0.079 4
SVM 0.055 4 0.057 3 0.058 2

ARIMA 0.014 1 0.032 1 0.050 1

- MAPE Rank MAPE Rank MAPE Rank

LSTM 0.157 3 0.198 1 0.214 2
ANN 0.149 2 0.207 4 0.265 3
SVM 0.187 4 0.207 3 0.188 1

ARIMA 0.046 1 0.204 2 0.330 4

- RMSE Rank RMSE Rank RMSE Rank

LSTM 0.003 2 0.003 2 0.006 2
ANN 0.004 4 0.007 4 0.010 4
SVM 0.004 3 0.004 3 0.004 1

ARIMA 0.001 1 0.003 1 0.006 3
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Table A2. The test results of scenario B—details.

Test
Result

1 Day 5 Days 10 Days

MAE Rank MAE Rank MAE Rank

LSTM 0.195 2 0.199 2 0.290 2
ANN 0.503 4 0.289 3 0.307 3
SVM 0.488 3 0.502 4 0.515 4

ARIMA 0.020 1 0.047 1 0.074 1

- MAPE Rank MAPE Rank MAPE Rank

LSTM 1.571 3 1.052 3 1.178 3
ANN 4.579 4 3.030 4 3.205 4
SVM 0.890 2 1.022 2 1.158 2

ARIMA 0.121 1 0.487 1 0.830 1

- RMSE Rank RMSE Rank RMSE Rank

LSTM 0.058 2 0.063 2 0.132 2
ANN 0.326 3 0.121 3 0.140 3
SVM 0.377 4 0.391 4 0.404 4

ARIMA 0.001 1 0.007 1 0.015 1
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Table A3. The COVID test results of scenario B—details.

COVID
Result

1 Day 5 Days 10 Days

MAE Rank MAE Rank MAE Rank

LSTM 0.766 2 0.821 2 0.991 2
ANN 1.140 3 1.116 3 1.158 3
SVM 1.723 4 1.725 4 1.724 4

ARIMA 0.107 1 0.217 1 0.308 1

- MAPE Rank MAPE Rank MAPE Rank
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- RMSE Rank RMSE Rank RMSE Rank

LSTM 1.584 2 1.841 2 2.197 2
ANN 2.605 3 3.125 3 3.137 3
SVM 5.545 4 5.520 4 5.472 4
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Appendix B. Scenario C

Table A4. The training results of scenario C—details.

Training
Result

1 Day 5 Days 10 Days

MAE Rank MAE Rank MAE Rank

LSTM 0.097 4 0.093 3 0.096 3
ANN 0.085 3 0.118 4 0.140 4
SVM 0.082 2 0.080 2 0.079 2

ARIMA 0.014 1 0.032 1 0.050 1

- MAPE Rank MAPE Rank MAPE Rank

LSTM 0.228 3 0.204 2 0.277 2
ANN 0.281 4 0.469 4 0.564 4
SVM 0.204 2 0.214 3 0.240 1

ARIMA 0.046 1 0.204 1 0.330 3

- RMSE Rank RMSE Rank RMSE Rank

LSTM 0.017 4 0.016 3 0.017 3
ANN 0.014 3 0.025 4 0.035 4
SVM 0.011 2 0.011 2 0.010 2

ARIMA 0.001 1 0.003 1 0.006 1
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Table A5. The test results of scenario C—details.

Test
Result

1 Day 5 Days 10 Days

MAE Rank MAE Rank MAE Rank

LSTM 0.395 2 0.394 2 0.486 3
ANN 0.600 3 0.468 3 0.483 2
SVM 0.619 4 0.614 4 0.615 4

ARIMA 0.020 1 0.047 1 0.074 1

- MAPE Rank MAPE Rank MAPE Rank

LSTM 3.323 3 1.836 2 1.866 2
ANN 8.403 4 5.373 4 4.986 4
SVM 3.128 2 3.132 3 3.047 3

ARIMA 0.121 1 0.487 1 0.830 1

- RMSE Rank RMSE Rank RMSE Rank

LSTM 0.234 2 0.247 2 0.334 3
ANN 0.479 3 0.278 3 0.321 2
SVM 0.530 4 0.522 4 0.526 4

ARIMA 0.001 1 0.007 1 0.015 1
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Appendix C. Scenario D

Table A7. The training results of scenario D—details.

Training
Result

1 Day 5 Days 10 Days

MAE Rank MAE Rank MAE Rank

LSTM 1 0.023 5 0.038 5 0.054 4
LSTM 2 0.024 7 0.038 6 0.055 6
LSTM 3 0.024 6 0.038 4 0.054 5
LSTM 4 0.026 8 0.038 3 0.055 8
LSTM 5 0.023 4 0.040 8 0.054 3
LSTM 6 0.023 3 0.039 7 0.055 7
LSTM 7 0.022 2 0.037 2 0.053 2
ARIMA 0.014 1 0.032 1 0.050 1

- MAPE Rank MAPE Rank MAPE Rank

LSTM 1 0.117 7 0.228 7 0.328 6
LSTM 2 0.116 6 0.217 3 0.325 5
LSTM 3 0.139 8 0.235 8 0.348 8
LSTM 4 0.106 3 0.219 5 0.316 3
LSTM 5 0.088 2 0.216 2 0.300 1
LSTM 6 0.116 5 0.217 4 0.319 4
LSTM 7 0.111 4 0.225 6 0.313 2
ARIMA 0.046 1 0.204 1 0.330 7

- MAPE Rank MAPE Rank MAPE Rank

LSTM 1 0.001 5 0.003 3 0.006 3
LSTM 2 0.001 7 0.003 7 0.006 7
LSTM 3 0.001 6 0.003 6 0.006 4
LSTM 4 0.001 8 0.003 5 0.006 5
LSTM 5 0.001 3 0.003 8 0.005 2
LSTM 6 0.001 4 0.003 4 0.006 6
LSTM 7 0.001 2 0.003 2 0.005 1
ARIMA 0.001 1 0.003 1 0.006 8
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Table A8. The test results of scenario D—details.

Test
Result

1 Day 5 Days 10 Days

MAE Rank MAE Rank MAE Rank

LSTM 1 0.039 6 0.060 5 0.083 6
LSTM 2 0.038 5 0.060 4 0.082 4
LSTM 3 0.046 7 0.063 7 0.085 7
LSTM 4 0.077 8 0.125 8 0.181 8
LSTM 5 0.036 4 0.062 6 0.080 3
LSTM 6 0.035 3 0.059 3 0.083 5
LSTM 7 0.034 2 0.057 2 0.080 2
ARIMA 0.020 1 0.047 1 0.074 1

- MAPE Rank MAPE Rank MAPE Rank

LSTM 1 0.260 6 0.456 4 0.901 6
LSTM 2 0.225 4 0.469 5 0.849 4
LSTM 3 0.254 5 0.475 6 0.874 5
LSTM 4 0.261 7 0.492 8 0.996 8
LSTM 5 0.280 8 0.445 2 0.717 1
LSTM 6 0.220 3 0.437 1 0.946 7
LSTM 7 0.210 2 0.449 3 0.842 3
ARIMA 0.121 1 0.487 7 0.830 2

- RMSE Rank RMSE Rank RMSE Rank

LSTM 1 0.003 6 0.007 4 0.013 4
LSTM 2 0.003 5 0.007 3 0.013 3
LSTM 3 0.004 7 0.007 7 0.014 6
LSTM 4 0.010 8 0.024 8 0.049 8

- RMSE Rank RMSE Rank RMSE Rank

LSTM 1 0.003 3 0.007 6 0.012 1
LSTM 2 0.003 4 0.007 5 0.013 5
LSTM 3 0.002 2 0.007 1 0.012 2
LSTM 4 0.001 1 0.007 2 0.015 7
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Table A9. The COVID test results of scenario D—details.

COVID
Result

1 Day 5 Days 10 Days

MAE Rank MAE Rank MAE Rank

LSTM 1 0.395 5 0.444 3 0.516 6
LSTM 2 0.392 4 0.451 5 0.501 4
LSTM 3 0.408 7 0.456 6 0.515 5
LSTM 4 0.519 8 0.560 8 0.660 8
LSTM 5 0.406 6 0.481 7 0.548 7
LSTM 6 0.374 2 0.444 4 0.499 3
LSTM 7 0.388 3 0.442 2 0.496 2
ARIMA 0.107 1 0.217 1 0.308 1

- MAPE Rank MAPE Rank MAPE Rank

LSTM 1 0.278 4 0.537 4 0.772 4
LSTM 2 0.282 5 0.527 2 0.742 3
LSTM 3 0.301 7 0.560 7 0.862 6
LSTM 4 0.326 8 0.468 1 0.647 1
LSTM 5 0.256 2 0.591 8 0.937 7
LSTM 6 0.284 6 0.542 6 0.808 5
LSTM 7 0.259 3 0.538 5 0.734 2
ARIMA 0.186 1 0.532 3 0.969 8

- RMSE Rank RMSE Rank RMSE Rank

LSTM 1 0.757 3 0.866 2 1.065 6
LSTM 2 0.789 5 0.895 5 1.037 2
LSTM 3 0.786 4 0.895 4 1.053 5
LSTM 4 0.979 8 0.952 7 1.172 7
LSTM 5 0.868 7 1.030 8 1.249 8
LSTM 6 0.729 2 0.889 3 1.026 1
LSTM 7 0.815 6 0.927 6 1.052 4
ARIMA 0.165 1 0.608 1 1.045 3
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